
A MESSAGE-PASSING PARADIGM
FOR OPTIMIZATION

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ciamac Cyrus Moallemi
September 2007

c© Copyright by Ciamac Cyrus Moallemi 2007
All Rights Reserved

ii

iv

ABSTRACT

We consider a class of large-scale optimization programs that appear in many
engineering and management settings. Such complex, decentralized systems are
comprised of many individual components, each interacting with a limited number
of neighboring components. The resulting optimization programs are characterized
by the fact that the decision variables are coupled only in a localized and sparse
fashion.

Message-passing algorithms are a new class of distributed and asynchronous
methods for solving problems with graphical structure. They have emerged inde-
pendently in a number of fields, and interest in these algorithms has been motivated
by their empirical success as an approximation method for certain intractable prob-
lems. However, they are still poorly understood in the general optimization con-
text. The objective of this thesis is to understand these algorithms and elucidate
their relationship to standard analytical and algorithmic optimization techniques.

We first consider message-passing in the context of resource allocation prob-
lems. We demonstrate that message-passing provides a framework for decentralized
management that generalizes classical price-based systems by allowing incentives
to vary across activities and consumption levels. We demonstrate that message-
based incentives lead to system-optimal behavior for convex resource allocation
problems, yet yield allocations superior to those from price-based incentives for
nonconvex resource allocation problems. We describe and demonstrate the result-
ing distributed and asynchronous protocol in the context of a network resource
allocation problem.

v

Next, we consider the application of message-passing algorithms to the solu-
tion of unconstrained, convex optimization programs. We establish that message-
passing asynchronously converges for a large class of such programs that are char-
acterized by a scaled diagonal dominance condition. This condition is similar to
known sufficient conditions for asynchronous convergence of other decentralized
optimization algorithms, such as coordinate descent and gradient descent.

Finally, we apply message-passing to the distributed consensus problem, where
a collection of numbers must be averaged across a network in a distributed and
asynchronous fashion. We demonstrate that the resulting protocol, consensus prop-
agation, converges, characterize the convergence rate for regular graphs, and show
that the protocol exhibits better scaling properties than methods based on linear
consensus, which is an alternative that has received much recent attention.

vi

For Ben Van Roy
il miglior fabbro

vii

ACKNOWLEDGMENTS

The research in this thesis is the result of collaborative work with my advisor,
Professor Benjamin Van Roy. He has taught me a great many things, but from
him I have principally learned the virtue of clarity in thought and deed. I am
deeply grateful for his advice and his friendship.

I would like to particularly thank Professor Balaji Prabhakar, who served as
a thesis reader, and more importantly, as a intellectual mentor. He has been
unfailingly generous with his erudition on all aspects of life.

I am further indebted to my thesis reader Professor Andrea Montanari, and the
other members of my oral examination committee, Professors Ramesh Johari and
Sunil Kumar, both for their efforts on my behalf, and as I have profited much from
our interactions. My discussions with Professors Martin Wainwright, Devavrat
Shah, and Stephen Boyd have shaped the work in this thesis. Professor Tsachy
Weissman has been a thoughtful teacher and unselfish collaborator.

Vivek Farias has been my officemate and collaborator during my entire time at
Stanford. The path of shared experience we leave behind has forged a friendship
which I look forward to on the road ahead.

I have greatly benefited from many discussions and interactions with fellow
students at Stanford. I especially wish to acknowledge Pieter Abbeel, Chandra
Nair, Mohsen Bayati, and James Mammen, among others.

I am grateful to Joëlle Skaf for proofreading this thesis, which is only one of
the many examples of patience, kindness, and companionship that she has offered
me during the past year.

viii

Finally, I would like to thank my parents, Karim Moallemi and Azar Tadayyoni,
for their love, support, and encouragement has been invaluable.

The author of this work was supported by a Benchmark Stanford Graduate Fellow-
ship. This work was further supported, in part, by the National Science Foundation
under Grant IIS-0428868 and a supplement to Grant ECS-9985229 provided by the
Management of Knowledge Intensive Dynamic Systems Program (MKIDS).

ix

PRELIMINARIES

Notation

Throughout this thesis, equality by definition is written as A , B, and serves to
define A by B.

We use R to denote the real numbers, R+ to denote the nonnegative real
numbers [0,+∞), and R++ to denote the positive real numbers (0,+∞). Given a
finite set V and a set X , we use X V to denote the product space of vectors whose
components are indexed by the set V , and each lie in the space X . Given a vector
x ∈ X V and a subset of component indices C ⊂ V , we denote by xC ∈ XC the
vector consisting of the subset of components of x indexed by the set C. That
is, xC , (xi : i ∈ C). We denote by 1 , (1, . . . , 1) ∈ Rn a vector where every
component is 1.

Definitions and notation from graph theory will play an important role in this
thesis. An undirected graph (V,E) consists of a set of vertices V , and a set of edges
E, where each edge is an unordered pair of distinct vertices. For a vertex i ∈ E,
we denote by N(i) , {j ∈ V : (i, j) ∈ E} the set of neighboring vertices. In some
instances it will be necessary to distinguish direction on edges, so we define the set
~E , {(i, j) ∈ V × V : i ∈ N(j)}. If i ∈ V and j ∈ N(i) are neighboring vertices,
we allow (i, j) to refer to both an unordered element of E and an ordered element
of ~E, depending on the context.

x

A hypergraph (V, C) consists of a finite set of vertices V , and a collection C of
hyperedges. Each hyperedge C ∈ C is a nonempty subset of the vertex set C, i.e.,
C ⊂ V . We denote by ∂i , {C ∈ C : i ∈ C} the set of hyperedges incident to a
vertex i ∈ V .

Bibliographic Notes

Much of the original research in this thesis has has been published previously. The
material in Chapter 3 is based on work in [62]. The material in Chapter 4 is based
on work in [60, 61]. The material in Chapter 5 is based on work in [58, 59].

xi

CONTENTS

Abstract v

Acknowledgments viii

Preliminaries x

1 Introduction 1
1.1 Graphical Models . 2
1.2 Motivating Applications . 3

1.2.1 Network Rate Allocation 3
1.2.2 Distributed Estimation 4
1.2.3 Distributed Consensus 5

1.3 Classical Decentralized Algorithms 6
1.4 Message-Passing Algorithms . 9
1.5 Advantages of Message-Passing Algorithms 11
1.6 Organization of This Thesis . 12

2 Message-Passing Algorithms 14
2.1 Pairwise Graphical Models . 14
2.2 Dynamic Programming . 16
2.3 The Min-Sum Algorithm . 19

2.3.1 Relationship to Dynamic Programming 20

xii

2.3.2 Normalization . 21
2.3.3 Distributed and Asynchronous Implementation 21
2.3.4 Nonuniqueness of Estimates 24

2.4 Higher-Order Graphical Models 24
2.4.1 The Min-Sum Algorithm 25

2.5 Nonserial Dynamic Programming 26

3 Resource Allocation 28
3.1 Decentralized Decision Making 29

3.1.1 Benefits of Decentralized Methods 29
3.1.2 Priced-Based Methods 31
3.1.3 Contributions of This Chapter 32

3.2 Problem Formulation . 33
3.3 Decentralization and Externalities 36

3.3.1 Concave Utility Functions 37
3.4 Solution Concept . 38

3.4.1 Message-Passing Equilibrium 39
3.4.2 Optimality . 42
3.4.3 Concave Utility Functions 43
3.4.4 Messages Versus Prices 45

3.5 Message-Passing Algorithms . 46
3.5.1 Tractability . 47
3.5.2 Distributed and Asynchronous Implementation 47
3.5.3 Convergence . 48

3.6 Network Rate Control . 49
3.6.1 Inelastic Rate Control 51
3.6.2 Distributed Message-Passing 52
3.6.3 Constructing Solutions 54
3.6.4 Numerical Results . 55

3.7 Proofs . 57

xiii

3.7.1 Proof of Theorems 3.1 and 3.3 57
3.7.2 Proof of Theorems 3.4 and 3.5 59

4 Unconstrained Convex Optimization 63
4.1 Pairwise Separable Convex Programs 64

4.1.1 The Min-Sum Algorithm 65
4.1.2 Convergence . 66
4.1.3 The Computation Tree 68
4.1.4 Proof of Theorem 4.1 . 71

4.2 General Separable Convex Programs 76
4.3 Asynchronous Convergence . 79
4.4 Implementation . 80
4.5 Open Issues . 82

5 Consensus Propagation 84
5.1 Problem Formulation . 87
5.2 Message-Passing . 89

5.2.1 Intuitive Interpretation 90
5.3 General Algorithm . 93
5.4 Convergence . 94
5.5 Convergence Time for Regular Graphs 96

5.5.1 The Case of Regular Graphs 96
5.5.2 The Cesàro Mixing Time 98
5.5.3 Bounds on the Convergence Time 98
5.5.4 Adaptive Mixing Time Search 99

5.6 Comparison with Linear Consensus 101
5.6.1 Rate of Convergence . 102

5.7 Proofs . 103
5.7.1 Proof of Theorem 5.3 . 104
5.7.2 Proof of Theorems 5.4 and 5.5 112
5.7.3 Proof of Theorem 5.6 . 123

xiv

6 Concluding Remarks 125

Bibliography 127

xv

LIST OF FIGURES

2.1 The graph corresponding to the example (2.2). 16
2.2 The graph corresponding to a finite horizon, deterministic dynamic

program. 16
2.3 Cost-to-go functions in a dynamic programming solution. 17
2.4 The computation of a min-sum update. 20
2.5 A factor graph. 25

3.1 A dependency graph. 35
3.2 A dependency graph that is a tree. 39
3.3 The equilibrium condition for messages. 41
3.4 A network rate control example. 50
3.5 A comparison of message-passing versus competing algorithms for a

set of random inelastic rate control problem instances. 56

4.1 A graph and the corresponding computation tree. 69

5.1 Interpretation of messages in a singly-connected graph with β =∞. 91

xvi

1

INTRODUCTION

Over the past century, optimization has become a powerful tool in the design,
analysis, and implementation of engineering and management systems. The math-
ematical programming community has had a broad and important impact through
the development of an “optimization toolbox” which seeks to exploit common
structures that appear in optimization problems in many applied settings. Both
theoretical and computational methods have been developed for linear, convex, in-
teger, and dynamic programming, for example, which allow practitioners to focus
on application-specific modeling issues rather than optimization issues.

In this thesis, we consider a different type of structure that commonly appears
in large-scale optimization problems. In many such cases, although there may
be a large number of decision variables, these variables are coupled in a rather
limited way. A complex objective function or set of constraints may decompose so
that each term contains only a small number of decision variables. Such localized,
sparse interactions can be described using the metaphor of a graph.

Many problems with graphical structure arise in real-world applications in
which a system consists of many distinct components. Each component is only
responsible for a small subset of the decision-making process, and components
naturally interact only with neighboring components that are, for example, geo-
graphically proximate. In such systems, finding solutions in a distributed fashion,
in the absence of a central coordinating authority, are of particular importance.

1

2 CHAPTER 1. INTRODUCTION

Message-passing algorithms are a new class of decentralized and asynchronous
methods for solving problems with graphical structure. They have emerged inde-
pendently in a number of fields: communications theory, artificial intelligence, and
statistical physics. Interest in these algorithms has been motivated by their empiri-
cal success as an approximation method for certain classes of intractable problems,
such as those arising in the decoding of error-correcting codes, or certain Boolean
satisfiability problems. A body of theoretical work is emerging, but these methods
are still poorly understood in the general optimization context. Moreover, they
have received little attention in the mathematical programming community. Our
objective in this thesis is to understand the properties of these algorithms and
elucidate their relationship to standard analytical and algorithmic optimization
techniques. We hope that message-passing algorithms might become a new and
valuable addition to the optimization toolbox.

1.1 Graphical Models

Many optimization problems involve only localized interactions between decision
variables. These interactions can be encoded as a graph as follows: consider an
optimization problem associated with a hypergraph (V, C). There are |V | decision
variables; each is associated with a vertex i ∈ V and takes values in a set X .
The set C is a collection of subsets (or, “hyperedges”) of the vertex set V ; each
hyperedge C ∈ C is associated with an extended real-valued function (or, “factor”)
fC : XC→R ∪ {+∞}. The optimization problem takes the form

(1.1)
minimize

x
F (x) , ∑

C∈C fC(xC)
subject to xi ∈ X , ∀ i ∈ V.

Here,
xC , (xi : i ∈ C)

is the collection of variables associated with the vertices of the hyperedge C.

1.2. MOTIVATING APPLICATIONS 3

We refer to programs of the form (1.1) as graphical models. Here, the relation-
ships between decision variables within the terms of the additive decomposition are
highlighted. By allowing for extended real-valued terms in the objective function,
this formulation also supports constrained optimization problems.

Note that almost any optimization program can be trivially represented in the
form (1.1), by considering a single factor that involves all of the decision variables.
However, implicit in this formulation is the assumption that the underlying hyper-
graph is sparse, in the sense that each factor involves a small number of decision
variables.

1.2 Motivating Applications

While the graphical model formulation is quite general, it is instructive to consider
the following applications. They will provide motivation for the methods presented
in this thesis.

1.2.1 Network Rate Allocation

Consider a communications network consisting of a set of users A and a set of
communications links R. Each user a ∈ A wishes to transmit data across a
particular route in the network. If the user a is allocated transmission capacity
xa ∈ R+, the user derives utility ua(xa). Each link r ∈ R has a finite capacity
br > 0. This capacity must be shared by the set of users which require along the
link, denote this set by ∂r ⊂ A. The network manager’s optimization problem
is to allocate capacity so as to maximize social welfare; that is, according to the
solution of the optimization problem

(1.2)
maximize

x

∑
a∈A ua(xa)

subject to ∑
a∈∂r xa ≤ br, ∀ r ∈ R,

xa ≥ 0, ∀ a ∈ A.

4 CHAPTER 1. INTRODUCTION

Such problems typically possess a sparse graphical structure. While the network
may be enormous, with many users and links, each user will require service along
only a small subset of the links, and each link will provide service to a small subset
of the users.

Interest in this network control example was largely spurred by the work of
Kelly [40] in the analysis of rate control protocols. Subsequently, a large litera-
ture has emerged that examines a broad class of network control problems using
optimization-based methods (see [23] for a survey). The spirit here is that the con-
trol of a network should be viewed as the solution of a global optimization problem,
with decision variables that correspond to the available controls (e.g., transmission
rates, power levels, scheduling and routing decisions), constraint sets that incorpo-
rate the physical limitations of the network (e.g., capacity constraints, interference
constraints), and objective functions that capture end-user utility (e.g., through-
put, delay). New control protocols can be designed as algorithms to solve the
underlying global optimization problem, while existing protocols can be reverse-
engineered to learn the utility functions they implicitly seek to optimize.

The numbers of users and links in modern communication networks are enor-
mous. As such, it is not possible for a central authority to gather all the information
(e.g., utility functions, link capacities) that would be required to make centralized
control decisions. Rather, these decisions must be made in a distributed manner,
based on locally available information, with communications that occur alongside
the normal flow of network traffic.

1.2.2 Distributed Estimation

Sensor networks are a modern architecture for performing environmental sensing
tasks [2]. A sensor network consists of a collection of low-cost elements, each with
some limited sensing, computation, and communication capabilities. These sensors
are distributed within an environment in order to collectively perform a monitoring
or estimation task. We describe a prototypical such estimation task as follows:

1.2. MOTIVATING APPLICATIONS 5

Markov random fields [44] are a common framework for describing the spatially
distributed random phenomena that are monitored by sensor networks. In such
a setting, there is a vector of random variables x ∈ X V that are to be estimated,
indexed by a set V , where each random variable xi takes values in a set X . The
vector x is distributed according to the distribution

P (x) = 1
Z

∏
C∈C

ψC(xC).

Here, C is a collection of subsets of V , each function ψC : XC→R++ is called a
potential function, and the scalar Z > 0 is a normalization constant.

There is a sensor associated with each component xi, and this sensor makes a
noisy observation yi ∈ X of the value of xi. It is assumed that, conditioned on
x, each observation yi is independently distributed according to the distribution
pi(·|xi). The estimation task is to compute a maximum a posteriori estimate of
the vector x. This can be accomplished by solving the optimization problem

(1.3) maximize
x∈XV

∑
i∈V

log pi(yi|xi) +
∑
C∈C

logψC(xC).

Sensor elements, however, have a limited communication ability. They may
be able to communicate wirelessly with other sensors in a short range, but such
communication must be parsimonious due to the limited energy supply available
to each sensor. The topology of the network may be dynamic and changing, due
to the environment. Centralized estimation schemes, which require all observa-
tions to be transmitted to a base station, may require too much communication
and coordination. Instead, decentralized estimation methods are required. Here,
sensor elements communicate amongst each other to perform data fusion, so as to
economize communications and to distribute information processing tasks.

1.2.3 Distributed Consensus

Consider a network of processors whose topology is described by an undirected,
connected graph (V,E). Each processor i is given a value yi ∈ R. The processors

6 CHAPTER 1. INTRODUCTION

wish to collectively compute the average

ȳ ,
1
|V |

∑
i∈V

yi.

However, they are restricted to communicating only along the edges in E. The
distributed consensus problem is to compute the average ȳ in a decentralized, asyn-
chronous way.

Distributed consensus can be formulated as a an optimization problem by as-
sociating a decision variable xi ∈ R with each processor i ∈ V , and solving

(1.4)
minimize

x

∑
i∈V (xi − yi)2

subject to xi = xj, ∀ (i, j) ∈ E.

Since the graph is assumed to be connected, it is easy to verify that the unique
solution x∗ to this program satisfies x∗i = ȳ, for all i ∈ V . Moreover, the graphical
structure of the program (1.4) corresponds exactly to the original graph (V,E).

Distributed consensus has appeared as an important problem in a number of
different settings in the past few decades. It is one of the first and most basic
problems in distributed computation [87, 14]. It can be viewed as a maximum
likelihood estimation problem, where each processor makes an observation of a
common value that is corrupted by independent and identically distributed Gaus-
sian noise. Hence, it is important for data fusion or aggregation in sensor networks.
There are, however, a broad array of other applications, such as load balancing
[26, 68, 28], clock synchronization [48, 92], and coordinated control of autonomous
agents [38, 49, 69, 66, 72, 82].

1.3 Classical Decentralized Algorithms

A common theme among the applications in Section 1.2 is that, in many graphi-
cal models, the graphical structure emerges from real physical constraints in the
underlying problem. Vertices in the graphical model (decision variables) often cor-
respond to distinct physical entities. Each such entity is limited to communicating

1.3. CLASSICAL DECENTRALIZED ALGORITHMS 7

with neighboring entities to which it is naturally coupled. These neighboring en-
tities are precisely those connected across hyperedges of the graph.

In such applications, distributed and asynchronous algorithms are crucially im-
portant for a number of reasons. The informational requirements of centralized
solutions are often prohibitive. They may entail significant communications, and
may require additional synchronization overhead. Moreover, even in instances
where communication is not a binding constraint, computational capacity may
well be limited. Decentralized solutions distribute the information process bur-
den across many processors, and may allow for the solution of much larger scale
problems.

Traditionally, a class of algorithms, which we will call local search algorithms,
have been applied to obtain solutions in a decentralized and asynchronous manner
[14]. It is illustrative to discuss two prototypical local search algorithms, coordinate
descent and gradient descent.

Coordinate descent is an iterative procedure that seeks to solve the optimization
problem (1.1). At each integer time t, denote by x(t) the current estimate of the
optimal solution. Each processor i is responsible for the ith component x(t)

i . This
component is updated by seeking the value of xi that minimizes the global objective
function F (·), assuming that all of the other decision variables are held fixed at
their values at time t. In other words,

x
(t+1)
i , argmin

xi
F
(
x

(t)
V \i, xi

)
.

Examining the objective function F (x), it is clear that this is equivalent to

x
(t+1)
i = argmin

xi

∑
C∈∂i

fC
(
x

(t)
C\i, xi

)
,

where ∂i , {C ∈ C : i ∈ C} is the set of hyperedges incident to vertex i. Hence, in
order to update the component xi, processor i needs only knowledge of the current
estimates of components of processors neighboring i in the hypergraph.

8 CHAPTER 1. INTRODUCTION

In the case where the domain X for each decision variable is continuous and
the objective function is differentiable, one might also consider the gradient descent
update

x
(t+1)
i , x

(t)
i − λ

∂

∂xi
F
(
x(t)

)
= x

(t)
i − λ

∑
C∈∂i

∂

∂xi
fC
(
x

(t)
C

)
.

Here, the scalar λ is a step-size parameter. As with coordinate descent, this up-
date can be performed by a processor with only local knowledge of neighboring
estimates.

While the algorithms described above involve parallel and synchronous up-
dates, it is easy to imagine asynchronous variations. In such schemes, each pro-
cessor would keep track of the coordinate values for each of its neighbors in the
hypergraph. Processors would occasionally update their coordinate values, and
occasionally communicate these values to their neighbors. Communication occurs
only over edges in the hypergraph, and processors need only be aware of their lo-
cal neighborhood. In particular, no global knowledge or coordination of the entire
system is needed.

Local search algorithms yield decentralized and asynchronous algorithms that
work well in many problem instances. However, they have two significant problems:

Poor quality solutions. In general, there is no guarantee that local search algo-
rithms will yield optimal solutions, or even converge at all. A solution which is a
fixed point of coordinate descent can only be guaranteed to be optimal relative to
the set of feasible points which can be obtained by altering only any single com-
ponent. Significant improvement of the objective value may be possible, however,
by simultaneously perturbing multiple components of the solution.

Similarly, for gradient descent, a fixed point is only guaranteed to be locally
optimal, so that it cannot be improved by infinitesimal deviations. Without addi-
tional assumptions, such as convexity, there may be large deviations to the solution
vector that result in better solutions.

1.4. MESSAGE-PASSING ALGORITHMS 9

Slow rate of convergence. For some classes of problems, convergence to optimal
solutions can be guaranteed. One such example is when gradient descent is applied
to an optimization problem that is convex. In this case, under appropriate technical
assumptions, gradient descent will converge and yield a globally optimal solution.
Unfortunately, gradient descent can be notoriously slow to converge. Higher order
techniques, such as Newton’s method, address this. However, these methods are
fundamentally centralized.

The message-passing algorithms we discuss in the next section seek to address
these deficiencies.

1.4 Message-Passing Algorithms

Over the past few years, there has been an explosion of interest in a new class
of algorithms for problems with graphical structure. These methods, which we
collectively refer to as message-passing algorithms, have been employed to solve
probabilistic inference and optimization problems, and also as analytical tools in
the study of random ensembles of systems. They have been independently discov-
ered in a number of different fields. In communications theory, such methods were
developed by Gallager [35] as algorithms for the decoding of error-correcting codes.
In artificial intelligence, the loopy variation of the belief propagation algorithm of
Pearl [70] is a message-passing algorithm for solving probabilistic inference prob-
lems. In statistical physics, the cavity method of Mézard, Parisi, and Virasoro
[55] is a message-passing approach for the analysis of models in condensed matter
physics.

We consider message-passing algorithms as methods for solving optimization
problems of the form (1.1). Algorithms of this type are known in the literature
under names such as belief revision or the max-product or min-sum algorithms
[70, 1]. These operate by imagining a processor associated with each vertex and
hyperedge in the graphical model. Processors exchange “messages” with their
neighbors, according to the topology of the graph. These messages are updated

10 CHAPTER 1. INTRODUCTION

iteratively as the algorithm proceeds, and are used to compute estimated optimal
values of each decision variable.

Message-passing algorithms are extremely general in that their precise form is
simple and follows immediately from the particular choice of graphical decompo-
sition (1.1). No problem specific analysis is required. Further, because of their
localized nature, they can be implemented in a completely decentralized and asyn-
chronous fashion.

Interest in message-passing algorithms has largely been triggered by the success
of “turbo decoding” [11, 10, 34, 74]. Turbo decoding is now used routinely in
communication systems that employ error-correcting codes. The decoding problem
it aims to solve is NP-hard, and it was a surprise that this simple and efficient
algorithm offers excellent approximate solutions.

Separately, inspired by ideas from statistical physics, message-passing algo-
rithms have been proposed for solving certain NP-hard combinatorial optimiza-
tion problems such as satisfiability and graph coloring [56, 21, 6, 22, 53]. While
one cannot hope for efficient algorithms for these problems in the general case,
this work, called “survey propagation,” has demonstrated remarkable success over
random ensembles of problems.

There has been much work dedicated to understanding whether these algo-
rithms can be useful in other contexts. A body of empirical work in various prob-
lem domains demonstrates promise in areas such as data mining (e.g., [54, 71]),
computer vision (e.g., [31, 25, 83]), and bioinformatics (e.g., [46, 47, 84]).

One may be tempted to dismiss message-passing algorithms as yet another ad
hoc, heuristic approach to optimization. However, in some of the instances noted
above — in particular, decoding and satisfiability — message-passing algorithms
represent the state-of-the-art method of solution. Moreover, message-passing algo-
rithms bear rich structure that can be employed as an analytical tool. For exam-
ple, in the coding context, it has been shown that using certain coding schemes in
conjunction with message-passing algorithms to solve NP-hard problems at the de-
coder offers near optimal average communication performance [73]. Further, used

1.5. ADVANTAGES OF MESSAGE-PASSING ALGORITHMS 11

as a conceptual rather than a computational tool, message-passing algorithms have
led to analytic solution of large scale combinatorial optimization problems [3, 85].

But the theory of graphical models and message-passing algorithms is far from
settled. Existing results are somewhat disparate, often customized to particular
applied contexts or requiring varied technical assumptions. Though there is some
intuition, to some extent guided by folklore propagated in the associated scientific
community, it is generally unclear how well message-passing algorithms should
work for any given application or what factors influence this. Experimental studies
and analyses are carried out on a case by case basis. There is a pressing need for
a coherent theory.

1.5 Advantages of Message-Passing Algorithms

Despite the broad interest in message-passing algorithms and their great empiri-
cal successes, these methods are largely unknown within the operations research
community. In this thesis, we seek to better understand the properties of message-
passing algorithms in the context of decentralized optimization. In the chapters
that follow, our central theme will be to argue that message-passing algorithms
can address the shortcomings of the conventional decentralized methods discussed
in Section 1.3, namely:

Higher quality solutions. In general, the fixed points of message-passing algo-
rithms will not yield globally optimal solutions. This is to be expected, as many
of the problems under consideration are NP-hard. Any method that guarantees
optimality is unlikely to be of practical use.

However, message-passing algorithms will yield solutions with stronger opti-
mality guarantees than those provided by coordinate descent or gradient descent.
Furthermore, in practice, the improvement in solution quality is significant.

Faster convergence. Message-passing algorithms can offer a better rate of con-
vergence than conventional decentralized methods. This is because the messages

12 CHAPTER 1. INTRODUCTION

convey richer information than the coordinate estimates that are exchanged by lo-
cal search methods. Further, flow of information in a message-passing algorithm is
somehow directed, as opposed to the diffusive flow of information in a local search
algorithm.

This thesis also offers important contributions to the understanding of message-
passing algorithms. In particular, we are able to offer a new interpretation of
message-passing fixed points as generalizations of classical ideas in convex analysis.
We are able to establish convergence for a broad class of convex optimization
problems, and, in a particular instance of interest, even results on the rate of
convergence.

1.6 Organization of This Thesis

The balance of this thesis is organized as follows:

Chapter 2. In this chapter, we provide a self-contained introduction to graphical
models and message-passing algorithms. We describe how message-passing algo-
rithms relate to dynamic programming. We discuss a number of implementational
issues.

Chapter 3. In this chapter, we discuss message-passing algorithms in the context
of resource allocation problems. This is a broad and important class of problems
in engineering and operations research that includes the network rate allocation
example of Section 1.2.1. We propose message-passing as a framework for decen-
tralized management. We demonstrate that that messages can be interpreted as
a generalization of shadow prices, and are equivalent to shadow prices for convex
problems. We argue that messages, however, provide a richer approximation to
decision-making externalities than prices, and thus can provide superior solutions
for nonconvex problems.

Chapter 4. In this chapter, we consider the asynchronous convergence of message-
passing algorithms for unconstrained convex optimization problems. The results

1.6. ORGANIZATION OF THIS THESIS 13

we obtain are the strongest known convergence results for message-passing algo-
rithms in this setting and generalize a number of prior results. We demonstrate
that a key sufficient condition for this convergence is the notion of scaled diagonal
dominance. This has previously been recognized as important in the asynchronous
convergence of coordinate descent and gradient descent.

Chapter 5. In this chapter, we consider the application of message-passing al-
gorithms to the distributed consensus problem of Section 1.2.3. We provide a
theoretical analysis of the rate of convergence of message-passing. We argue that
the convergence time of message-passing scales better than a competitive class of
iterative, local search methods known as linear consensus algorithms.

Chapter 6. In this chapter, we offer some concluding remarks, and discuss direc-
tions for future work.

2

MESSAGE-PASSING ALGORITHMS

In this chapter, we introduce graphical models and message-passing algorithms in
an optimization setting. Algorithms of this type are known as min-sum algorithms,
and we will use these terms interchangeably.

For ease of exposition, we will focus principally on the special case of pair-
wise graphical models, where each factor in the decomposition of the objective
involves at most two decision variables. Pairwise graphical models are introduced
in Section 2.1. In Section 2.2, we consider the special case of a series graph, where
the min-sum algorithm is equivalent to dynamic programming. In Section 2.3, we
introduce the min-sum algorithm for arbitrary pairwise graphical models, and dis-
cuss a number of implementational issues. In Section 2.4, we present the min-sum
algorithm for higher-order graphical models. Finally, in Section 2.5, we discuss
nonserial dynamic programming, which is an alternative approach for solving op-
timization problems with graphical structure.

2.1 Pairwise Graphical Models

A pairwise graphical model is an optimization problem characterized by an undi-
rected graph (V,E). There is a decision variable xi associated with each vertex
i ∈ V . Each decision variable takes values in a set X . Denote by x ∈ X V the
vector of all decision variables,

x , (xi : i ∈ V).

14

2.1. PAIRWISE GRAPHICAL MODELS 15

For each vertex i ∈ V , there is an extended real-valued function fi : X→R∪{+∞}.
This function is referred to as a single-variable factor. Similarly, for each edge
(i, j) ∈ E, there is an extended real-valued function fij : X × X→R ∪ {+∞}.
Each such function is referred to as a pairwise factor. The optimization problem
is defined to be

(2.1)
minimize

x
F (x) , ∑

i∈V fi(xi) +∑
(i,j)∈E fij(xi, xj)

subject to xi ∈ X , ∀ i ∈ V.

Such an optimization problem is called a pairwise graphical model, since each term
in the decomposition of the objective function involves at most a pair of decision
variables.

In general, we will always assume that the graph (V,E) is connected. This
is without loss of generality as, otherwise, the optimization problem will decom-
pose into a collection of smaller problems, one for each connected component of
the graph. These subproblems are completely independent and can be handled
individually. Further, note that it is a trivial generalization to allow each decision
variable xi to take values in different domain Xi. For simplicity, however, we will
assume there is a common domain X .

For the discussion that follows, it is convenient to define notation for the neigh-
borhood structure of the graph (V,E). For each vertex i ∈ V , we define N(i) ⊂ V

to be the collection of neighboring vertices,

N(i) , {j ∈ V : (i, j) ∈ E}.

Denote the set of edges with direction distinguished by

~E , {(i, j) ∈ V × V : i ∈ N(j)}.

As an example, consider the optimization program

(2.2) minimize
x∈X 4

f12(x1, x2) + f13(x1, x3) + f14(x1, x4) + f24(x2, x4) + f34(x3, x4).

The corresponding graph (V,E) is shown in Figure 2.1. Note that, in the absence
of single-variable factors in the decomposition of (2.2), it is implicitly assumed
that, for each i ∈ V , fi(·) , 0.

16 CHAPTER 2. MESSAGE-PASSING ALGORITHMS

Figure 2.1 The graph corresponding to the example (2.2).

2.2 Dynamic Programming

Dynamic programs are a class of common optimization problems that fall within
the framework of pairwise graphical models. Consider the following example of a
finite horizon, deterministic dynamic program:

(2.3) minimize
x∈Xn

n∑
i=1

fi(xi) +
n−1∑
i=1

fi,i+1(xi, xi+1).

Here, there is a decision variable for each of n time stages, and the objective decom-
poses into functions of a single decision, and functions of each pair of consecutive
decisions. The corresponding graph is that of a chain (or series) of n vertices, as
illustrated in Figure 2.2.

Figure 2.2 The graph corresponding to a finite horizon, deterministic dynamic
program.

Rather than brute force minimization over an n-dimensional space, dynamic
programming [13] offers a way to solve the optimization problem (2.3) by a series

2.2. DYNAMIC PROGRAMMING 17

of one-dimensional minimizations. The ith coordinate of an optimal solution can
be determined by the single-variable optimization problem

minimize
xi∈X

fi(xi) + I{i>1}J
∗
i−1→i(xi) + I{i<n}J∗i+1→i(xi),

where,

J∗i−1→i(xi) , min
x1,...,xi−1

i−1∑
j=1

fj(xj) +
i−1∑
j=1

fj,j+1(xj, xj+1), ∀ 1 < i ≤ n,(2.4)

J∗i+1→i(xi) , min
xi+1,...,xn

n∑
j=i+1

fj(xj) +
n−1∑
j=i

fj,j+1(xj, xj+1), ∀ 1 ≤ i < n.(2.5)

Here, the “cost-to-go” functions J∗i−1→i(·) and J∗i+1→i(·), illustrated in Figure 2.3,
capture the impact of the decision at vertex i to the objective function along the
chain to the left and to the right of vertex i, respectively.

Figure 2.3 Cost-to-go functions in a dynamic programming solution.

The functions J∗i−1→i(·) and J∗i+1→i(·) can be can be decomposed recursively
according to

J∗i−1→i(xi) = min
xi−1

fi−1(xi−1) + fi−1,i(xi−1, xi) + I{i>2}J
∗
i−2→i−1(xi−1),(2.6)

J∗i+1→i(xi) = min
xi+1

fi+1(xi+1) + fi,i+1(xi, xi+1) + I{i<n−1}J
∗
i+2→i+1(xi+1).(2.7)

This decomposition suggests a simple, iterative procedure for the computation of
these functions: begin at time zero with a collection of functions

{J (0)
i−1→i(·), J

(0)
i+1→i(·)},

18 CHAPTER 2. MESSAGE-PASSING ALGORITHMS

that is initialized arbitrarily. At each time t ≥ 0, these functions are updated
according according to

J
(t+1)
i−1→i(xi) , min

xi−1
fi−1(xi−1) + fi−1,i(xi−1, xi) + I{i>2}J

(t)
i−2→i−1(xi−1),(2.8)

J
(t+1)
i+1→i(xi) , min

xi+1
fi+1(xi+1) + fi,i+1(xi, xi+1) + I{i<n−1}J

(t)
i+2→i+1(xi+1).(2.9)

These updates can be interpreted as a parallel and iterative implementation of
standard (deterministic) dynamic programming updates [13]. For each vertex i at
each time t, define the single-variable objective

b
(t)
i (xi) , fi(xi) + I{i>1}J

(t)
i−1→i(xi) + I{i<n}J (t)

i+1→i(xi).

Each vertex i can then generate an estimate of the ith coordinate of an optimal
solution according to

(2.10) x
(t)
i ∈ X

(t)
i , argmin

xi
b

(t)
i (xi).

It is straightforward to see that, after t ≥ n iterations, the cost-to-go function
iterates will have converged to the true cost-to-go functions. Denote the set of
optimal solutions to the original program (2.3) by X ∗. Then, the projection of the
elements of X ∗ onto the ith coordinate are in one-to-one correspondence with the
elements of the set X (t)

i of optimal solutions to (2.10), that is

{xi : ∃ x∗ ∈ X ∗ with xi = x∗i } = X (t)
i .

Our goal is to construct an optimal solution x∗ ∈ X ∗. If this solution is unique,
then for each ith coordinate, the solution x(t)

i of single-variable optimization prob-
lem (2.10) will be unique. Thus, x∗ can be determined component-wise in a parallel
fashion through the estimates {x(t)

i }.
On the other hand, if there are multiple optimal solutions, there will exist a

vertex i for which the solution to the single-variable problem (2.10) is not unique.
Such ties must be broken in a consistent fashion across the vertices in order to
construct an optimal solution x∗. In such cases, a single optimal solution x∗ be

2.3. THE MIN-SUM ALGORITHM 19

sampled from the set of all possible solutions X ∗ by a recursive procedure. Here,
some distinguished vertex is chosen. Without loss of generality, set this to be
vertex 1. An arbitrary choice of x∗1 is made from the set X (t)

1 . Then, sequentially,
for vertices i = 2, . . . , n, a choice for x∗i is made by solving the original optimization
problem (2.3) assuming that xj = x∗j , for j < i. These choices can be decomposed
recursively so that x∗i is chosen arbitrarily from the set

(2.11) argmin
xi

fi(xi) + fi−1,i(x∗i−1, xi) + I{i<n}J (t)
i+1→i(xi).

Note that the presentation here has focused on a parallel variation of dynamic
programming, where all the cost-to-go functions are simultaneously computed in
an iterative fashion. In a more traditional application of dynamic programming,
the cost-to-go functions {J∗i+1→i(·)} would be computed sequentially by (2.7), as
i = n− 1, . . . , 1, in a “backward pass”. The coordinate solutions {x∗i } can then be
computed sequentially by (2.11), as i = 1, . . . , n, in a “forward pass”.

2.3 The Min-Sum Algorithm

The idea of the min-sum algorithm is simply to extend the iterative dynamic
programming updates described in Section 2.2 from chains to arbitrary graphs.

Consider a pairwise graphical model associated with a graph (V,E). For vertex
i with a neighboring vertex j ∈ N(i), we define a sequence of “messages” {J (t)

i→j(·)}
from vertex i to vertex j. These messages are initialized arbitrarily. They evolve
over time in an iterative fashion, according to an update rule that incorporates
information received by vertex i from its set of neighboring vertices N(i) excluding
vertex j, as depicted in Figure 2.4. The update rule is

(2.12) J
(t+1)
i→j (xj) , min

xi
κ

(t)
i→j + fi(xi) + fij(xi, xj) +

∑
u∈N(i)\j

J
(t)
u→i(xi).

Here, κ(t)
i→j is a normalization term which is allowed to vary from message to mes-

sage.

20 CHAPTER 2. MESSAGE-PASSING ALGORITHMS

Figure 2.4 The computation of a min-sum update.

Given the collection of messages received at a vertex j, a local objective function
is defined according to

(2.13) b
(t)
j (xj) , fj(xj) +

∑
u∈N(j)

J
(t)
u→j(xj).

An estimate x(t)
j of the jth coordinate of the optimal solution can then be computed

by solving the optimization program

(2.14) x
(t)
j ∈ X

(t)
j , argmin

xj
b

(t)
j (xj).

2.3.1 Relationship to Dynamic Programming

Assume, for the moment, that the normalization terms κ(t)
i→j are set to zero. Then,

in the case of the deterministic dynamic program (2.3), the min-sum update equa-
tion (2.12) and the dynamic programming update (2.8)–(2.9) coincide. Hence,
the message iterates {J (t)

i→j(·)} will converge to the cost-to-go function {J∗i→j(·)},

2.3. THE MIN-SUM ALGORITHM 21

and each jth coordinate estimate x(t)
j will yield the jth coordinate of an optimal

solution.
The argument above extends to the case where the graph (V,E) is singly-

connected (that is, a connected graph with no cycles). Here, it is straightforward
to see that minimizing the function b(t)

j (·) is equivalent to estimating the optimal
value of xj as reflected only in the terms of the objective function which are distance
t or closer to vertex j. Thus, after a number of iterations equal to the diameter of
the tree, the functions {b(t)

j (·)} determine component values of optimal solutions
to the original problem.

This algorithm, however, can also be applied to graphs with cycles. Such
“loopy” variations, which are of primary interest to us, are not justified by dynamic
programming arguments.

2.3.2 Normalization

Note that the messages influence the estimates produced by the algorithm only
through the minimization (2.14). Hence, only relative values of the messages mat-
ter, and the choice of normalization constants does not affect the output of the
algorithm.

However, in graphs with cycles, in the absence of normalization, there may
be no collection of messages which is a fixed point to the min-sum update equa-
tion (2.12). Thus, normalization does influence convergence of messages and the
numerical stability of the algorithm. We will make a choice of the normalization
constant κ(t)

i→j in (2.12) so that, given a distinguished state 0 ∈ X , J (t)
i→j(0) = 0.

2.3.3 Distributed and Asynchronous Implementation

One important characteristic of the min-sum algorithm is that it naturally lends
itself to a distributed and asynchronous implementation. In such a setting, we
imagine that there is a collection of processors, each associated with a vertex
i ∈ V , and responsible for the determining the optimal value of the decision variable

22 CHAPTER 2. MESSAGE-PASSING ALGORITHMS

xi. Each processor is allowed to communicate only to neighboring processors, as
determined by the edges of the graph.

Assume that each processor i keeps track of incoming messages from its neigh-
boring processors. It uses these messages to occasionally compute new outgoing
messages to each neighboring processor j ∈ N(i). Define T i→j to be the set of
times at which new messages are computed. The processor i will occasionally
communicate with each neighboring processor j ∈ N(i), and transmit the appro-
priate outgoing message. Define 0 ≤ τi→j(t) ≤ t to be the time at which the most
recent message received by processor j, at or before time t, from processor i was
computed. Thus, the quantity

t− τi→j(t) ≥ 0

represents the delay experienced at time t in the communications from processor
i to processor j.

The messages evolve according to

(2.15) J
(t+1)
i→j (xj) , min

xi
κ

(t)
i→j + fi(xi) + fij(xi, xj) +

∑
u∈N(i)\j

J
(τu→i(t))
u→i (xi),

if t ∈ T i→j. Thus, when processor i updates its message to processor j, it uses the
most recent messages it has received from other processors. At times t /∈ T i→j, the
messages are not updated,

(2.16) J
(t+1)
i→j (xj) , J

(t)
i→j(xj).

Each processor j ∈ V will maintain a sequence of estimates {x(t)
j } of the optimal

value of the decision variable xj. These estimates will be recomputed at a set of
times T j. For each time t ∈ T j, the processor j can define a local objective function
by using the most recent message received from each neighbor, according to

(2.17) b
(t)
j (xj) , fj(xj) +

∑
u∈N(j)

J
(τu→i(t))
u→j (xj).

2.3. THE MIN-SUM ALGORITHM 23

The estimate x(t)
j is computed by solving the optimization program

(2.18) x
(t)
j ∈ argmin

xj
b

(t)
j (xj).

For all other times t /∈ T j, the estimate remains unchanged,

(2.19) x
(t)
j , x

(t−1)
j .

When analyzing the asynchronous algorithm (2.15)–(2.19), we will make the
assumption of total asynchronism [14]:

Assumption 2.1 (Total Asynchronism) Assume that:

(i) For each i ∈ V and j ∈ N(i), the set T i→j is infinite.

(ii) For each j ∈ V , the set T j is infinite.

(iii) For each u ∈ V , i ∈ N(u), and j ∈ N(i) \ u, if {tk} is a sequence in T i→j

tending to infinity, then
lim
k→∞

τu→i(tk) =∞.

(iv) For each j ∈ V and i ∈ N(j), if {tk} is a sequence in T j tending to infinity,

lim
k→∞

τi→j(tk) =∞.

Total asynchronism is a very mild assumption, and is perhaps the least restric-
tive useful model of asynchronous computation. It guarantees that each message
and estimate is updated infinitely often, that each processor eventually commu-
nicates with each neighboring processor, and that old information is eventually
purged from the system. It allows for arbitrary delays in communication, and even
the out-of-order arrival of messages between processors.

In this setting, it is clear that fixed points of the asynchronous algorithm (2.15)–
(2.19) coincide with fixed points of the original, synchronous algorithm (2.12)–
(2.14).

24 CHAPTER 2. MESSAGE-PASSING ALGORITHMS

2.3.4 Nonuniqueness of Estimates

If each estimate in x(t)
j in (2.14) is unique, then it is natural to construct an estimate

of an overall solution to the original optimization program (2.1) in a component-
wise fashion in parallel. If these estimates are not uniquely defined, however, a
procedure is needed to consistently break ties.

One possibility, in the spirit of the method described for dynamic programs in
Section 2.2, is to pick a distinguished vertex j, make an arbitrary choice of x(t)

j

from X (t)
j , and to consider the original program (2.1) when the jth coordinate is

fixed to x(t)
j . This way, the original program is reduced to a smaller program with

one less variable. When the graph (V,E) is singly-connected, this can be done
according to a recursive decomposition as described in Section 2.2. For graphs
with cycles, however, the recursive decomposition does not apply.

Instead, typically the min-sum algorithm is run for a larger number of itera-
tions t, or until the messages have converged. Then, the distinguished vertex j is
determined by finding the decision variable that is most “biased” according to the
messages at time t. One way to do this, for example, might be to computed

argmax
j

(
max
xj

b
(t)
j (xj)−min

xj
b

(t)
j (xj)

)
.

Once a value for xj is chosen from X (t)
j , message-passing can be applied to the

reduced problem.
Alternatively, in some cases such as the example described in Section 3.6.3,

problem specific tie-breaking rules can be developed. In general, however, the
question of how to break ties that occur in message-passing is open.

2.4 Higher-Order Graphical Models

Higher-order models, where factors may involve more than two decision variables,
are naturally characterized by hypergraphs. A hypergraph (V, C) consists of a set
of vertices V and a set of hyperedges C. Each hyperedge C ∈ C is a nonempty

2.4. HIGHER-ORDER GRAPHICAL MODELS 25

subset of the vertices, that is, C ⊂ V . A decision variable xi ∈ X is associated
with each vertex i ∈ V . A factor fC : XC→R ∪ {+∞} is associated with each
hyperedge C ∈ C. The optimization problem takes the form

(2.20)
minimize

x
F (x) , ∑

C∈C fC(xC)
subject to xi ∈ X , ∀ i ∈ V.

The hypergraph (V, C) can be visualized as a bipartite graph known as a factor
graph. Such a graph is shown in in Figure 2.5. There are vertices represented
by circles corresponding to each decision variable. There are vertices represented
by squares corresponding to each factor. There is an edge between the vertices
associated with i ∈ V and C ∈ C iff i ∈ C. For each variable i ∈ V , denote by ∂i
the set of factors that involve that variable, i.e., ∂i , {C ∈ C : i ∈ C}.

Figure 2.5 A factor graph. Circular vertices represent decision variables, while
square vertices represent factors of the objective function. There is an edge between
each decision variable and the factors that it participates in.

2.4.1 The Min-Sum Algorithm

The min-sum algorithm for pairwise graphical models, described in Section 2.3, was
derived through dynamic programming arguments, under the assumption that the
graph was a tree. The same derivation can be applied in the case of higher-order
graphical models.

26 CHAPTER 2. MESSAGE-PASSING ALGORITHMS

As in the pairwise case, the min-sum algorithm operates in an iterative fashion
via the exchange of messages. In this case, for each variable i ∈ V and each
associated factor C ∈ ∂i, there is a message Ji→C : X→R from i to C. Similarly,
for each factor C ∈ C and each associated variable i ∈ C, there is a message
JC→i : X→R from C to i. Given a collection of all messages {J (t)

i→C(·), J (t)
C→i(·)}

at time t, new messages are computed according to

J
(t+1)
i→C (xi) ,

∑
C′∈∂i\C

J
(t)
C′→i(xi) + κ

(t)
i→C ,(2.21)

J
(t+1)
C→i (xi) , min

xC\i
fC(xC) +

∑
i′∈C\i

J
(t+1)
i′→C (xi′) + κ

(t)
C→i.(2.22)

Local objective functions and estimates of the optimal solution are defined by

b
(t)
i (xi) , fi(xi) +

∑
C∈∂i

J
(t)
C→i(xi),

x
(t)
i ∈ argmin

yi
b

(t)
i (yi).

2.5 Nonserial Dynamic Programming

It is worth pointing out that graphical models of the form (2.20) have been known
historically in the optimization community as nonserial dynamic programs [12].
Over the past few decades, however, this formulation has received virtually no
attention from the mathematical programming community. Perhaps this is due to
a perception that the formulation is computationally unmanageable.

One conventional approach to exploiting graphical structure is that of tree de-
composition [75, 76]. In this method, the nonserial dynamic program is converted
to an equivalent program (sometimes known as a “junction tree”) whose underlying
graph is a tree. Techniques such as dynamic programming or variable elimination
can then be applied to this tree in order to obtain exact solutions to the original
optimization problem. Such methods have been proposed for a number of diffi-
cult combinatorial optimization problems (see, for example, [4, 17, 16, 43, 42]).

2.5. NONSERIAL DYNAMIC PROGRAMMING 27

The complexity of such a procedure, however, is exponentially dependent on a
parameter of the original graph known as the treewidth. Many practical nonserial
dynamic programs have a large treewidth, and hence tree decomposition methods
often are not computationally tractable.

3

RESOURCE ALLOCATION

Consider a system consisting of a set of activities and a set of resources. Each
activity contributes utility to an overall system objective, as a function of the
resources allocated to it, and each resource is of limited supply. The system man-
ager’s decision problem is to allocate resources between the activities, so as to
maximize overall utility. This resulting optimization program, called a resource
allocation problem, has an objective function and constraints that are additively
separable. It is one of the oldest and most well-studied problems in operations
research, economics, and engineering.

In this chapter, we study the application of ideas from message-passing to
resource allocation problems. In such problems, decentralized methods are impor-
tant for a number of reasons which we will shortly discuss. Hence, message-passing
algorithms are particularly relevant. Moreover, resource allocation problems have
been studied extensively using tools from the classical theory of convex analysis.
By considering message-passing algorithms in this context, we seek to understand
how they relate to conventional methods and, thus, the benefits they offer.

The balance of the chapter is organized as follows: In Section 3.1, we provide
a high-level introduction to decentralized decision making in resource allocation
problems, and outline the contributions of this chapter. In Section 3.2, we de-
scribe the resource allocation problem formulation. In Section 3.3, we describe
the decision externalities that occur because of decentralization. In Section 3.4,
we define the concept of a message-passing equilibrium, and compare the optimal-
ity properties of the message-based incentives with those of incentives based on

28

3.1. DECENTRALIZED DECISION MAKING 29

shadow prices or Lagrange multipliers. In Section 3.5, we describe a distributed
asynchronous algorithm for computing message-passing equilibria. Finally, in Sec-
tion 3.6, we discuss the application of message-passing to a network rate allocation
problem. Proofs are provided in Section 3.7.

3.1 Decentralized Decision Making

We are interested in decentralized decision making methods for resource allocation.
Such methods decompose the problem across the collection of agents that partici-
pate in the system. The spirit here is to allow activity managers, each responsible
for a particular activity, to make their own resource consumption decisions. These
decisions cannot be made in isolation, however. Since resources may be profitably
used by other activities, consumption decisions by a single activity manager have
an impact across the entire system. Decentralized methods address these decision
externalities via coordination signals, or incentives1, that influence resource con-
sumption decisions. These incentives serve to align the objective of each individual
activity manager to that of the system.

3.1.1 Benefits of Decentralized Methods

One benefit of decentralized methods is that they allow for greater flexibility in
the management of complex systems. This is illustrated in the following example:

Example 3.1 (Organizational Management) Consider a large and complex firm.
Activities represent divisions of the firm, and resources represent inputs to the pro-
cesses of the firm, such as capital or raw materials, that are of limited supply. The
firm’s resource allocation problem is to optimize the distribution of the resources
across the divisions. Each division may, in turn, be faced with its own complicated

1Note that, in this thesis, we are not considering “incentives” in a game theoretic sense,
but rather as a coordination mechanism. We are assuming that activity managers are myopic
with respect to the incentives they are provided, and do not seek to manipulate these incentives
through strategic behavior. This is as in a price-taking or competitive equilibrium setting.

30 CHAPTER 3. RESOURCE ALLOCATION

decision making process. Given an allocation of resources, the benefit generated
by a division’s activity may entail optimization of a large number of decisions that
govern how the activity is conducted. Any model of the division that is tractable
from the perspective of a central planner will necessarily be simplified or abstract.
As such, the resource allocation decisions made by a central planner can constrain
activities in ways that prevent the beneficial reallocation of resources between ac-
tivities.

An alternative to the centralized micromanagement of resources is to have re-
source consumption decisions made by each individual division. The activity man-
agers will have the greatest expertise in and knowledge of their particular activities.
Further, over time, the activities may be changing, or the managers may be learn-
ing how to better conduct their activities. Hence, activity managers are in the best
position to accurately model and understand their resource needs on an ongoing
basis. By having individual divisions make their own resource consumption de-
cisions, decentralized methods allow for greater management flexibility, and more
robust and efficient decision making.

Decentralized methods provide further benefits by economizing communication
costs and distributing information processing tasks. This allows for their use in
many settings, such as the following, where centralized solutions have prohibitive
communication and computational requirements:

Example 3.2 (Network Rate Control) Consider a communications network con-
sisting of a set of links (resources), and a set of users (activities). Each user
wishes to transmit data across a particular path (subset of links) in the network,
and generates utility as a function of the transmission rate allocated to it. Each
link in the network is capable of transmitting data at some finite capacity. The
network manager’s problem is to allocate the capacity along each link among the
users requiring service from the link, so as to maximize the overall utility.

In such a network, the users and links are geographically distributed and phys-
ically disparate. A central planner would require a global view of the network.

3.1. DECENTRALIZED DECISION MAKING 31

This would entail significant additional communication that may degrade the per-
formance of the network. Further, a central planner would require computational
resources commensurate with the size of the network. Decentralized methods, on
the other hand, allow users and links to coordinate their respective consumption
and allocation decisions by purely local communication that occurs alongside the
regular flow of network traffic. Neither the agents nor the network manager re-
quire knowledge of the entire network. Further, since the computational burden
is shifted to the agents that comprise the network, the network manager does not
require additional computational resources.

3.1.2 Priced-Based Methods

In the case where the utility functions are concave, called the convex resource al-
location problem, the classical theory of convex optimization establishes shadow
prices (Lagrange multipliers) as proxies for decentralization. Given a proper set of
prices for resources, each activity manager can optimize resource consumption so
as to maximize the utility generated by the activity minus the cost (as reflected
through prices) of the consumed resources, so that the resulting decision will be
optimal for the system manager’s problem. Price-based methods for decentralized
resource allocation have been developed as far back as the 1950’s, dating to the pi-
oneering work of Arrow, Hurwicz, and others [5]. Such methods have the following
benefits:

1. A tractable representation of externalities that leads to system-optimal behav-
ior.
Prices provide a linear representation of externalities, and concisely summa-
rize the impact of decisions across the system. They enable each activity
manager to align their objective with that of the system manager.

2. Distributed asynchronous algorithms for computing prices and allocations.
Optimal prices and allocations can be computed iteratively via gradient
methods. These local search methods require only communication between

32 CHAPTER 3. RESOURCE ALLOCATION

activity managers, which make resource consumption decisions, and resource
managers, which determine prices. Further, each activity manager needs only
to communicate with the resource managers for resources it requires. Neither
communication with nor even knowledge of other activities and resources is
necessary, nor is any other global coordination or synchronization required.

In convex resource allocation problems, fixed prices can provide appropriate in-
centives to induce system-optimal decisions within activities. This is not generally
true for nonconvex problems, where there may be no set of prices which supports
a globally optimal allocation. Nonconvexities appear in many practical problem
instances for a host of reasons. The underlying resources may be discrete and in-
divisible. The activities may have increasing returns to scale, or inelastic demand
for resources. In such cases, price-based decentralized algorithms may converge to
local optima, or may fail to converge at all.

3.1.3 Contributions of This Chapter

In this chapter, we consider prices that vary across activities and consumption
levels. We refer to such nonlinear price functions asmessages, as they can be viewed
as incentives communicated between resource managers and activity managers.
Message-based incentives allow for a richer description of externalities than prices,
while still maintaining computational tractability. We argue that messages extend
many of the benefits of prices to nonconvex resource allocation problems. The
contributions of this chapter are as follows:

1. We propose a new equilibrium concept for message-based incentives.
We define a set of equilibrium message-based incentives as the fixed points
of a message-passing operator. We demonstrate that, under broad technical
conditions, these equilibria exist.

2. We demonstrate that messages lead to system-optimal behavior for convex
problems.

3.2. PROBLEM FORMULATION 33

We demonstrate that in the convex case, message-passing equilibria lead to
system-optimal behavior. Indeed, in this case, messages are locally equivalent
to prices: the marginal incentives provided by a set of equilibrium messages
at the optimal allocation are precisely optimal shadow prices.

3. We argue that messages yield allocations superior to prices for nonconvex
problems.
For nonconvex problems, in general, message-based incentives will not guar-
antee system-optimal allocations. This is not surprising, because this class of
problems includes many which are provably intractable. Any method which
guarantees global optimality is not likely to be of practical use in large scale
problems. Allocations resulting from message-based incentives will, however,
satisfy a property which precludes the improvement of the system objective
under certain types of transfers of resources between activities. This prop-
erty is stronger than the analogous local optimality guarantees which can be
made for price-based incentives. Further, we numerically demonstrate the su-
periority of message-based incentives by considering a well-studied inelastic
network rate control example.

4. We describe a distributed asynchronous algorithm for computing messages
and allocations.
Equilibrium messages can be computed via a successive approximations pro-
cedure. We show how this procedure decomposes into purely local communi-
cation between activity and resource managers. In the inelastic rate control
example, this takes a particularly simple form where the algorithm oper-
ates alongside the normal flow of network traffic, and appends a single real
number to each data packet.

3.2 Problem Formulation

Consider the following prototypical resource allocation problem: a set of resources
R, each of finite capacity, is to be allocated among a set of activities A. Each

34 CHAPTER 3. RESOURCE ALLOCATION

activity a ∈ A depends on some subset ∂a ⊆ R of the resources. For each a and
each r ∈ ∂a, denote by xar ≥ 0 the decision variable representing the quantity
of resource r to be allocated to activity a. Denote the allocation decisions by
x , (xar : a ∈ A, r ∈ ∂a). Denote by x∂a , (xar : r ∈ ∂a the consumption
bundle for activity a. A utility function ua(·) specifies the contribution ua(x∂a) ∈ R
of activity a to the overall system objective, as a function of the allocation x∂a it
receives.

For each resource r, denote by ∂r , {a ∈ A : r ∈ ∂a} ⊆ A the set of
activities which depend on resource r. Denote by x∂r , (xar : a ∈ ∂r) the vector
of allocations of resource r. There is a finite quantity br > 0 of each resource r
available, hence we require that xar ∈ Xr , [0, br], for all a ∈ ∂r, and that

∑
a∈∂r

xar ≤ br.

The relationships between activities and resources can be conveniently encoded
using a graphical representation:

Definition 3.1 (Dependency Graph) Define the dependency graph D to be an
undirected bipartite graph consisting of vertices corresponding to the activities A
and the resources R. An edge (a, r) is present if and only if activity a depends on
resource r, that is, if a ∈ ∂r.

Note that dependency graphs are closely related to the hypergraphs that were
employed to describe graphical structure in Chapter 2. Dependency graphs are spe-
cialized, however, to structure of resource allocation problems. In these problems,
we imagine that the system is comprised of specific agents that are responsible
for each activity and resource. These agents are modeled as the atomic decision-
makers of the system, thus they most naturally correspond to vertices.

An optimal allocation is determined by solving the following program:

(3.1)
maximize U(x) , ∑

a∈A ua(x∂a)
subject to ∑

a∈∂r xar ≤ br, ∀ r ∈ R,
xar ∈ Xr, ∀ a ∈ A, r ∈ ∂a.

3.2. PROBLEM FORMULATION 35

Figure 3.1 A dependency graph. Vertices in the graph correspond to activities
and resources, edges in the graph correspond to decision variables.

The function U(·) is called the system objective function, and the problem (3.1) is
called the system manager’s problem.

If the utility functions are concave, this optimization problem can be addressed
by methods of convex optimization, as we discuss in Section 3.3.1. Our primary
motivation, however, is to consider cases where utility functions are not concave,
as in the following example, which we revisit in Section 3.6.

Example 3.3 (Inelastic Rate Control) Consider a communications network con-
sisting of a set of links (resources), and a set of users (activities). Each user a
wishes to transmit data across a particular path (subset of links) ∂a in the network.
For each user a and each link r ∈ ∂a, the decision variable xra represents the data
transmission rate on the link r that is allocated to the user a. Each link in the
network is capable of transmitting data at some finite capacity.

The overall transmission rate for a user is constrained by the minimum trans-
mission rate it is allocated along all the links in its path. Each user a desires some
minimum overall transmission rate wa > 0. If the user is able to transmit at that
rate, the user derives utility za > 0. Otherwise, the user derives 0 utility. Hence,

36 CHAPTER 3. RESOURCE ALLOCATION

the utility function for user a takes the form

ua(x∂a) =


za if, for each r ∈ ∂a, xar ≥ wa,

0 otherwise,

which is not concave.

3.3 Decentralization and Externalities

Under a decentralized decision making scheme, individual activity managers make
their own resource consumption decisions. These individual decisions impact the
entire system since, as a resource is consumed by one activity, the quantity of the
resource available for other activities is reduced. A coordination mechanism is
required to address these decision externalities.

One very general way that this can be accomplished is as follows: for each
activity a, consider the optimization problem

(3.2)
maximize ua(x∂a) + Ea(x∂a)
subject to xar ∈ Xa, ∀ r ∈ ∂a.

Here, the function Ea(·) is defined by

(3.3)
Ea(x∂a) , maximize ∑

a′∈A\a ua′(x∂a′)
subject to ∑

a′∈∂r xa′r ≤ br, ∀ r ∈ R,
xa′r ∈ Xr, ∀ a′ ∈ A \ a, r ∈ ∂a′.

Given a consumption decision x∂a for user a, the quantity Ea(x∂a) is the optimized
value of utility across the rest of the system. Relative values of Ea(·) exactly
capture the impact of consumption decisions for the activity a to the rest of the
system. This function can be used as an incentive to the activity manager, aligning
the objective (3.2) of the activity manager and the objective (3.1) of the system
manager.

In general, however, such a mechanism is not practical. The function Ea(·)
can be an arbitrary multidimensional nonlinear function. It is not clear how to
tractably represent or compute such an object, much less in a decentralized manner.

3.3. DECENTRALIZATION AND EXTERNALITIES 37

3.3.1 Concave Utility Functions

It is well-known that if utility functions are strictly concave, then the optimal
allocation is unique and supported by a set of prices. In particular, there exists an
allocation x∗ and a price vector p∗ ∈ RR+ , such that x∗ is the unique optimal solution
to the system manager’s problem (3.1), and each x∗∂a is the unique maximizer of
the optimization problem

(3.4)
maximize ua(x∂a)−

∑
r∈∂a p

∗
rxar

subject to xar ∈ Xr, ∀ r ∈ ∂a.

This program opens the door to decentralized management based on an incentive
system. Instead of overseeing each activity’s consumption, the manager of a re-
source can set a unit price and leave consumption decisions in the hands of activity
managers. If the manager for activity a maximizes the utility his activity gener-
ates minus the cost of resources consumed, objectives are aligned and he chooses
to consume exactly x∗∂a.

One way to interpret a price-based incentive system is as a linear and separable
approximation to the true externalities. If the utility functions are concave, the
solution of (3.2) is determined by first-order conditions. Hence, we need only to
characterize the first-order behavior of Ea(·) around the optimal allocation x∗∂a.
This behavior is captured by the shadow price vector p∗, and the price-based
incentives in the optimization program (3.4).

Unfortunately, the preceding story does not generally apply when utility func-
tions are nonconcave. Even if there is a unique optimal solution, there may be
no price vector that supports it. There are models in which, for any set of prices,
choices made by activity managers would not be optimal. The solution concept
presented in the next section generalizes price-based incentives in a way that ad-
dresses this.

38 CHAPTER 3. RESOURCE ALLOCATION

3.4 Solution Concept

Our solution concept involves a general class of incentives, which we refer to as
messages. These messages are exchanged between managers for each activity and
each resource. For each activity a, the activity manager receives a message from
the resource manager for each resource r ∈ ∂a. This message is a function Vr→a :
Xr→R. The quantity Vr→a(xar) can be thought of as a penalty imposed on activity
a for consuming xar units from the finite supply of resource r that is available.

Similarly, for each resource r, the resource manager receives a message from
each activity manager corresponding to an activity a ∈ ∂r. This message is a
function Va→r : Xr→R. The quantity Va→r(xar) can be thought of as a benefit
generated to the resource manager by allocating xar units from its finite supply to
activity a.

The spirit here is to allow decisions to be made in a decentralized manner: for
each activity a, the activity manager makes a consumption decision that optimizes

(3.5)
maximize ua(x∂a) +∑

r∈∂a Vr→a(xar)
subject to xar ∈ Xr, ∀ r ∈ ∂a.

Comparing with (3.2), the messages received by the manager of an activity a
can be viewed as an additively separable approximation to the true externalities,

(3.6) Ea(x∂a) ≈
∑
r∈∂a

Vr→a(xar).

This approximation is motivated by the case where the dependency graph D is a
tree, that is, a graph with no cycles. In this case, the impact on the rest of the
system that occurs when the activity consumes a particular quantity of a resource
does not depend on the quantities of other resources consumed by the activity.
Hence, the approximation (3.6) is exact. This is illustrated in Figure 3.2. There,
the optimization problem (3.3) for the externalities of activity a decomposes so
that

Ea(xar1 , xar2 , xar3) = Vr1→a(xar1) + Vr2→a(xar2) + Vr3→a(xar3).

3.4. SOLUTION CONCEPT 39

Figure 3.2 A dependency graph that is a tree. The externalities of consumption
decisions for activity a decompose into three independent subproblems.

Comparing the incentives provided by the messages in (3.5) to those provided
by the price-based incentives in (3.4), it is clear that messages generalize prices
by allowing for nonlinear incentives. Further, with prices, there is a single price
associated with each resource. Hence, the incentives corresponding to a single
resource are identical to all the activities that require the resource. Messages
provide additional flexibility by allowing these incentives to vary depending on the
identity of the activity. This feature distinguishes message-based incentives from
other work that considers nonlinear prices as proxies for decentralization (e.g.,
[65]).

3.4.1 Message-Passing Equilibrium

Our solution concept requires that messages obey a notion of equilibrium. We
explain this intuitively now and subsequently provide a precise definition. Think
of Vr→a(xar) as a penalty imposed on activity a for consuming xar units of resource

40 CHAPTER 3. RESOURCE ALLOCATION

r. The reason for penalizing the activity is that the resource can be profitably
used by others. Interpret Va′→r(xa′r) as the benefit generated by allocating xa′r
units of the resource r to an alternative activity a′. One part of our equilibrium
condition states that the penalty Vr→a(xar) should be commensurate with the sum
of benefits Va′→r(xa′r) among the alternative activities a′ ∈ ∂r \ a, assuming the
remaining br−xar units of the resource are allocated optimally among them. This
is illustrated in Figure 3.3(a).

Note that, in addition to benefiting activity a, the choice of xar affects the
activity’s other consumption decisions xar′ , for r′ ∈ ∂a \ r. The benefit Va→r(xar)
should be commensurate with the sum of the utility ua(x∂a) generated by activity
a and the penalties Vr′→a(xar′) for the activity’s consumption of other resources,
assuming that the other resource consumption decisions are made optimally. A
second equilibrium condition appropriately accounts for this cascading influence
of the choice of xar. This is illustrated in Figure 3.3(b).

To define our equilibrium conditions more precisely, we introduce an operator.
Denote by V an entire set of messages, including the messages from activity man-
agers to resource managers, {Va→r(·) : ∀ a ∈ A, r ∈ ∂a}, and messages from
resource managers to activity managers, {Vr→a(·) : ∀ r ∈ R, a ∈ ∂r}. The
operator F maps one set of messages to another and is defined by

(FV)a→r(xar) , maximize ua(x∂a) +∑
r′∈∂a\r Vr′→a(xar′)

subject to xar′ ∈ Xr′ , ∀ r′ ∈ ∂a \ r,
(3.7a)

(FV)r→a(xar) , maximize ∑
a′∈∂r\a Va′→r(xa′r)

subject to ∑
a′∈∂r\a xa′r ≤ br − xar,

xa′r ∈ Xr, ∀ a′ ∈ ∂r \ a.
(3.7b)

The first part of the definition (3.7a) relates the benefit of allocating resource r
to activity a to the penalties associated with other resource constraints associated
with the activity. The second part of the definition (3.7b) relates the penalty
imposed on activity a for consuming resource r to benefits that other activities
could obtain.

3.4. SOLUTION CONCEPT 41

(a) A message from a resource to an activity.

(b) A message from an activity to a resource.

Figure 3.3 The equilibrium condition for messages.

In order to better understand the operator F , consider the case where the
dependency graph D is singly-connected, and a set of messages V satisfies the fixed
point equation V = FV . In this case, the messages V correspond to a dynamic
programming decomposition of the decision externalities for all the activities, and
the operator F is analogous to a Bellman operator.

In the case where the dependency graph has cycles, the operator F may not
have any fixed points. This can be addressed with a minor modification: note that
adding or subtracting a constant from any message does not influence incentives.
Only the relative values of a message matter. As such, we restrict attention to

42 CHAPTER 3. RESOURCE ALLOCATION

messages that assign zero value to a null allocation. In other words, for each
activity a and r ∈ ∂a, we consider only messages for which Va→r(0) = 0 and
Vr→a(0) = 0. We introduce a modified version H of the operator F which subtracts
an offset2 to accomplish this:

(HV)a→r(xar) , (FV)a→r(xar)− (FV)a→r(0),

(HV)r→a(xar) , (FV)r→a(xar)− (FV)r→a(0).

We call a set of messages V a message-passing equilibrium if V = HV . The
following result, whose proof is provided in Section 3.7.1, offers a general sufficient
condition for existence.

Theorem 3.1 Assume that the utility functions are Lipschitz continuous. Then, a
message-passing equilibrium exists.

The message-passing operator H is a variation of the min-sum algorithm, as de-
scribed in Chapter 2. Both methods are derived based on the assumption that the
system decomposes into a collection of individual decision making agents, and that
the problem faced by each agent decomposes into independent subproblems. In
Chapter 2, however, we assumed that the agents corresponded to decision variables
and factors of the optimization problem. In the context of resource allocation, it
is more natural to assume that the agents correspond to individual activities and
resources.

3.4.2 Optimality

Given a message-passing equilibrium V , an allocation can be selected by optimiz-
ing, for each activity a, the activity manager’s problem (3.5). In this section, we
characterize the optimality properties of this allocation.

Consider two feasible allocations x and x′. We can interpret the difference
x − x′ as a set of direct transfers of resources between various activity managers

2The subtraction of an offset is analogous to the modification of the Bellman operator in
average cost dynamic programming necessary when moving from a finite horizon to an infinite
horizon setting.

3.4. SOLUTION CONCEPT 43

and resource managers. These transfers involve pairs of activities and resources
that are indexed by the set

∆(x, x′) , {(a, r) ∈ A×R : xar 6= x′ar},

which is the collection of decision variables that differ between the two allocations.
Given an allocation x, we say that a set of direct transfers is feasible if the

allocation resulting from the combination of transfers is feasible. A cycle is a set
of transfers for which the activity-resource pairs involved can be written as

(a1, r1), (a2, r1), (a2, r2), (a3, r2), . . . , (ak, rk), (a1, rk),

where each resource index and each activity index are distinct. The following
theorem characterizes a set of transfers that cannot improve a solution delivered by
a message-passing equilibrium. The proof is omitted, but can easily be established
using the methods of [32, 89],

Theorem 3.2 Given a message-passing equilibrium V , assume that each activity
manager’s problem (3.5) has a unique solution, and define x∗ to be the resulting
allocation. The objective value of this allocation cannot be increased by any set of
transfers that involves at most one cycle.

Theorem 3.2 guarantees, for example, that the objective cannot be improved
by transfers involving redistribution of only a single resource, as such transfers
contain no cycles. If the original dependency graph D contains at most one cycle,
then any set of transfers contains at most one cycle. Hence, x∗ is a global optimum.
We comment further on this optimality property in Section 3.4.4.

3.4.3 Concave Utility Functions

In this section, we analyze message-passing equilibria in a convex resource allo-
cation setting: we assume that the utility functions are Lipschitz continuous and
strictly concave. Under this assumption, the system manager’s problem (3.1) has
a unique globally optimal allocation. Further, by the classical theory of Lagrange

44 CHAPTER 3. RESOURCE ALLOCATION

multipliers, a supporting price vector exists. We demonstrate that the message-
passing approach yields equivalent results.

To begin, note that, without loss of generality, we can restrict ourselves to
message sets with concave messages, by the following analog of Theorem 3.1. The
proof of this theorem is provided in Section 3.7.1.

Theorem 3.3 There exists a message-passing equilibrium with concave and Lips-
chitz continuous messages.

Given a message-passing equilibrium with concave messages, each activity man-
ager’s problem (3.5) has a strictly concave objective and a convex constraint set,
and, hence, a unique optimal solution. Further, in this case, Theorem 3.2 can
be strengthened to a global optimality guarantee, by the following theorem. The
proof of this theorem is provided in Section 3.7.2.

Theorem 3.4 Consider a message-passing equilibrium with concave and Lipschitz
continuous messages. The resulting allocation of resources is globally optimal for
the system manager’s problem (3.1).

Now, let x∗ be the globally optimal allocation, and assume that the system
manager’s objective U(·) is differentiable at x∗. Let p∗ ∈ RR+ be the unique sup-
porting price vector. For an activity a and resource r ∈ ∂a, we can think of p∗r as
a marginal incentive for the manager of activity a, in the sense that

∂

∂xar
ua(x∗∂a) = p∗r.

We interpret this statement as saying that the marginal change in utility of de-
viating from the allocation x∗ar is balanced by the incremental resource cost due
to the price. The following theorem shows that the derivatives of messages in
message-passing equilibrium can be interpreted the same way. The proof of this
theorem is provided in Section 3.7.2.

Theorem 3.5 Let x∗ be the globally optimal allocation for the system manager’s
problem (3.1) and let p∗ be a supporting price vector. Suppose that U(·) is differen-
tiable at x∗. Consider a message-passing equilibrium V with concave and Lipschitz

3.4. SOLUTION CONCEPT 45

continuous messages. Then, for each activity a and resource r,

d

dxar
Va→r(x∗ar) = p∗r,

d

dxar
Vr→a(x∗ar) = −p∗r,

where the existence of the above derivatives is guaranteed. Thus,

∂

∂xar
ua(x∗∂a) = d

dxar
Va→r(x∗ar) = − d

dxar
Vr→a(x∗ar) = p∗r.

Theorem 3.5 implies that, subject to differentiability considerations, concave
message-passing equilibria are unique in their first-order behavior at the optimal
allocation, and this behavior corresponds to that of the unique shadow price vector.

3.4.4 Messages Versus Prices

As we have discussed, shadow prices and message-passing equilibria provide two
different ways to decompose the system manager’s problem (3.1) into a series
of smaller problems, one for each activity manager, which are of the form (3.4)
and (3.5), respectively. These activity managers’ problems are no longer coupled
by resource constraints and can be solved independently. Both methods can be
interpreted as providing incentives to each activity manager which capture decision
externalities.

In the convex resource allocation case, the discussion in Section 3.4.3 suggests
that these methods are equivalent. Both methods derive incentives that support
the globally optimal allocation, and these incentives have equivalent structure in
a local neighborhood of the globally optimal allocation.

For nonconvex problems, however, message-passing equilibria still exist and
the allocations they suggest satisfy certain optimality properties. In particular,
allocations derived from message-passing equilibria satisfy the optimality property
of Theorem 3.2.

We can clearly contrast these methods in the case of smooth (but not concave)
utilities. There, subject to regularity conditions, a price vector exists support-
ing every locally optimal allocation and guarantees that the objective cannot be

46 CHAPTER 3. RESOURCE ALLOCATION

improved by small deviations from the prescribed allocation. A generalization of
Theorem 3.4 would make a similar local optimality guarantee for a message-passing
equilibrium. However, the objective also cannot be improved through very large
scale deviations which satisfy the conditions of Theorem 3.2.

Finally, it should be noted that the optimality properties of message-passing
equilibria are not well understood from a theoretical perspective. Their perfor-
mance on many difficult optimization problems is far better than suggested by
the guarantee provided by Theorem 3.2. We shall see an example of this in Sec-
tion 3.6.1.

3.5 Message-Passing Algorithms

Up to this point, we have described message-passing equilibrium as a solution
concept and analyzed its properties. In this section, we consider the issue of
computing message-passing equilibrium.

Since a message-passing equilibrium is a fixed point of the operator H, a nat-
ural approach to consider is the method of successive approximations. This is
an iterative scheme which starts with some initial message set V (0), for example
V (0) , 0, and generates subsequent approximations to a message-passing equilib-
rium according to

(3.8) V (t+1) , (1− γ)V (t) + γHV (t).

Here, the scalar γ ∈ (0, 1] is a dampening factor. This procedure is repeated
until it converges and a fixed point is reached. We generically call a successive
approximation scheme of the form (3.8) a message-passing algorithm.

3.5. MESSAGE-PASSING ALGORITHMS 47

3.5.1 Tractability

Each iteration of the successive approximations method requires the solution of
optimization problems of the following form

maximize ua(x∂a) +∑
r′∈∂a\r Vr′→a(xar′),

subject to xar′ ∈ Xr′ , ∀ r′ ∈ ∂a \ r,
(3.9a)

maximize ∑
a′∈∂r\a Va′→r(xa′r),

subject to ∑
a′∈∂r\a xa′r ≤ br − xar,

xa′r ∈ Xr, ∀ a′ ∈ ∂r \ a.
(3.9b)

for each activity a, resource r, and xar ∈ Xj. Implicit in the application of this
method is the assumption that these optimization problems can be solved effi-
ciently.

There is special structure in the problems (3.9a) and (3.9b) that can be ex-
ploited for efficient solution by dynamic programming. Note the problem (3.9b)
involves optimizing a separable objective function with an interval constraint on
each variable and a single linear constraint on the sum of variable values. Such
a problem can be efficiently solved as a series of one-dimensional optimization
problems via dynamic programming. In many relevant cases, problem (3.9a) can
similarly be decomposed into one-dimensional optimization problems. This is true,
for example, if the utility function is additively separable or if utility depends only
on the sum or minimum of allocated resources, as we shall see in Section 3.6.1.

3.5.2 Distributed and Asynchronous Implementation

One important characteristic of the message-passing iteration (3.8) is that it nat-
urally lends itself to a distributed and asynchronous implementation. Imagine an
implementation where the activity and resource managers operate completely in-
dependently. Consider this from the perspective of an activity manager. At each
point in time, the activity manager keeps track of the most recent message it has
received from each neighboring resource manager in the dependency graph. Occa-
sionally, the activity manager can decide to send a new message to each neighboring

48 CHAPTER 3. RESOURCE ALLOCATION

resource manager, based on the most recent messages it has received from other
resource managers. Resource managers behave in an analogous fashion. So long as
every pair of activity and resource managers communicate sufficiently often, a fixed
point of this distributed and asynchronous procedure is a message-passing equi-
librium. Moreover, each manager only requires knowledge of and communication
with neighboring managers in the dependency graph.

In general, messages are functions over a continuous domain. As such, the
algorithm, as we have formulated it, cannot be implemented on digital computers.
In some cases, such as the example we consider in Section 3.6.1, the messages lie in
a finite dimensional space that is closed under the message-passing operator H. In
such cases, messages can be transmitted by sending a finite vector of real numbers.
In the more general case, it is necessary to approximate messages using finitely
parameterized representations. For example, each message can be computed at a
finite number of points in its domain including the end points of the interval, and
values of the message between each pair of consecutive points can be approximated
by linear interpolation. This is analogous to the situation in approximate dynamic
programming, where the value function is approximated using a finite parameter
set. Such approximations are an active area of research, see Section 4.4 for related
work.

3.5.3 Convergence

An immediate question is whether the message-passing algorithm (3.8) converges to
a message-passing equilibrium. Under the hypotheses of Theorems 3.1 and 3.3, the
operator H is continuous and compact. Hence, any sequence of iterates generated
by successive approximation has limit points. However, these limit points may
not, in general, be fixed points and thus equilibria—they may be contained in
some invariant collection of message sets and may be, for example, periodically
oscillating.

The question of convergence is, unfortunately, not well understood in general. If
the dependency graph contains no cycles, message-passing can be seen to converge

3.6. NETWORK RATE CONTROL 49

in a finite number of iterations by simple dynamic programming arguments. Ab-
stract conditions for convergence have been developed [86], but these are difficult
to verify in specific problem instances. Convergence has also been established for
certain special classes of optimization problems, such as maximum-weight match-
ing [9], and for certain random ensembles of optimization problems [80].

One case that is well-understood, however, is when message-passing is applied
to the optimization of quadratic programs. Here, we and others [90, 79, 60, 52]
have established convergence so long as the objective decomposes a particular way.
Moreover, this convergence continues to hold in a distributed and asynchronous
setting. In one such case, which we describe in Chapter 5, a rate of convergence
analysis is also available.

We have recently extended these convergence results to the optimization of
unconstrained convex programs. We describe this work in Chapter 4. The main
sufficient condition identified for convergence is that the objective function satisfy
a certain scaled diagonal dominance condition. Unfortunately, this analysis does
not apply to the resource allocation problems considered here. However, in the
following section, we see that message-passing can still offer excellent solutions in
the absence of convergence guarantees.

3.6 Network Rate Control

One feature of the message-passing algorithms described in the previous section
is that they can be implemented in a distributed manner. This can be crucial in
systems where information or computational resources are decentralized. In this
section, we discuss an example involving transmission rate control in a communi-
cation network.

We consider the following model. There is a set R of resources, each represent-
ing a link in a communication network. Each link r has a finite capacity br > 0.
There is a set A of activities, each representing a user who wishes to transmit data
across the network. Each user a transmits data along a fixed route consisting of

50 CHAPTER 3. RESOURCE ALLOCATION

the set of links ∂a ⊆ R. This is illustrated in Figure 3.4. If the user is allocated
capacity x∂a along these links, it can transmit at the rate minr∈∂a xar, and its
utility is a function of this rate,

ua(x∂a) , ũ
(
min
r∈∂a

xar

)
.

Here, we assume that the single-variable utility function ũ : R+→R+ is nonde-
creasing. The objective is to allocate capacity in a way that maximizes the sum of
utilities.

Figure 3.4 A network rate control example. Each edge in the graph is a constrained
communications link. Each user is associated with a route in the network. For
example, user a wishes to transmit data along the path consisting of the links
∂a = {r1, r2, r3}.

The numbers of users and links in modern communication networks are enor-
mous. As such, it is not possible for a central authority to gather all the utility
functions and link capacities as would be required to make centralized allocation
decisions. Rather, the capacity of each link must be allocated based on locally
available information. This information should be gathered from packets of data
transmitted by users as they pass through the link. Further, links might mark
the packets as they pass through to inform users of how much capacity they are
allocated.

For the case of increasing strictly concave utility functions, referred to in the
networking literature as the case of elastic traffic [81], Kelly proposes an elegant

3.6. NETWORK RATE CONTROL 51

distributed algorithm [40]. Our interest here is in designing a distributed message-
passing scheme that effectively optimizes the allocation when utility functions are
not concave, also known as the case of inelastic traffic. Such utility functions
are required to model user preferences, for example, in real-time video and audio
applications [81]. Optimization algorithms designed for elastic traffic, like that of
Kelly, can lead to instabilities when applied in the presence of inelastic traffic [45].
Several heuristics have been proposed to address inelastic traffic [45, 36, 29].

3.6.1 Inelastic Rate Control

Consider the extreme case of inelastic traffic described in Example 3.3. Here, each
user a has a utility function

ũa(xa) , zaI{xa≥wa}.

The quantity wa > 0 is the minimum overall transmission rate desired by the user,
and the quantity za > 0 is the utility derived if allocated a rate wa or larger.

In this setting, each user a is indifferent between transmitting at rate 0 or at
any rate in the interval (0, wa), and is similarly indifferent between transmitting
at rate wa and at any rate larger than wa. Hence, the system manager’s problem
(3.1) is equivalent to the 0–1 integer program

(3.10)
maximize ∑

a∈A zaya

subject to ∑
a∈∂r waya ≤ br, ∀ r ∈ R

ya ∈ {0, 1}, ∀ a ∈ A.

This is a multidimensional 0–1 knapsack problem, which is NP-hard [33].
There are a number of heuristics available for solving the program (3.10). A

class of greedy heuristics first defines a measure of efficiency, or “bang-per-buck”,
for each user, representing some estimate of the contribute of the user to the
overall utility relative to the cost of resource consumption of the user. We consider
a prototypical efficient metric,

ea ,
za∑

r∈∂awa/br
,

52 CHAPTER 3. RESOURCE ALLOCATION

for each user a. The users are then considered in order of decreasing efficiency, and
are greedily allocated their desired capacity so long as feasibility is maintained.

Alternatively, one may consider the linear programming relaxation of (3.10).
This is equivalent to approximating the utility function of each user a by the
piecewise linear function

ũa(xa) ≈ min (za, zaxa/wa) .

Naive application of such an approximation leads to poor solutions, as there may be
many users who are allocated fractional capacities. Much better solutions can be
generated from this approximation by examining the resulting vector p of shadow
prices for the link constraints. These can be used as proxies for the cost of capacity
on a link in order to define the efficiency metric

ea ,
za∑

r∈∂awapr
,

for each user a. An allocation decision can then be made as in the case of the
greedy heuristic. We call this method concave approximation.

3.6.2 Distributed Message-Passing

Consider a distributed message-passing algorithm for a network with inelastic traf-
fic. Here, Since the messages Vr→a(xar) and Va→r(xar) represent incentives, only
their values at xar ∈ {0, wa} matter. Hence, we can parameterize these messages
by

Va→r(xar) , va→rI{xar≥wa}, Vr→a(xar) , vr→aI{xar≥wa},

given parameters va→r ≥ 0 and vr→a ≤ 0. Denote by v the set of all parameters
{va→r, vr→a}. This parametrization is closed under the operator H, and H can be

3.6. NETWORK RATE CONTROL 53

expressed directly in terms of the parameter set v by

(Hv)a→r = za +
∑

r′∈∂a\r
vr′→a,(3.11a)

(Hv)r→a = maximize ∑
a′∈∂r\a va′→rya′r

subject to ∑
a′∈∂r\awa′ya′r ≤ br − wa,

ya′r ∈ {0, 1}, ∀ a′ ∈ ∂r \ a.
(3.11b)

Given a a set of parameters v, each activity a needs to solve the activity man-
ager’s problem (3.5). This is equivalent to selecting to consume quantities xar, for
all r ∈ ∂a, by

(3.12) xar =


0 if za +∑

r∈∂a vr→a ≤ 0,

wa if za +∑
r∈∂a vr→a ≥ 0.

In the case where za + ∑
r∈∂a vr→a = 0, the activity manager is indifferent be-

tween consuming quantities 0 and wa. We discuss this case in further detail in
Section 3.6.3.

Since the application setting here is naturally decentralized, it is important to
be able to compute the message-passing update equations (3.11a)–(3.11b) and the
resulting allocation (3.12) in a distributed and possibly asynchronous fashion. We
describe one particularly parsimonious implementation now.

Consider a setting where, at each time t, each link r maintains a set of incoming
and outgoing message parameters {v(t)

r→a, v
(t)
a→r} for each user a ∈ ∂r. Assume that

a user a transmits a data packet at time t, along the route ∂a. A single real number
m+
a is appended to this data packet, and the user initially sets m+

a , za. When
the packet passes through a link r ∈ ∂a, the value of m+

a is observed. This value is
then updated by setting m+

a , m+
a + v(t)

r→a, before it is forwarded to the next link.
When the packet arrives at the destination, an acknowledgment message is sent
back the source, containing a single real number m−a . This number is initialized
to m−a , 0. As it passes through a link r ∈ ∂a, it is observed, and then updated
according to m−a , m−a + v(t)

r→a, until it reaches the source.

54 CHAPTER 3. RESOURCE ALLOCATION

Now, at any link r ∈ ∂a along the route, the observed values m+
a and m−a can

be combined to compute

m+
a +m−a = za +

∑
r′∈∂a\r

v
(t)
r′→a = (Hv(t))a→r.

Thus, the link can update its stored incoming message from user a by setting
v(t+1)
r→a , m+

a +m−a . New outgoing messages v(t+1)
r→a′ , for each activity a′ ∈ ∂r \ a, can

then be computed according to the update equation (3.11b). Similarly, when the
user a receives the acknowledgment packet, it can compute the value

za +m−a = za +
∑
r∈∂a

v(t)
r→a.

Then, it can make a consumption decision via (3.12).
The spirit of this implementation is that the computation of a message-passing

equilibrium and the associated allocation decisions can be accomplished with very
little overhead. All communication occurs along the normal flow of network traffic,
and only a single real number is appended to every data packet.

3.6.3 Constructing Solutions

Given a collection of message parameters {v(t)
r→a, v

(t)
a→r} at time t, individual con-

sumption decisions for each activity can be made according to (3.12). In general,
however, if there are ties in (3.12), the resulting overall allocation may not be
uniquely determined. Further, it is important to ensure that the resulting overall
allocation is feasible. Reminiscent of the discussion in Section 2.3.4, an additional
modification is required to construct an overall allocation.

The modification we employ is a greedy rounding procedure, as described in
Section 3.6.1. An efficiency metric

ea , za +
∑
r∈∂a

v(t)
r→a

is defined for each user a. The users are considered sequentially in order of de-
creasing values of ea. Each user is then greedily allocated capacity wa if this is
feasible, and is otherwise allocated capacity 0.

3.6. NETWORK RATE CONTROL 55

Such a modification can easily be done in a decentralized fashion in a number
of ways. One such way would be as follows: imagine that each user a reports
its metric ea to each link r ∈ ∂a. Each link r then considers only the users in
∂r for which it has sufficient remaining capacity. These users are sorted by their
efficiency metric values, and the link reports an “OK” message to only the highest
value user, where ties are broken uniformly at random. If a user receives an “OK”
message from every link, it is allocated capacity, and the process repeats with
only the remaining users. This can be done be done dynamically alongside the
computation of messages and the normal flow of network traffic, in the spirit of
Section 3.6.2.

3.6.4 Numerical Results

We compare the performance of message-passing to the heuristics described in Sec-
tion 3.6.1 as well as the optimal solution across a set of random problem instances
in Figure 3.5. These problem instances are described by a size parameter, which is
equal to the number of users and the number of links. The assignment of users to
links is made by uniformly sampling a bipartite graph of degree 10, so that each
user is assigned a route along 10 links, each link is in the route of 10 users. Each
link r is assigned a fixed capacity br = 5.

The utility function of each user a is generated randomly, by setting za to an IID
exponential random variable of mean 1, and setting wa , za. This type of utility
function corresponds to a “strongly correlated” regime for the multidimensional 0–
1 knapsack problem (3.10) [33]. Here, the combinatorial nature of the underlying
packing problem is most apparent and the problem is thought to be most difficult.

In these simulations, message-passing is run for 1000 iterations, independent of
the problem size. During each iteration t, a set of message-passing parameters v(t)

is updated according to v(t) = (1− γ)v(t−1) + γHv(t−1), where a dampening factor
of γ = 0.5 is used. An allocation decision x(t) is made by the method described in
Section 3.6.3. The objective value of the best allocation seen in the 1000 iterations
is reported.

56 CHAPTER 3. RESOURCE ALLOCATION

In Figure 3.5, we can see the performance of message-passing versus the greedy
and concave approximation heuristics. The algorithms are compared across a set
of problem instances of various sizes by their optimality gap to the globally optimal
allocation, which is determined using a mixed integer solver.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

0 25 50 75 100 125 150

Problem Size

O
p
ti
m

al
it
y

G
ap

 (
O

p
ti
m

al
 =

 0
%

)

Message-Passing Concave Approximation Greedy

Figure 3.5 A comparison of message-passing versus competing algorithms for a set
of random inelastic rate control problem instances.

Message-passing performs significantly better than either heuristic. Moreover,
the optimality gap for message-passing is very consistent, and is typically within
3% of the optimal objective value. The heuristics, on the other hand, have highly
variable performance across problem instances.

For this class of problems, the efficiency metric employed by the greedy al-
gorithm is constant: ea = 0.5 for each user a. Hence, the greedy heuristic is
particularly trivial: consider the users in an arbitrary order, and greedily assign
capacity while maintaining feasibility. The concave approximation heuristic, which
requires solution of a linear program, does not perform noticeably better.

3.7. PROOFS 57

Finally, note that the problem sizes in Figure 3.6.1 are limited to 125 users.
These are the largest problems for which our mixed integer solver3 could compute
a global optimum. Message-passing can comfortably scale to much larger problem
instances, up to 100,000’s of users on a desktop workstation. Indeed, message-
passing could handle much larger problem instances than even our commercial LP
solver, which was used in computing concave approximation solutions.

3.7 Proofs

In this section, we provide proofs for the main results of the chapter.

3.7.1 Proof of Theorems 3.1 and 3.3

Theorem 3.1 Assume that the utility functions are Lipschitz continuous. Then, a
message-passing equilibrium exists.

Proof. Let L be a Lipschitz constant that applies to all utility functions. Suppose
each message in the set V is Lipschitz continuous with Lipschitz constant L. Con-
sider the message from an activity a to a resource r ∈ ∂a. Define X a\r ,

∏
r∈∂a\r Xr

to be the space of consumption bundles for activity a, excluding resource r. With-
out loss of generality, assume that (FV)a→r(x′ar) ≥ (FV)a→r(xar). Then, for some

3We employed the ILOG CPLEX 9.1 mixed integer solver to compute globally optimal so-
lutions. The LP solver from the same package was used in computing concave approximation
solutions.

58 CHAPTER 3. RESOURCE ALLOCATION

z′ ∈ X a\r,

(FV)a→r(x′ar)− (FV)a→r(xar) = max
z∈Xa\r

ua(x′ar, z) +
∑

r′∈∂a\r
Vr′→a(zar′)


− max

z∈Xa\r

ua(xar, z) +
∑

r′∈∂a\r
Vr′→a(zar′)


= ua(x′ar, z′) +

∑
r′∈∂a\r

Vr′→a(z′ar′)

− max
z∈Xa\r

ua(xar, z) +
∑

r′∈∂a\r
Vr′→a(zar′)


≤ ua(x′ar, z′)− ua(xar, z′)

≤ L|x′ar − xar|.

Hence, the message (FV)a→r(·) is Lipschitz continuous with Lipschitz constant L.
A similar proof applies to (FV)r→a(·).

Let S be the collection of message sets V for which each message equals zero
at zero and is Lipschitz continuous with Lipschitz constant L. Note that S is
convex, closed, and bounded (under the supremum norm). S is a subset of the set
of continuous functions from a compact, finite dimensional metric space to itself.
Hence, S is compact under the supremum norm by the Arzelà-Ascoli theorem.
The operator H maps S to S continuously with respect to the supremum norm. It
follows from the Schauder fixed point theorem that a message-passing equilibrium
exists. �

Theorem 3.3 There exists a message-passing equilibrium with concave and Lips-
chitz continuous messages.

Proof. The proof follows by a modification of the proof of Theorem 3.1: define
the set S ′ to be the collection of message sets V ∈ S which are also concave. Since
the operator H involves maximization of a concave function over a convex set, if
V ∈ S ′, then HV is also concave hence HV ∈ S ′. The existence of a fixed-point
in S ′ follows from the Schauder fixed point theorem. �

3.7. PROOFS 59

3.7.2 Proof of Theorems 3.4 and 3.5

First, consider a preliminary lemma:

Lemma 3.1 Consider a message-passing equilibrium HV = V , where each activity
manager’s problem (3.5) has a unique solution, and denote the resulting allocation
by x∗. Then, for each activity a and resource r ∈ ∂a, this allocation maximizes the
optimization problems

maximize Tr→a(x∂r) ,
∑
a′∈∂r\a Va′→r(xa′r)− Vr→a(xar)

subject to ∑
a′∈∂r xa′r ≤ br,

xa′r ∈ Xr, ∀ a′ ∈ ∂r,
(3.13a)

maximize Ta→r(x∂a) , ua(x∂a) +∑
r′∈∂a\r Vr′→a(xar′)

−Va→r(xar)
subject to xar′ ∈ Xr′ , ∀ r′ ∈ ∂a.

(3.13b)

Proof. Denote by Ua(·) the objective function of the activity manager’s problem
(3.5). From the equilibrium equation HV = V , and the hypothesis that Ua(·) has
the maximizer x∗∂a,

max
x∂a\r

Ua(x∂a) = Va→r(xar) + Vr→a(xar) + (FV)a→r(0),

Ua(x∗∂a) = Va→r(x∗ar) + Vr→a(x∗ar) + (FV)a→r(0).

where the maximization occurs over the consumption decisions for all resources
except r. Since

Ua(x∂a) = Ta→r(x∂a) + Va→r(xar) + Vr→a(xar),

we have

max
x∂a\r

Ta→r(x∂a) = (FV)a→r(0) = Ua(x∗∂a)− Va→r(x∗ar)− Vr→a(x∗ar)

= Ta→r(x∗∂a).

Thus, x∗∂a maximizes (3.13b). The result for (3.13a) is established similarly. �

60 CHAPTER 3. RESOURCE ALLOCATION

In order to prove Theorem 3.4, we first need some standard definitions from
convex analysis [78]. Denote by

X ,
∏
a∈A

∏
r∈∂a
Xr

the domain of the system objective U(·). Given a concave function F : X→R
which is Lipschitz continuous, define the directional derivative at a point x in the
direction d by

∇dF (x) = lim
α↘0

F (x+ αd)− F (x)
α

.

If d is such that x+αd ∈ X for positive scalars α sufficiently small, the limit exists
and is finite, otherwise set ∇dF (x) , −∞. We say that F (·) is differentiable
at x if there is a vector ∇F (x) such that, for all d, ∇dF (x) = ∇F (x) · d. Note
that if F (·) is differentiable at x, by this definition, x must lie in the interior of X .
Right and left partial derivatives are defined through the corresponding directional
derivatives by

∂+

∂xar
F (x) = ∇earF (x), ∂−

∂xar
F (x) = −∇−earF (x).

Here, ear is a unit vector that is zero except in component ar. Denote by ∂F (x)
the set of supergradients to F (·) at x, that is

∂F (x) = {z : F (y) ≤ F (x) + z · (y − z), ∀ y ∈ X} .

Theorem 3.4 Consider a message-passing equilibrium with concave and Lipschitz
continuous messages. The resulting allocation of resources is globally optimal for
the system manager’s problem (3.1).

Proof. Consider a message-passing equilibrium V with concave and Lipschitz con-
tinuous messages, and let x∗ be the associated allocation. Assume that x∗ lies in
the interior of the domain of U(·). By [78, Theorem 27.4], for each resource r and

3.7. PROOFS 61

activity a, there must exist a supergradient dar ∈ ∂ua(x∗∂a) so that we have the
first order conditions for the optimization problem (3.13b),

darar −
d+

dxar
Va→r(x∗ar) ≤ 0,(3.14a)

darar −
d−

dxar
Va→r(x∗ar) ≥ 0,(3.14b)

darar′ +
d+

dxar′
Va→r′(x∗ar′) ≤ 0, ∀ r′ ∈ ∂a \ r,(3.14c)

darar′ −
d−

dxar′
Va→r(x∗ar′) ≥ 0, ∀ r′ ∈ ∂a \ r.(3.14d)

Similarly, let λ∗ar ≥ 0 be a shadow price to the optimization problem (3.13a). Then,

− d+

dxar
Vr→a(x∗ar)− λ∗ar ≤ 0,(3.15a)

− d−

dxar
Vr→a(x∗ar)− λ∗ar ≥ 0,(3.15b)

d+

dxa′r
Va′→r(x∗a′r)− λ∗ar ≤ 0, ∀ a′ ∈ ∂r \ a,(3.15c)

d−

dxar
Va′→r(x∗a′r)− λ∗ar ≥ 0, ∀ a′ ∈ ∂r \ a.(3.15d)

Then, by (3.14a)–(3.14b) and (3.15a)–(3.15b), and the concavity of Va→r(·) and
Vr→a(·),

(3.16) d

dxar
Va→r(x∗ar) = darar,

d

dxar
Vr→a(x∗ar) = −λ∗ar.

By (3.15c)–(3.15d), and (3.16), we have

λ∗ar = da
′r
a′r, ∀ a′ ∈ ∂r \ a.

Then, we must have λ∗ar = p∗r for some vector p∗ ∈ RR+ , and, using (3.14c)–(3.14d),
also

darar′ = p∗r′ , ∀r′ ∈ ∂a \ r.

62 CHAPTER 3. RESOURCE ALLOCATION

Define the vector dU by (dU)ar = p∗r, for each a ∈ A and r ∈ ∂a. Then,
dU ∈ ∂U(x∗) is a supergradient of U(·) at x∗, the vector p∗ is a shadow price
vector for the system optimization problem (3.1), and the allocation x∗ is globally
optimal. The case where x∗ is on the boundary of the domain of U(·). �

Theorem 3.5 Let x∗ be the globally optimal allocation for the system manager’s
problem (3.1) and let p∗ be a supporting price vector. Suppose that U(·) is differen-
tiable at x∗. Consider a message-passing equilibrium V with concave and Lipschitz
continuous messages. Then, for each activity a and resource r,

d

dxar
Va→r(x∗ar) = p∗r,

d

dxar
Vr→a(x∗ar) = −p∗r,

where the existence of the above derivatives is guaranteed. Thus,

∂

∂xar
ua(x∗∂a) = d

dxar
Va→r(x∗ar) = − d

dxar
Vr→a(x∗ar) = p∗r.

Proof. This follows by the same argument as in Theorem 3.4, and the fact that if
U(·) is differentiable at x∗, ∂U(x∗) = {∇U(x∗)}. �

4

UNCONSTRAINED CONVEX
OPTIMIZATION

Consider a graphical model consisting of a hypergraph (V, C), and an associated
optimization problem

(4.1)
minimize

x
F (x) , ∑

C∈C fC(xC)
subject to x ∈ RV .

Here, each decision variable xi is real-valued, and we assume that each factor
fC : R→R is real-valued and convex. The optimization problem (4.1) is clearly
convex. We will refer to such programs generically as separable convex programs,
however, to emphasize that the factors are convex.

In this chapter, we consider the behavior of the min-sum algorithm for separable
convex programs. One case that has been examined previously in the literature is
where the objective is pairwise (i.e., |C| ≤ 2, for all C ∈ C) and the component
functions {fC(·)} are quadratic and convex. Here, the min-sum algorithm is known
to compute the optimal solution when it converges [90, 79, 88], and sufficient
conditions are known that identify a broad class of problems for which the min-
sum algorithm converges [60, 52].

The main contribution of this chapter is the analysis of cases where the func-
tions are convex but not necessarily quadratic. We establish that the min-sum
algorithm and its asynchronous variants converge for a large class of such prob-
lems. The main sufficient condition is that of scaled diagonal dominance. This

63

64 CHAPTER 4. UNCONSTRAINED CONVEX OPTIMIZATION

condition is similar to known sufficient conditions for asynchronous convergence
of other decentralized optimization algorithms, such as coordinate descent and
gradient descent.

Analysis of the convex case has been an open challenge and its resolution ad-
vances the state of understanding in the growing literature on message-passing
algorithms. Further, it builds a bridge between this emerging research area and
the better established fields of convex analysis and optimization.

This chapter is organized as follows. The next section establishes a convergence
result for the min-sum algorithm in the context of pairwise separable convex pro-
grams. Section 4.2 extends this result to more general separable convex programs,
where each factor can be a function of more than two variables. In Section 4.3,
we discuss how our convergence results hold in a totally asynchronous model of
computation. When applied to a continuous optimization problem, messages com-
puted and stored by the min-sum algorithm are functions over continuous domains.
Except in very special cases, this is not feasible for digital computers, and in Sec-
tion 4.4, we discuss implementable approaches to approximating the behavior of
the min-sum algorithm. We close by discussing possible extensions and open issues
in Section 4.5.

4.1 Pairwise Separable Convex Programs

Consider first the case of pairwise separable programs. These are programs of
the form (4.1), where |C| ≤ 2, for all C ∈ C. In this case, we can define an
undirected graph (V,E) based on the objective function. This graph has a vertex
set V corresponding to the decision variables, and an edge set E defined by the
pairwise factors, E , {C ∈ C : |C| = 2}.

Definition 4.1 (Pairwise Separable Convex Program) A pairwise separable con-
vex program is an optimization problem of the form

(4.2)
minimize

x
F (x) , ∑

i∈V fi(xi) +∑
(i,j)∈E fij(xi, xj)

subject to x ∈ RV ,

4.1. PAIRWISE SEPARABLE CONVEX PROGRAMS 65

where the factors {fi(·)} are strictly convex, coercive, and twice continuously dif-
ferentiable, the factors {fij(·, ·)} are convex and twice continuously differentiable,
and

M , min
i

inf
x

∂2

∂x2
i

F (x) > 0.

Under this definition, the objective function F (x) is strictly convex and coer-
cive. Hence, we can define x∗ ∈ RV to be the unique optimal solution.

4.1.1 The Min-Sum Algorithm

The min-sum algorithm, as discussed in Section 2.3 for pairwise graphical models,
immediately applies to pairwise separable convex programs of the form (4.2). For
each vertex i ∈ V , denote the set of neighbors of i in the graph by N(i) ,
{j ∈ V : (i, j) ∈ E}. Denote the set of edges with direction distinguished by
~E , {(i, j) ∈ V × V : i ∈ N(j)}.

At time t, each vertex i keeps track of a message from each neighbor u ∈ N(i).
This message takes the form of a function J (t)

u→i : R→R. These incoming messages
are combined to compute new outgoing messages for each neighbor. The message
J

(t+1)
i→j (·) from vertex i to vertex j ∈ N(i) evolves according to

(4.3) J
(t+1)
i→j (xj) , min

xi
κ

(t)
i→j + fi(xi) + fij(xi, xj) +

∑
u∈N(i)\j

J
(t)
u→i(xi).

Here, κ(t)
i→j is a normalization term.

At each time t > 0, a local objective function b(t)
j (·) is defined for each variable

xj by

(4.4) b
(t)
j (xj) , fj(xj) +

∑
u∈N(j)

J
(t)
u→j(xj).

An estimate x(t)
j can be obtained for the optimal value of the variable xj by mini-

mizing the local objective function:

(4.5) x
(t)
j , argmin

xi
b

(t)
j (xj).

66 CHAPTER 4. UNCONSTRAINED CONVEX OPTIMIZATION

The min-sum algorithm requires an initial set of messages {J (0)
i→j(·)} at time

t = 0. We make the following assumption regarding these messages:

Assumption 4.1 (Min-Sum Initialization) Assume that the each initial message
J

(0)
i→j(·) is twice continuously differentiable and that there exists some zi→j ∈ R

with

(4.6) d2

dx2
j

J
(0)
i→j(xj) ≥

∂2

∂x2
j

fij(zi→j, xj), ∀ xj ∈ R.

Assumption 4.1 guarantees that the messages at time t = 0 are convex func-
tions. Examining the update equation (4.3), it is clear that, by induction, this
implies that all future messages are also convex functions. Similarly, since the
functions {fi(·)} are strictly convex and coercive, and the functions {fij(·, ·)} are
convex, it follows that the optimization problem in the update equation (4.3) is
well-defined and uniquely minimized. Finally, each local objective function b(t)

j (·)
must strictly convex and coercive, and hence each estimate x(t)

j is uniquely defined
by (4.5).

Assumption 4.1 also requires that the initial messages be sufficiently convex, in
the sense of (4.6). As we will shortly see, this will be an important condition for
our convergence results. For the moment, however, note that it is easy to select a
set of initial messages satisfying Assumption 4.1. For example, one might choose

J
(0)
i→j(xj) , fij(0, xj).

4.1.2 Convergence

Our goal is to understand conditions under which the min-sum algorithm converges
to the optimal solution x∗, i.e.

lim
t→∞

x(t) = x∗.

Consider the following diagonal dominance condition:

4.1. PAIRWISE SEPARABLE CONVEX PROGRAMS 67

Definition 4.2 (Scaled Diagonal Dominance) An objective function F : RV→R
is (λ,w)-scaled diagonally dominant if λ is a scalar with 0 < λ < 1 and w ∈ RV

is a vector with w > 0, so that for each i ∈ V and all x ∈ RV ,

∑
j∈V \i

wj

∣∣∣∣∣ ∂2

∂xi∂xj
F (x)

∣∣∣∣∣ ≤ λwi
∂2

∂x2
i

F (x).

Our main convergence result is as follows:

Theorem 4.1 Consider a pairwise separable convex program with an objective func-
tion that is (λ,w)-scaled diagonally dominant. Assume that the min-sum algorithm
is initialized in accordance with Assumption 4.1. Define the constant

K ,
1
M

maxuwu
minuwu

.

Then, the iterates of the min-sum algorithm satisfy

‖x(t) − x∗‖∞ ≤ K
λt

1− λ
∑

(u,v)∈ ~E

∣∣∣∣∣ ddxv J (0)
u→v(x∗v)−

∂

∂xv
fuv(x∗u, x∗v)

∣∣∣∣∣ .
Hence,

lim
t→∞

x(t) = x∗.

Proof. The proof for Theorem 4.1 will be provided in Section 4.1.4. �

We can compare Theorem 4.1 to existing results on min-sum convergence in
the case of where the objective function F (·) is quadratic. Rusmevichientong and
Van Roy [79] developed abstract conditions for convergence, but these conditions
are difficult to verify in practical instances. Convergence has also been established
in special cases arising in certain applications [58, 63].

More closely related to our current work, Weiss and Freeman [90] established
convergence when the factors {fi(·), fij(·, ·)} are quadratic, the single-variable fac-
tors {fi(·)} are strictly convex, and the pairwise factors {fij(·, ·)} are convex and
diagonally dominated, i.e.∣∣∣∣∣ ∂2

∂xi∂xj
fij(xi, xj)

∣∣∣∣∣ ≤ ∂2

∂x2
i

fij(xi, xj), ∀ (i, j) ∈ E, xj, xj ∈ R.

68 CHAPTER 4. UNCONSTRAINED CONVEX OPTIMIZATION

The results of Malioutov, et al. [52] and our prior work [60] remove the diagonal
dominance assumption. However, all of these results are special cases of Theo-
rem 4.1. In particular, if a quadratic objective function F (·) decomposes into pair-
wise factors so that the single-variable factors are quadratic and strictly convex,
and the pairwise factors are quadratic convex, then F (·) must be scaled diago-
nally dominant. This can be established as a consequence of the Perron-Frobenius
theorem [52]. Finally, as we will see in Section 4.2, Theorem 4.1 also generalizes
beyond pairwise decompositions.

4.1.3 The Computation Tree

In order to prove Theorem 4.1, we first introduce the notion of the computation
tree. This is a useful device in the analysis of message-passing algorithms, originally
introduced by Wiberg [91]. Given a vertex r ∈ V and a time t, the computation
tree defines an optimization problem that is constructed by “unrolling” all the
optimizations involved in the computation of the min-sum estimate x(t)

r .
Formally, the computation tree is a graph T = (V , E) where each vertex i ∈ V is

in labeled by a vertex σi ∈ V in the original graph, through a mapping σ : V→V .
This mapping is required to preserve the edge structure of the graph, so that if
(i, j) ∈ E , then (σi, σj) ∈ E. Given a vertex i ∈ V , we will abuse notation and
refer to the corresponding vertex σi ∈ V in the original graph simply by i.

Fixing a vertex r ∈ V and a time t, the computation tree rooted at r and of
depth t is defined in an iterative fashion. Initially, the tree consists of single root
vertex corresponding to r. At each subsequent step, the leaves in the computation
tree are examined. Given a leaf i with a parent j, a vertex u and an edge (u, i)
are added to the computation tree corresponding to each neighbor of i excluding
j in the original graph. This process is repeated for t steps. An example of the
resulting graph is illustrated in Figure 4.1.

Given the graph T = (V , E), and the correspondence mapping σ, define a
decision variable xi for each vertex i ∈ V . Define a pairwise separable objective
function FT : RV→R, by considering factors of the form:

4.1. PAIRWISE SEPARABLE CONVEX PROGRAMS 69

Figure 4.1 A graph and the corresponding computation tree, rooted at vertex 1
and of depth t = 3. The vertices in the computation tree are labeled according to
the corresponding vertex in the original graph.

1. For each i ∈ V , add a single-variable factor fi(xi) by setting fi(xi) , fσi(xi).

2. For each (i, j) ∈ V , add a pairwise factor fij(xi, xj) by setting fij(xi, xj) ,
fσiσj(xi, xj).

3. For each i ∈ V that is a leaf vertex with parent j, add a single-variable
factor J (0)

u→σi(xi), for each neighbor u ∈ N(σi) \ σj of i in the original graph,
excluding j.

Now, let x̃ be the optimal solution to the minimization of the computation tree
objective FT (·). By inductively examining the operation of the min-sum algorithm,
it is easy to establish that the component x̃r of this solution at the root of the tree
is precisely the min-sum estimate x(t)

r .
The following lemma establishes that the computation tree inherits the scaled

diagonal dominance property from the original objective function.

Lemma 4.1 Consider a pairwise separable convex program with an objective func-
tion that is (λ,w)-scaled diagonally dominant. Assume that the min-sum algorithm
is initialized in accordance with Assumption 4.1, and let T = (V , E) be a com-
putation tree associated with this program. Then, the computation tree objective
function FT (·) is also (λ,w)-scaled diagonally dominant.

70 CHAPTER 4. UNCONSTRAINED CONVEX OPTIMIZATION

Proof. Given a vertex i ∈ V , let NV(i) be the neighborhood in the computation
tree, and let N(i) be the neighborhood of the corresponding vertex in the original
graph. If i ∈ V is an interior vertex of the computation tree, then

∑
u∈V\i

wu

∣∣∣∣∣ ∂2

∂xi∂xu
FT (x)

∣∣∣∣∣
=

∑
u∈NV (i)

wu

∣∣∣∣∣ ∂2

∂xi∂xu
fiu(xi, xu)

∣∣∣∣∣
≤ λwi

 ∂2

∂x2
i

fi(xi) +
∑

u∈NV (i)

∂2

∂x2
i

fiu(xi, xu)


= λwi
∂2

∂x2
i

FT (x),

where the inequality follows from the scaled diagonal dominance of the original
objective function F (·).

Similarly, if i is a leaf vertex with parent j,

∑
u∈V\i

wu

∣∣∣∣∣ ∂2

∂xi∂xu
FT (x)

∣∣∣∣∣
= wj

∣∣∣∣∣ ∂2

∂xi∂xj
fij(xi, xj)

∣∣∣∣∣
≤ wj

∣∣∣∣∣ ∂2

∂xi∂xj
fij(xi, xj)

∣∣∣∣∣+ ∑
u∈N(i)\j

wu

∣∣∣∣∣ ∂2

∂xi∂xu
fiu(xi, zu→i)

∣∣∣∣∣
≤ λwi

 ∂2

∂x2
i

fi(xi) + ∂2

∂x2
i

fij(xi, xj) +
∑

u∈N(i)\j

∂2

∂x2
i

fiu(xi, zu→i)


≤ λwi

 ∂2

∂x2
i

fi(xi) + ∂2

∂x2
i

fij(xi, xj) +
∑

u∈N(i)\j

∂2

∂x2
i

J
(0)
u→i(xi)


= λwi

∂2

∂x2
i

FT (x).

Here, the second inequality follows from the scaled diagonal dominance of the
original objective function F (·), and the third inequality follows from Assump-
tion 4.1. �

4.1. PAIRWISE SEPARABLE CONVEX PROGRAMS 71

4.1.4 Proof of Theorem 4.1

In order to prove Theorem 4.1, we will study the evolution of the min-sum algo-
rithm under a set of linear perturbations. Consider an arbitrary vector p ∈ R ~E

with one component pi→j for each i ∈ V and j ∈ N(i). Given an arbitrary vector
p, define {J (t)

i→j(·, p)} to be the set of messages that evolve according to

J
(0)
i→j(xj, p) , J

(0)
i→j(xj) + pi→jxj,(4.7)

J
(t+1)
i→j (xj, p) , min

xi
κ

(t)
i→j + fi(xi) + fij(xi, xj) +

∑
u∈N(i)\j

J
(t)
u→i(xi, p).(4.8)

Similarly, define {b(t)
j (·, p)} and {x(t)

j (p)} to be the resulting local objective
functions and optimal value estimates under this perturbation:

b
(t)
j (xj) , fj(xj) +

∑
u∈N(j)

J
(t)
u→j(xj, p),(4.9)

x
(t)
j , argmin

xi
b

(t)
j (xj, p).(4.10)

The following simple lemma gives a particular choice of p for which the min-sum
algorithm yields the optimal solution at every time.

Lemma 4.2 Define the vector p∗ ∈ R ~E by setting, for each i ∈ V and j ∈ N(i),

p∗i→j ,
∂

∂xj
fij(x∗i , x∗j)−

d

dxj
J

(0)
i→j(x∗j).

Then, at every time t ≥ 0,

(4.11) ∂

∂xj
J

(t)
i→j(x∗j , p∗) = ∂

∂xj
fij(x∗i , x∗j),

and x(t)
j (p∗) = x∗j .

Proof. Note that the first order optimality conditions for F (x) at x∗ imply that,
for each j ∈ V ,

d

dxj
fi(x∗j) +

∑
i∈N(j)

∂

∂xj
fij(x∗i , x∗j) = 0.

72 CHAPTER 4. UNCONSTRAINED CONVEX OPTIMIZATION

If (4.11) holds at time t, then this implies that
d

dxj
fi(x∗j) +

∑
i∈N(j)

∂

∂xj
J

(t)
i→j(x∗j , p∗) = ∂

∂xj
b

(t)
j (x∗j , p∗) = 0.

This is exactly the first order optimality condition for the minimization of b(t)
j (·, p∗),

thus x(t)
j (p∗) = x∗j .

Clearly (4.11) holds at time t = 0. Assume it holds at time t ≥ 0. Then, when
xj = x∗j , the minimizing value of xi in (4.8) is x∗i . Hence, (4.11) holds at time
t+ 1. �

Next, we will bound the sensitivity of the estimate x(t)
i (p) to the choice of p.

The main technique employed here is analysis of the computation tree described
in Section 4.1.3. In particular, the perturbation p impacts the computation tree
only through the leaf vertices at depth t. The scaled diagonal dominance property
of the computation tree, provided by Lemma 4.1, can then be used to guarantee
that this impact is diminishing in t.

Lemma 4.3 We have, for all p ∈ R ~E, r ∈ V , (u, v) ∈ ~E, and t ≥ 0,∣∣∣∣∣ ∂

∂pu→v
x(t)
r (p)

∣∣∣∣∣ ≤ K
λt

1− λ.

Proof. Fix r ∈ V , and let T = (V , E) be the computation tree rooted at r after t
time steps. Let FT (x, p) be the objective value of this computation tree, and let

x̃(p) , argmin
x

FT (x, p),

so that
x̃r(p) = x(t)

r (p).

By the first order optimality conditions, for any j ∈ V ,
∂

∂xj
FT (x̃(p), p) = 0.

If j is an interior vertex of T , this becomes

(4.12) d

dxj
fj(x̃j(p)) +

∑
i∈N(j)

∂

∂xj
fij(x̃i(p), x̃j(p)) = 0.

4.1. PAIRWISE SEPARABLE CONVEX PROGRAMS 73

If j is a leaf with parent u, we have

(4.13) d

dxj
fj(x̃j(p)) + ∂

∂xj
fuj(x̃u(p), x̃j(p))

+
∑

i∈N(j)\u

(
∂

∂xj
J

(0)
i→j(x̃j(p)) + pi→j

)
= 0.

Now, fix some directed edge (a, b), and differentiate (4.12)–(4.13) with respect to
pa→b. We have, for an interior vertex j,

0 = d2

dx2
j

fj(x̃j(p))
∂

∂pa→b
x̃j(p)

+
∑

i∈N(j)

∂2

∂x2
j

fij(x̃i(p), x̃j(p))
∂

∂pa→b
x̃j(p)

+
∑

i∈N(j)

∂2

∂xi∂xj
fij(x̃i(p), x̃j(p))

∂

∂pa→b
x̃i(p),

and for a leaf vertex j with parent u,

0 = d2

dx2
j

fj(x̃j(p))
∂

∂pa→b
x̃j(p)

+ ∂2

∂x2
j

fuj(x̃u(p), x̃j(p))
∂

∂pa→b
x̃j(p)

+ ∂2

∂xu∂xj
fuj(x̃u(p), x̃j(p))

∂

∂pa→b
x̃u(p)

+
∑

i∈N(j)\u

(
∂2

∂x2
j

J
(0)
i→j(x̃j(p))

∂

∂pa→b
x̃j(p) + I{(a,b)=(i,j)}

)
.

We can write this system of equations in matrix form, as

(4.14) Γva→b + ha→b = 0.

Here, va→b ∈ RV is a vector with components

va→bj ,
∂

∂pa→b
x̃j(p).

The vector ha→b ∈ RV has components

ha→bj , I{j is a leaf vertex of type a with a parent of type b}.

The symmetric matrix Γ ∈ RV×V has components as follows:

74 CHAPTER 4. UNCONSTRAINED CONVEX OPTIMIZATION

1. If j is an interior vertex,

Γjj ,
d2

dx2
j

fj(x̃j(p)) +
∑

i∈N(j)

∂2

∂x2
j

fij(x̃i(p), x̃j(p)).

2. If j is an interior vertex and i ∈ N(j),

Γij ,
∂2

∂xi∂xj
fij(x̃i(p), x̃j(p)).

3. If j is a leaf vertex with parent u,

Γjj ,
d2

dx2
j

fj(x̃j(p)) + ∂2

∂x2
j

fuj(x̃u(p), x̃j(p))

+
∑

i∈N(j)\u

∂2

∂x2
j

J
(0)
i→j(x̃j(p)),

Γuj ,
∂2

∂xu∂xj
fuj(x̃u(p), x̃j(p)).

4. All other entries of Γ are zero.

Note that Γ = ∇2
xFT (x̃(p), p). Then, Lemma 4.1 implies that

(4.15)
∑
i∈V\j

wi|Γij| ≤ λwjΓjj.

Define, for vectors x ∈ RV , the weighted sup-norm

‖x‖w∞ , max
j
|xj|/wj.

For a linear operator A : RV→RV , the corresponding induced operator norm is
given by

‖A‖w∞ , max
j

1
wj

∑
i∈V

wi|Aji|.

Define the matrices

D , diag(Γ),

R , I −D−1Γ.

4.1. PAIRWISE SEPARABLE CONVEX PROGRAMS 75

Then, (4.15) implies that
‖R‖w∞ ≤ λ < 1.

Hence, the matrix I −R = D−1Γ is invertible, and(
D−1Γ

)−1
= (I −R)−1 =

∞∑
s=0

Rs.

Examining the linear equation (4.14), we have

va→b = −Γ−1ha→b = −(I −R)−1D−1ha→b = −
∞∑
s=0

RsD−1ha→b.

We are interested in bounding the value of the component va→br (recall that va→br =
∂x(t)

r (p)/∂pa→b). Hence, we have

va→br = −
∞∑
s=0

[
RsD−1ha→b

]
r
.

Since ha→b is zero on interior vertices, and any leaf vertex is distance t from the
root r, we have [

RsD−1ha→b
]
r

= 0, ∀ s < t.

Thus,
va→br = −

∞∑
s=t

[
RsD−1ha→b

]
r
.

Then,

|va→br |/wr ≤
∥∥∥∥∥
∞∑
s=t

RsD−1ha→b
∥∥∥∥∥
w

∞

≤
∞∑
s=t
‖Rs‖w∞

∥∥∥D−1ha→b
∥∥∥w
∞

≤ λt

1− λ
∥∥∥D−1ha→b

∥∥∥w
∞

≤ λt

1− λ max
i∈V

sup
x∈RV

(
wi

∂2

∂x2
i

F (x)
)−1

≤M
λt

1− λ max
i∈V

1
wi
.

�

76 CHAPTER 4. UNCONSTRAINED CONVEX OPTIMIZATION

The following lemma combines the results from Lemmas 4.2 and 4.3. Theo-
rem 4.1 follows by taking p = 0.

Lemma 4.4 Given an arbitrary vector p ∈ R ~E,

‖x(t)(p)− x∗‖∞ ≤ K
λt

1− λ
∑

(u,v)∈ ~E

|pu→v − p∗u→v| .

Proof. For any j ∈ V , define

g
(t)
j (θ) = x

(t)
j (θp+ (1− θ)p∗).

We have, from Lemma 4.2,

x
(t)
j (p)− x∗j = x

(t)
j (p)− x(t)

j (p∗) = g
(t)
j (1)− g(t)

j (0).

By the mean value theorem and Lemma 4.3,

|x(t)
j (p)− x∗j |

≤ sup
θ∈[0,1]

∣∣∣∣∣ ddθg(t)
j (θ)

∣∣∣∣∣
≤ sup

θ∈[0,1]

∑
(u,v)∈ ~E

∣∣∣∣∣ ∂

∂pu→v
x

(t)
j (θp+ (1− θ)p∗)

∣∣∣∣∣ |pu→v − p∗u→v|
≤ K

λt

1− λ
∑

(u,v)∈ ~E

|pu→v − p∗u→v|.

�

4.2 General Separable Convex Programs

In this section we will consider convergence of the min-sum algorithm for more
general separable convex programs. In particular, consider a vector of real-valued
decision variables x ∈ RV , indexed by a finite set V , and a hypergraph (V, C),
where the set C is a collection of subsets (or “hyperedges”) of the vertex set V .

4.2. GENERAL SEPARABLE CONVEX PROGRAMS 77

Definition 4.3 (General Separable Convex Program) A general separable convex
program is an optimization problem of the form

(4.16)
minimize

x
F (x) , ∑

i∈V fi(xi) +∑
C∈C fC(xC)

subject to x ∈ RV ,

where the factors {fi(·)} are strictly convex, coercive, and twice continuously dif-
ferentiable, the factors {fC(·)} are convex and twice continuously differentiable,
and

M , min
i

inf
x

∂2

∂x2
i

F (x) > 0.

In this setting, as in Section 2.4.1, the min-sum algorithm operates by passing
messages between vertices and hyperedges. In particular, denote the set of neighbor
hyperedges to a vertex i ∈ V by ∂i , {C ∈ C : i ∈ C}. The min-sum update
equations take the form

J
(t+1)
i→C (xi) , fi(xi) +

∑
C′∈∂i\C

J
(t)
C′→i(xi) + κ

(t)
i→C ,

J
(t+1)
C→i (xi) , min

xC\i
fC(xC) +

∑
i′∈C\i

J
(t+1)
i′→C (xi′) + κ

(t)
C→i.

(4.17)

Local objective functions and estimates of the optimal solution are defined by

b
(t)
i (xi) , fi(xi) +

∑
C∈∂i

J
(t)
C→i(xi),

x
(t)
i , argmin

xi
b

(t)
i (xi).

We will make the following assumption on the initial messages:

Assumption 4.2 (Min-Sum Initialization) Assume that the each initial message
J

(0)
C→j(·) is twice continuously differentiable and that there exists some zC→j ∈ RC\i

with
d2

dx2
j

J
(0)
C→j(xj) ≥

∂2

∂x2
j

fC(xj, zC→j), ∀ xj ∈ R.

Then, we have the following analog of Theorem 4.1:

Theorem 4.2 Consider a general separable convex program. Assume that either:

78 CHAPTER 4. UNCONSTRAINED CONVEX OPTIMIZATION

(i) The objective function F (x) is (λ,w)-scaled diagonally dominant, and each
pair of vertices i, j ∈ V participate in at most one common factor. That is,

|{C ∈ C : (i, j) ⊂ C}| ≤ 1, ∀ i, j ∈ V.

(ii) The factors {fC(·)} are individually (λ,w)-scaled diagonally dominant, in the
sense that there exists a scalar λ ∈ (0, 1) and a vector w ∈ RV , with w > 0,
so that for all C ∈ C, i ∈ C, and xC ∈ RC,

∑
j∈C\i

wj

∣∣∣∣∣ ∂2

∂xi∂xj
fC(xC)

∣∣∣∣∣ ≤ λwi
∂2

∂x2
i

fC(xC).

Assume that the min-sum algorithm is initialized in accordance with Assump-
tion 4.2. Define the constant

K ,
1
M

maxuwu
minuwu

.

Then, the iterates of the min-sum algorithm satisfy

‖x(t) − x∗‖∞ ≤ K
λt

1− λ
∑
C∈C

∑
v∈C

∣∣∣∣∣ ddxv J (0)
C→v(x∗v)−

∂

∂xv
fC(x∗C)

∣∣∣∣∣ .
Hence,

lim
t→∞

x(t) = x∗.

Proof. This result can be proved using the same method as Theorem 4.1. The main
modification required is the development of a suitable analog of Lemma 4.1. In the
general case, scaled diagonal dominance of the computation tree does not follow
from scaled diagonal dominance of the objective function F (x). However, it is easy
to verify that either of the hypotheses (i) or (ii) imply scaled diagonal dominance
of the computation tree. The balance of the proof proceeds as in Section 4.1.4. �

4.3. ASYNCHRONOUS CONVERGENCE 79

4.3 Asynchronous Convergence

The convergence results of Theorems 4.1 and 4.2 assumed a synchronous model
of computation. That is, each message is updated at every time step in parallel.
The min-sum update equations (4.3) and (4.17) are naturally decentralized. If we
consider the application of the min-sum algorithm in distributed contexts, it is
necessary to consider convergence under an asynchronous model of computation,
as in Section 2.3.3. In this section, we will establish that Theorems 4.1 and 4.2
extend to an asynchronous setting, under the assumption of total asynchronism
(Assumption 2.1).

Without loss of generality, consider the pairwise case of Theorem 4.1. This can
be extended to the totally asynchronous setting as follows: the update equations
take the form (2.15)–(2.19). We can repeat the construction of the computation
tree in Section 4.1.3. As in the synchronous case, the initial messages only impact
the leaves of computation tree. The total asynchronism assumption guarantees
that these leaves are, eventually, arbitrarily far away from the root of the compu-
tation tree. The arguments in Lemma 4.3 then imply that the optimal value at
the root of the computation tree is insensitive to the choice of initial messages.
Convergence follows, as in Section 4.1.4.

The scaled diagonal dominance requirement of our convergence result is similar
to conditions required for the totally asynchronous convergence of other optimiza-
tion algorithms. Consider, for example, a decentralized coordinate descent algo-
rithm. Here, the processor associated with vertex i maintains an estimate x(t)

i of
the ith component of the optimal solution at time t. These estimates are updated
at a sequence of times T i, so that

x
(t+1)
i , argmin

xi
fi(xi) +

∑
u∈N(i)

foi(x(τu→i(t))
u , xi),

if t ∈ T i, and x(t+1)
i , x

(t)
i , otherwise. Here, τu→i(t) is the time at which the most

recent message received by vertex i from a neighboring vertex u was computed.

80 CHAPTER 4. UNCONSTRAINED CONVEX OPTIMIZATION

Similarly, consider a decentralized gradient method, where

x
(t+1)
i , x

(t)
i − α

∂

∂xi

fi (x(t)
i

)
+

∑
u∈N(i)

fui
(
x(τu→i(t))
u , x

(t)
i

) ,
if t ∈ T i, for some small positive step size α, and x(t+1)

i , x
(t)
i , otherwise. These

methods are not guaranteed to converge for arbitrary pairwise separable convex
optimization problems. Typically, some sort of diagonal dominance condition is
needed [14].

4.4 Implementation

The convergence theory we have presented elucidates properties of the min-sum
algorithm and builds a bridge to the more established areas of convex analysis
and optimization. However, except in very special cases, the algorithm as we have
formulated it cannot be implemented on a digital computer because the messages
that are computed and stored are functions over continuous domains. In this sec-
tion, we present two variations that can be implemented to approximate behavior
of the min-sum algorithm. For simplicity, we restrict attention to the case of the
synchronous min-sum algorithm applied to pairwise separable convex programs.

Our first approach approximates messages using quadratic functions and can
be viewed as a hybrid between the min-sum algorithm and Newton’s method.
It is easy to show that, if the single-variable factors {fi(·)} are positive definite
quadratics and the pairwise factors {fij(·, ·)} are positive semidefinite quadratics,
then min-sum updates map quadratic messages to quadratic messages. The algo-
rithm we propose here maintains a running estimate x̃(t) of the optimal solution,
and at each time approximates each factor by a second-order Taylor expansion.
In particular, let f̃ (t)

i (·) be the second-order Taylor expansion of fi(·) around x̃(t)
i

and let f̃ (t)
ij (·, ·) be the second-order Taylor expansion of fij(·, ·) around (x̃(t)

i , x̃
(j)
j).

Quadratic messages are updated according to

(4.18) J
(t+1)
i→j (xj) , min

xi
κ

(t+1)
i→j + f̃

(t)
i (xi) + f̃

(t)
ij (xi, xj) +

∑
u∈N(i)\j

J
(t)
u→i(xi),

4.4. IMPLEMENTATION 81

where running estimates of the optimal solution are generated according to

(4.19) x̃
(t+1)
i = argmin

xi
f̃

(t+1)
i (xi) +

∑
u∈N(i)

J
(t+1)
u→i (xi).

Note that the message update equation (4.18) takes the form of a Ricatti equation
for a scalar system, which can be carried out efficiently. Further, each optimization
problem (4.19) is a scalar unconstrained convex quadratic program.

A second approach makes use of a piecewise-linear approximation to each mes-
sage. Let us assume knowledge that the optimal solution x∗ is in a closed bounded
set [−B,B]n. Let S = {x̂1, . . . , x̂m} ⊂ [−B,B], with −B = x̂1 < · · · < x̂m = B,
be a set of points where the linear pieces begin and end. Our approach applies the
min-sum update equation to compute values at these points. Then, an approx-
imation to the min-sum message is constructed via linear interpolation between
consecutive points or extrapolation beyond the end points. In particular, the al-
gorithm takes the form

(4.20) J
(t+1)
i→j (xj) = min

xi∈[−B,B]
κ

(t)
i→j + fi(xi) + fij(xi, xj) +

∑
u∈N(i)\j

Ĵ
(t)
u→i(xi),

for xj ∈ S, where

(4.21) Ĵ
(t)
u→i(xi) = max

1≤k≤m−1

(x̂k+1 − xi)J (t)
u→i(x̂k+1) + (xi − x̂k)J (t)

u→i(x̂k)
x̂k+1 − x̂k

,

for all xi ∈ R. As opposed to the case of quadratic approximations, where each
message is parameterized by two numerical values, the number of parameters for
each piecewise linear message grows with m. Hence, we anticipate that for fine-
grain approximations, our second approach is likely to require greater computa-
tional resources. On the other hand, piecewise linear approximations may extend
more effectively to nonconvex problems, since nonconvex messages are unlikely to
be well-approximated by convex quadratic functions.

82 CHAPTER 4. UNCONSTRAINED CONVEX OPTIMIZATION

4.5 Open Issues

There are many open questions in the theory of message-passing algorithms. They
fuel a growing research community that cuts across communications, artificial intel-
ligence, statistical physics, theoretical computer science, and operations research.
This chapter has focused on application of the min-sum message-passing algorithm
to convex programs, and even in this context a number of interesting issues remain
unresolved.

Our proof technique establishes convergence under total asynchronism assum-
ing a scaled diagonal dominance condition. With such a flexible model of asyn-
chronous computation, convergence results for local search algorithms such as gra-
dient descent and coordinate descent also require similar diagonal dominance as-
sumptions. On the other hand, for the partially asynchronous setting [14], where
communication delays and times between successive updates are bounded, such
assumptions are no longer required to guarantee convergence of local search al-
gorithms. It would be interesting to see whether convergence of the min-sum
algorithm under partial asynchronism can be established in the absence of scaled
diagonal dominance. This is especially important since many practical convex op-
timization problems, such as the convex resource allocation problems described in
Chapter 3, do not satisfy the scaled diagonal dominance condition.

Another direction will be to assess practical value of the min-sum algorithm
for convex optimization problems. This calls for theoretical or empirical analysis
of convergence and convergence times for implementable variants such as those
proposed in the previous section. The convergence time results for the special case
reported in Chapter 5 may provide a starting point. Our expectation is that for
most relevant centralized optimization problems, the min-sum algorithm will be
more efficient than gradient descent or coordinate descent but fall short of Newton’s
method. On the other hand, Newton’s method does not decentralize gracefully,
so in applications that call for decentralized solution, the min-sum algorithm may
prove to be useful.

4.5. OPEN ISSUES 83

Finally, it would be interesting to explore whether ideas from this chapter can
be helpful in analyzing behavior of the min-sum algorithm for nonconvex programs.
It is encouraging that convex optimization theory has more broadly proved to be
useful in designing and analyzing approximation methods for nonconvex programs.

5

CONSENSUS PROPAGATION

Consider a network described by a connected, undirected graph (V,E). Each of
n , |V | vertices observes a real number. Denote the number observed by a vertex
i ∈ V by yi ∈ R. Each vertex i contains a processor and has the ability to
communicate only with neighboring vertices in the graph. The goal of the system
is to compute the average

ȳ ,
1
n

∑
i∈V

yi.

One might imagine many schemes for computing the average ȳ. For example,
all the vertices might communicate their observations to a single, central processor,
and this processor can compute the average. Such a method requires significant
coordination and overhead, however. A mechanism would be required for election
of the central processor, and each of the rest of the processors would need the
ability to transmit data along some path to this processor, for example, along a
spanning tree or some other coordination structure. We are interested in a different
class of methods, where the computation of ȳ must be carried out in a distributed
and asynchronous fashion. In such cases, it is required that any individual vertex
in the network perform only simple, localized computations, and require knowledge
of and communication with only its neighbors in the network. We refer to this as
the distributed consensus problem.

The design of scalable distributed protocols for distributed consensus has re-
ceived much recent attention and is motivated by a variety of potential needs.

84

85

In both wireless sensor and peer-to-peer networks, for example, there is inter-
est in simple protocols for computing aggregate statistics (see, e.g., [37, 50, 51,
94, 8, 39, 64]), and averaging enables computation of several important ones.
Further, averaging serves as a primitive in the design of more sophisticated dis-
tributed information processing algorithms. For example, a maximum likelihood
estimate can be produced by an averaging protocol if each vertex’s observations
are linear in variables of interest and noise is Gaussian [93]. Averaging protocols
are central to policy-gradient-based methods for distributed optimization of net-
work performance [57]. Other applications include load balancing [26, 68, 28],
clock synchronization [48, 92], and coordinated control of autonomous agents
[38, 49, 69, 66, 72, 82].

In this chapter we propose and analyze a new protocol — consensus propaga-
tion — for distributed averaging. Consensus propagation is a messaging-passing
algorithm. In particular, it is an application of the min-sum algorithm to the solu-
tion of a particular, unconstrained quadratic optimization problem. As such, the
protocol can operate asynchronously and requires only simple iterative computa-
tions at individual vertices and communication of parsimonious messages between
neighbors. There is no central hub that aggregates information. Each vertex only
needs to be aware of its neighbors — no further information about the network
topology is required. There is no need for construction of a specially-structured
overlay network such as a spanning tree. It is worth discussing two previously
proposed and well-studied protocols that also exhibit these features:

1. (probabilistic counting) This protocol is based on ideas for counting distinct
elements of a database or stream [30, 7] and was adapted to produce a proto-
col for averaging [24]. The outcome is random, with variance that becomes
arbitrarily small as the number of vertices grows. However, for moderate
numbers of vertices, say tens of thousands, high variance makes the protocol
impractical. The protocol can be repeated in parallel and results combined

86 CHAPTER 5. CONSENSUS PROPAGATION

in order to reduce variance, but this leads to onerous memory and com-
munication requirements. Convergence time of the protocol is analyzed in
[67].

2. (linear consensus) In linear consensus protocols, each vertex maintains a
current estimate of the average, and each estimate is iteratively updated
according to a linear combination the estimates of in a local neighborhood
of the vertex. One example of such a protocol is the pairwise averaging
protocol, where, at each time, a single pair of vertices communicate, they
revise their estimates to both take on the mean of their previous estimates.
Convergence of such linear consensus protocols in a very general model of
asynchronous computation and communication was established in [87], and
there has been significant follow-on work, a recent sample of which is [15].
Recent work on pairwise averaging [41, 20] has studied the convergence rate
and its dependence on network topology and how pairs of vertices are sam-
pled. Here, sampling is governed by a certain doubly stochastic matrix, and
the convergence rate is characterized by its second-largest eigenvalue.

In terms of convergence rate, probabilistic counting dominates both linear con-
sensus and consensus propagation in the asymptotic regime. However, consensus
propagation and linear consensus are likely to be more effective in moderately-
sized networks (up to hundreds of thousands or perhaps even millions of vertices).
Further, these two protocols are both naturally studied as iterative matrix algo-
rithms. As such, linear consensus will serve as a baseline to which we will compare
consensus propagation.

With this background, let us discuss the primary contributions of this chapter:

1. We propose consensus propagation, a new distributed and asynchronous pro-
tocol for averaging.

2. We prove that consensus propagation converges.

5.1. PROBLEM FORMULATION 87

3. We characterize the convergence time in regular graphs of the synchronous
version of consensus propagation in terms of the mixing time of a certain
Markov chain over edges of the graph.

4. We explain why the convergence time of consensus propagation scales more
gracefully with the number of vertices than does that of linear consensus, and
for certain classes of graphs, we quantify the improvement.

5.1 Problem Formulation

Consider a connected, undirected graph (V,E) with n , |V | vertices. For each
vertex i ∈ V , denote the set of vertices neighboring i by N(i) , {j ∈ V : (i, j) ∈
E}. Denote the set of edges with direction distinguished by ~E , {(i, j) ∈ V × V :
i ∈ N(j)}.

Each vertex i ∈ V is assigned a real number yi ∈ R. The goal of consensus
propagation is for each vertex to obtain an estimate of the average ȳ , ∑i∈V yi/n,
through an asynchronous distributed protocol in which each vertex carries out
simple computations and communicates parsimonious messages to its neighbors.

Consensus propagation is parameterized by a scalar β > 0 and a symmetric,
nonnegative matrix Q ∈ RV×V

+ with Qij > 0 if and only if i 6= j and (i, j) ∈ E. It
is a special case of the min-sum algorithm, applied to the unconstrained quadratic
optimization problem

(5.1)
minimize

x
F (x) , ∑

i∈V (xi − yi)2 +∑
(i,j)∈E βQij (xi − xj)2

subject to x ∈ RV .

The objective function is a positive definite quadratic function, hence there exists
a unique global minimizer xβ ∈ RV . Further, this problem is a pairwise separable
convex program, as defined in Chapter 4.

The first term in the objective function forces each component xβi to be close to
the corresponding value yi. The second term forces each component xβi to be close

88 CHAPTER 5. CONSENSUS PROPAGATION

to the values of components adjacent in the graph — it is minimized when all the
components of x are equal. For large values of β, the second term will dominate,
and one might expect the optimal solution xβ to approach the optimal solution for
the optimization problem

(5.2)
minimize

x

∑
i∈V (xi − yi)2

subject to xi = xj, ∀ (i, j) ∈ E.

It is easy to see that (5.2) is minimized when xi = ȳ, for all i ∈ V . The following
theorem makes this argument precise.

Theorem 5.1 For any value of β > 0,

1
n

∑
i

xβi = ȳ.

Further, for all i ∈ V ,
lim
β→∞

xβi = ȳ.

Proof. Define the positive semidefinite matrix Γ ∈ RV×V so that

x>Γx =
∑

(i,j)∈E
Qij (xi − xj)2 .

Then, the optimization program (5.1) can be written as

minimize
x∈RV

‖x− y‖2 + βx>Γx.

The first order conditions for optimality imply that (I + βΓ)xβ = y. Define
1 = (1, . . . , 1)> ∈ Rn. Since the graph is connected, it follows from the definition
of Γ that Γ1 = 0. Hence, 1>xβ/n = 1>y/n = ȳ.

Let U be an orthogonal matrix and D a diagonal matrix that form a spectral
decomposition of Γ, that is Γ = U>DU . Then, we have xβ = U>(I +βD)−1Uy. It
is clear that Γ has eigenvalue 0 with multiplicity 1 and corresponding (normalized)

5.2. MESSAGE-PASSING 89

eigenvector 1/
√
n, and that all other eigenvalues d2, . . . , dn of Γ are positive. Then,

if D = diag(0, d2, . . . , dn),

lim
β→∞

xβ = lim
β→∞

U> diag(1, 1/(1 + βd2), . . . , 1/(1 + βdn))Uy

= (1/
√
n)(1/

√
n)>y

= ȳ1.

�

5.2 Message-Passing

Theorem 5.1 suggests that if β is sufficiently large, then each component xβi of the
optimal solution to (5.1) can be used as an estimate of ȳ. Hence, one can apply
the min-sum algorithm to attempt to solve the optimization problem (5.1), and
use the resulting solution as an estimate of ȳ.

In particular, we can decompose the objective function F (·) as

F (x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E
fij(xi, xj),

where

fi(xi) , (xi − yi)2 , ∀ i ∈ V,

fij(xi, xj) , βQij (xi − xj)2 , ∀ (i, j) ∈ E.

The min-sum algorithm, as described in Sections 2.3 and 2.3.3, computes messages
between vertices in an asynchronous and iterative fashion. For the moment, con-
sider the synchronous case. The message from a vertex i ∈ V to a neighboring
vertex j ∈ N(i) would be calculated according to (2.12). In this case, this becomes

J
(t+1)
i→j (xj) = min

xi
κ

(t)
i→j + (xi − yi)2 + βQij(xi − xj)2

+
∑

u∈N(i)\j
J

(t)
u→i(xi).

(5.3)

90 CHAPTER 5. CONSENSUS PROPAGATION

Assume that each message is parameterized as a quadratic function, so that

(5.4) J
(t)
i→j(xj) = K

(t)
i→j

(
xi − µ(t)

i→j

)2
,

given scalars K(t)
i→j ∈ R+ and µ

(t)
i→j ∈ R, for each i ∈ V , j ∈ N(i), and t ≥ 0.

Then, the update equation (5.3) also yields a quadratic function, and can directly
be expressed in terms of the parameters as

K
(t+1)
i→j =

1 +∑
u∈N(i)\jK

(t)
u→i

1 + 1
βQij

(
1 +∑

u∈N(i)\jK
(t)
u→i

) ,(5.5)

µ
(t+1)
i→j =

yi +
∑
u∈N(i)\jK

(t)
u→iµ

(t)
u→i

1 +∑
u∈N(i)\jK

(t)
u→i

.(5.6)

Similarly, the min-sum algorithm computes an estimate of the optimal solution
at vertex i according to (2.13)–(2.14). In this case, this becomes

x
(t)
i = argmin

xi
(xi − yi)2 +

∑
u∈N(i)

J
(t)
u→i(xi).

Applying the quadratic parametrization (5.4), it is easy to see that this is equivalent
to

(5.7) x
(t)
i =

yi +
∑
u∈N(i) K

(t)
u→iµ

(t)
u→i

1 +∑
u∈N(i) K

(t)
u→i

.

5.2.1 Intuitive Interpretation

The message-passing equations (5.5)–(5.7) have a natural interpretation. Consider
the special case of a singly-connected graph (a connected graph where there are no
cycles present). As illustrated in Figure 5.1, for any vertex i ∈ V with a neighbor
j ∈ N(i), there is a set Si→j ⊂ V of vertices, with i ∈ Si→j, that can transmit
information to Sj→i , V \ Si→j, with j ∈ Sj→i, only through the link from vertex
i to vertex j. This follows from the fact that the graph has no cycles. In order for
vertices in Sj→i to compute y, they must at least be provided with the average

µ∗i→j ,
1
|Si→j|

∑
u∈Si→j

yu,

5.2. MESSAGE-PASSING 91

among observations at vertices in Si→j and the cardinality K∗i→j , |Si→j|. Simi-
larly, in order for vertices in Si→j to compute y, they must at least be provided
with the average

µ∗j→i ,
1
|Sj→i|

∑
u∈Sj→i

yu,

among observations at vertices in Sj→i and the cardinality K∗j→i = |Sj→i|. These
values must be communicated through the link between vertex j and vertex i.

Figure 5.1 Interpretation of messages in a singly-connected graph with β =∞.

Define messages µ(t)
i→j ∈ R and K(t)

i→j ∈ R+ that are transmitted from vertex i
to vertex j at time t. These messages are iterative estimates of the quantities µ∗i→j
and K∗i→j. They evolve according to

µ
(t+1)
i→j ,

yi +
∑
u∈N(i)\jK

(t)
u→iµ

(t)
u→i

1 +∑
u∈N(i)\jK

(t)
u→i

, ∀ (i, j) ∈ ~E,(5.8a)

K
(t+1)
i→j , 1 +

∑
u∈N(i)\j

K
(t)
u→i, ∀ (i, j) ∈ ~E.(5.8b)

At each time t, each vertex i computes an estimate of the global average ȳ according
to

x
(t)
i ,

yi +
∑
u∈N(i) K

(t)
u→iµ

(t)
u→i

1 +∑
u∈N(i) K

(t)
u→i

.

92 CHAPTER 5. CONSENSUS PROPAGATION

Assume that the algorithm is initialized with K(0) , 0. A simple inductive
argument shows that at each time t ≥ 1, µ(t)

i→j is the average among observations
at the vertices in the set Si→j that are at a distance less than or equal to t from
vertex i. Furthermore, K(t)

i→j is the cardinality of this collection of vertices. Since
any vertex in Si→j is at a distance from vertex i that it at most the diameter of
the graph, if t is greater that the diameter of the graph, we have K(t) = K∗ and
µ(t) = µ∗. Thus, for any i ∈ V , and t sufficiently large,

x
(t)
i =

yi +
∑
u∈N(i) K

∗
u→iµ

∗
u→i

1 +∑
u∈N(i) K

∗
u→i

= y.

So, x(t)
i converges to the global average y. Further, this simple algorithm converges

in as short a time as is possible, since the diameter of the graph is the minimum
amount of time for the two most distance vertices to communicate.

Now, suppose that the graph has cycles. For any edge (i, j) ∈ E that is part
of a cycle, K(t)

i→j → ∞. Hence, the algorithm does not converge. A heuristic fix
might be to compose the iteration (5.8b) with one that attenuates:

K̃
(t)
i→j , 1 +

∑
u∈N(i)\j

K
(t−1)
u→i ,

K
(t)
i→j ,

K̃
(t)
i→j

1 + K̃
(t)
i→j/(βQij)

.

Here, Qij > 0 and β > 0 are positive constants. We can view the unattenuated
algorithm as setting β = ∞. In the attenuated algorithm, the message is essen-
tially unaffected when K̃(t)

i→j/(βQij) is small but becomes increasingly attenuated
as K̃(t)

i→j grows. This is exactly the kind of attenuation carried out by the min-sum
algorithm. Understanding why this kind of attenuation leads to desirable results
is a subject of our analysis.

5.3. GENERAL ALGORITHM 93

5.3 General Algorithm

Consensus propagation is the distributed and asynchronous application of the
message-passing updates (5.5)–(5.7). In particular, every vertex i ∈ V occasion-
ally computes outgoing messages for each neighboring vertex j ∈ N(i). These
messages evolve over time, and each consist of two numerical parameters. Denote
by K(t)

i→j ∈ R+ and µ
(t)
i→j ∈ R the values of the parameters for the message from

vertex i to vertex j most recently computed at or before time t. Vertices will
occasionally communicate with their neighbors and transmit the most recently
computed message.

However, at each time t, each vertex i will have stored in its memory the most
recent message parameters received from each neighbor:

(5.9)
{
µ

(τu→i(t))
u→i , K

(τu→i(t))
u→i : u ∈ N(i)

}
.

Here, 0 ≤ τi→j(t) ≤ t is the time that the most recent message parameters, received
at or before time t by vertex j from vertex i, was computed.

Each vertex i will compute new messages for a given neighboring vertex j ∈
N(i) at a set of times T i→j. Thus, if t ∈ T i→j, the messages evolve according to

K
(t+1)
i→j ,

1 +∑
u∈N(i)\jK

(τu→i(t))
u→i

1 + 1
βQij

(
1 +∑

u∈N(i)\jK
(τu→i(t))
u→i

) ,(5.10)

µ
(t+1)
i→j ,

yi +
∑
u∈N(i)\jK

(τu→i(t))
u→i µ

(τu→i(t))
u→i

1 +∑
u∈N(i)\jK

(τu→i(t))
u→i

.(5.11)

At times t /∈ T i, the outgoing messages from vertex i do not change. Thus,

K
(t+1)
i→j , K

(t)
i→j,(5.12)

µ
(t+1)
i→j , µ

(t)
i→j.(5.13)

At a set of times T i, the vertex i will compute a new estimate x(t)
i of the average

ȳ. This estimate is computed as a function of the set of most recent messages (5.9)

94 CHAPTER 5. CONSENSUS PROPAGATION

received from all neighboring vertices. The estimate evolves according to

(5.14) x
(t)
i ,

yi +
∑
u∈N(i) K

(τu→i(t))
u→i µ

(τu→i(t))
u→i

1 +∑
u∈N(i) K

(τu→i(t))
u→i

,

if t ∈ T i, and

(5.15) x
(t+1)
i , x

(t)
i ,

otherwise.
Denote by µ(t) and K(t) the vector of all message parameters at time t,

K(t) ,
(
K

(t)
i→j : (i, j) ∈ ~E

)
,

µ(t) ,
(
µ

(t)
i→j : (i, j) ∈ ~E

)
,

and by x(t) the vector of all estimates of the average at time t,

x(t) ,
(
x

(t)
i : i ∈ V

)
.

5.4 Convergence

Given that consensus propagation is a special case of the min-sum algorithm ap-
plied to an unconstrained convex optimization problem, one might expect to use
the results of Chapter 4 to establish convergence. Indeed, a quick examination
of the objective function F (·) of the optimization program (5.1) reveals that it is
(λ,1)-scaled diagonally dominant, where

λ , max
i∈V

∑
j∈N(i) βQij

1 +∑
j∈N(i) βQij

< 1.

Hence, Theorem 4.1 can be applied to yield convergence of the min-sum algorithm.
Moreover, as discussed in Section 4.3, this convergence is asynchronous. Then, the
following theorem is established:

5.4. CONVERGENCE 95

Theorem 5.2 Assume that the message updates satisfy the total asynchronism con-
dition of Assumption 2.1, and that the messages are initialized in accordance with
Assumption 4.1. Then,

lim
t→∞

x(t) = xβ.

Theorem 5.2 guarantees convergence of the estimates generated by the con-
sensus propagation algorithm to the optimal solution of (5.1). It is possible to,
however, make a stronger statement. The following theorem guarantees that the
messages themselves also converge to a unique fixed point of the iterations (5.5)–
(5.6), and allows for arbitrary initial conditions for the convergence of the messages
and the estimates.

Theorem 5.3 The following hold:

(i) There exist unique vectors Kβ ∈ R ~E
+ and µβ ∈ R ~E that satisfy

Kβ
i→j =

1 +∑
u∈N(i)\jK

β
u→i

1 + 1
βQij

(
1 +∑

u∈N(i)\jK
β
u→i

) ,
µβi→j =

yi +
∑
u∈N(i)\jK

β
u→iµ

β
u→i

1 +∑
u∈N(i)\jK

β
u→i

,

for all i ∈ V and j ∈ N(i).

(ii) Suppose that the message updates satisfy the total asynchronism condition
of Assumption 2.1. Then, independent of the initial condition (µ(0), K(0)) ∈
R ~E × R ~E

+,
lim
t→∞

K(t) = Kβ, and lim
t→∞

µ(t) = µβ.

(iii) For every i ∈ V ,

xβi =
yi +

∑
u∈N(i) K

β
u→iµ

β
u→i

1 +∑
u∈N(i) K

β
u→i

.

Hence, under the assumptions of Part (ii),

lim
t→∞

x(t) = xβ.

96 CHAPTER 5. CONSENSUS PROPAGATION

The proof of this theorem is deferred until Section 5.7.1, but it rests upon
two ideas. First, notice that, according to the update equations (5.5)–(5.6), K(t)

evolves independently of µ(t). Hence, we analyze K(t) first. Following the work
in [79], we prove that the updates (5.5) are monotonic. This property is used to
establish convergence to a unique fixed point. Next, we analyze µ(t) assuming that
K(t) has already converged. Given fixed K(t), the update equations (5.6) for µ(t)

are linear, and we establish that they induce a contraction with respect to the
maximum norm. This allows us to establish existence of a fixed point and both
synchronous and asynchronous convergence.

5.5 Convergence Time for Regular Graphs

In this section, we will study the convergence time of synchronous consensus prop-
agation, defined by (5.5)–(5.7).

For ε > 0, we will say that an estimate x̃ of ȳ is ε-accurate if

(5.16) ‖x̃− ȳ1‖2,n ≤ ε.

Here, for integer m, we set ‖ · ‖2,m to be the norm on Rm defined by ‖x‖2,m ,

‖x‖2/
√
m. We are interested in the number of iterations required to obtain an

ε-accurate estimate of the mean ȳ.
Note that we are primarily interested in how the performance of consensus

propagation behaves over a series of problem instances as we scale the size of
the graph. Since our measure of error (5.16) is absolute, we require that the set
of values {yi} lie in some bounded set. Without loss of generality, we will take
yi ∈ [0, 1], for all i ∈ V .

5.5.1 The Case of Regular Graphs

We will restrict our analysis of convergence time to cases where (V,E) is a d-regular
graph, for d ≥ 2. Extension of our analysis to broader classes of graphs remains

5.5. CONVERGENCE TIME FOR REGULAR GRAPHS 97

an open issue. We will also make the simplifying assumptions that

Qij , 1, ∀ (i, j) ∈ E,(5.17)

µ
(0)
i→j , yi, ∀ i ∈ V, j ∈ N(i),(5.18)

K
(0)
i→j , k0, ∀ i ∈ V, j ∈ N(i),(5.19)

for some scalar k0 ≥ 0.
In this restricted setting, the subspace of constant K vectors is invariant under

the update (5.5). This implies that there is some scalar kβ > 0 so that Kβ
i→j = kβ,

for all i ∈ V and j ∈ N(i). The value kβ is the unique solution to the fixed point
equation

(5.20) kβ = 1 + (d− 1)kβ
1 + (1 + (d− 1)kβ)/β .

Given a uniform initial condition (5.19), we can study the sequence of iterates
{K(t)} by examining the scalar sequence {kt}, defined by

(5.21) kt ,
1 + (d− 1)kt−1

1 + (1 + (d− 1)kt−1)/β
.

In particular, we have K(t)
i→j = kt, for all i ∈ V , j ∈ N(i), and t ≥ 0.

Similarly, in this setting, the equations for the evolution of µ(t) take the special
form

µ
(t)
i→j = yi

1 + (d− 1)kt−1

+
(

1− 1
1 + (d− 1)kt−1

) ∑
u∈N(i)\j

µ
(t−1)
u→i
d− 1 .

Defining γt = 1/(1 + (d− 1)kt), we have, in vector form,

(5.22) µ(t) = γt−1ŷ + (1− γt−1)P̂ µ(t−1),

where ŷ ∈ Rnd is a vector with ŷi→j = yi and P̂ ∈ Rnd×nd
+ is a doubly stochastic

matrix. The matrix P̂ corresponds to a Markov chain on the set of directed edges

98 CHAPTER 5. CONSENSUS PROPAGATION

~E. In this chain, a directed edge (i, j) transitions to a directed edge (u, i) with
u ∈ N(i) \ j, with equal probability assigned to each such edge. As in (5.14), we
associate each µ(t) with an estimate x(t) of xβ according to

x(t) = 1
1 + dkt

y + dkt
1 + dkt

Aµ(t),

where A ∈ Rn×nd
+ is a matrix defined by (Aµ)j ,

∑
i∈N(j) µi→j/d.

5.5.2 The Cesàro Mixing Time

The update equation (5.22) suggests that the convergence of µ(t) is intimately tied
to a notion of mixing time associated with P̂ . Let P̂ ? be the Cesàro limit

P̂ ? , lim
t→∞

t−1∑
τ=0

P̂ τ/t.

Define the Cesàro mixing time τ ? by

τ ? , sup
t≥0

∥∥∥∥∥
t∑

τ=0
(P̂ τ − P̂ ?)

∥∥∥∥∥
2,nd

.

Here, ‖·‖2,nd is the matrix norm induced by the corresponding vector norm ‖·‖2,nd.
Since P̂ is a stochastic matrix, P̂ ? is well-defined and τ ? < ∞. Note that, in
the case where P̂ is aperiodic, irreducible, and symmetric, τ ? corresponds to the
traditional definition of mixing time: the inverse of the spectral gap of P̂ .

5.5.3 Bounds on the Convergence Time

Let γβ = limt→∞ γt = 1/(1 + (d − 1)kβ). With an initial condition k0 = kβ, the
update equation for µ(t) becomes

µ(t) = γβ ŷ + (1− γβ)P̂ µ(t−1).

Since γβ ∈ (0, 1), this iteration is a contraction mapping, with contraction factor
1 − γβ. It is easy to show that γβ is monotonically decreasing in β, and as such,

5.5. CONVERGENCE TIME FOR REGULAR GRAPHS 99

large values of β are likely to result in slower convergence. On the other hand, The-
orem 5.1 suggests that large values of β are required to obtain accurate estimates
of ȳ. To balance these conflicting issues, β must be appropriately chosen.

A time t∗ is said to be an ε-convergence time if each estimate x(t) is ε-accurate
for all t ≥ t∗. The following theorem, whose proof is provided in Section 5.7.2, es-
tablishes a bound on the ε-convergence time of synchronous consensus propagation
given an appropriately chosen β, as a function of ε and τ ?.

Theorem 5.4 Suppose k0 ≤ kβ. If d = 2 there exists a β = Θ((τ ?/ε)2) and if
d > 2 there exists a β = Θ(τ ?/ε) such that some t∗ = O((τ ?/ε) log(τ ?/ε)) is an
ε-convergence time.

In the above theorem, k0 is initialized arbitrarily so long as k0 ≤ kβ. Typically,
one might set k0 = 0 to guarantee this. Another case of particular interest is when
k0 = kβ, so that kt = kβ for all t ≥ 0. In this case, the following theorem, whose
proof is provided in Section 5.7.2, offers a better convergence time bound than
Theorem 5.4.

Theorem 5.5 Suppose k0 = kβ. If d = 2 there exists a β = Θ((τ ?/ε)2) and if
d > 2 there exists a β = Θ(τ ?/ε) such that some t∗ = O((τ ?/ε) log(1/ε)) is an
ε-convergence time.

Theorems 5.4 and 5.5 suggest that initializing with k0 = kβ leads to an im-
provement in convergence time. However, in our computational experience, we
have found that an initial condition of k0 = 0 consistently results in faster con-
vergence than k0 = kβ. Hence, we suspect that a convergence time bound of
O((τ ?/ε) log(1/ε)) also holds for the case of k0 = 0. Proving this remains an open
issue.

5.5.4 Adaptive Mixing Time Search

The choice of β is critical in that it determines both the convergence time and the
ultimate accuracy of the consensus propagation algorithm. This raises the question
of how to choose β for a particular graph. The choices posited in Theorems 5.4

100 CHAPTER 5. CONSENSUS PROPAGATION

Algorithm 5.1 Synchronous consensus propagation on a d-regular graph with an
adaptive mixing time search.

1: k0 ← 0, µ(0) ← ŷ, t← 0
2: for ` = 0 to ∞ do
3: τ̃ ← 2`
4: Set β and t∗ as indicated by Theorem 5.4, assuming τ ? = τ̃
5: for s = 1 to t∗ do
6: Update messages according to

kt ←
1 + (d− 1)kt−1

1 + (1 + (d− 1)kt−1)/β
,

µ(t) ← 1
1 + (d− 1)kt−1

ŷ + (d− 1)kt−1

1 + (d− 1)kt−1
P̂ µ(t−1).

7: t← t+ 1
8: end for
9: end for

and 5.5 require knowledge of τ ?, which may be both difficult to compute and
also requires knowledge of the graph topology. This is at odds with our goal of
developing a distributed protocol.

In order to address this concern, consider Algorithm 5.1, which is designed for
the case of d > 2. It uses a doubling sequence of guesses τ̃ for the Cesáro mixing
time τ ?. Each guess leads to a choice of β and a number of iterations t∗. Note
that the algorithm takes ε > 0 as input.

Consider applying this procedure to a d-regular graph with fixed d > 2 but
topology otherwise unspecified. Analysis that follows from Theorem 5.4 reveals
that this procedure has an ε-convergence time of O((τ ?/ε) log(τ ?/ε)). An entirely
analogous algorithm can be designed for the case of d = 2.

We expect that many variations of this procedure can be made effective. Asyn-
chronous versions would involve each vertex adapting a local estimate of the mixing
time.

5.6. COMPARISON WITH LINEAR CONSENSUS 101

5.6 Comparison with Linear Consensus

In order to make the comparison with consensus propagation directly, we define a
synchronous linear consensus algorithm as follows. Each vertex i ∈ V maintains
an estimate x(t)

i ∈ R of the global average ȳ that evolves over discrete time steps
t ≥ 0. These estimates are initialized so that x(0)

i = yi, for each vertex i. Given
a doubly stochastic symmetric matrix P ∈ Rn×n, such that Pij = 0 if i 6= j and
(i, j) /∈ E, estimates evolve according to

(5.23) x(t+1) , Px(t).

Here, at each time t, a vertex i is computing a new estimate x(t+1)
i which is an

average of the estimates at vertex i and its neighbors during the previous time-step.
If the matrix P is aperiodic and irreducible, then

lim
t→∞

x(t) = lim
t→∞

P ty = ȳ1.

Linear consensus can be viewed as a local search method for optimization. In
particular, consider the optimization problem

(5.24)
minimize

x
G(x) , 1

2x
>(I − P)x

subject to 1>x/n = ȳ,

x ∈ RV .

By our assumptions on P (doubly stochastic, aperiodic, irreducible), this quadratic
optimization program is uniquely minimized when x = ȳ1. Assume that, at time
t, we are given a vector x(t) ∈ RV that is feasible, i.e., 1>x(t)/n = ȳ. If we apply a
gradient descent update,

x(t+1) , x(t) −∇G(x(t))

= x(t) − (I − P)x(t) = Px(t).

This is identical to the linear consensus update (5.23). The vector x(t+1) is also
feasible for (5.24), since

1>x(t+1)/n = 1>Px(t)/n = 1>x(t)/n = ȳ.

102 CHAPTER 5. CONSENSUS PROPAGATION

Hence, we can interpret linear consensus as gradient descent in the feasible region
of the optimization program (5.24).

5.6.1 Rate of Convergence

In the case of a singly-connected graph, synchronous consensus propagation con-
verges exactly in a number of iterations equal to the diameter of the graph. More-
over, when β = ∞, this convergence is to the exact mean, as discussed in Sec-
tion 5.2.1. This is the best one can hope for under any algorithm, since the
diameter is the minimum amount of time required for a message to travel between
the two most distant vertices. On the other hand, for a fixed accuracy ε, the
worst-case number of iterations required by linear consensus on a singly-connected
graph scales at least quadratically in the diameter [19].

The rate of convergence of linear consensus is governed by the relation ‖x(t) −
ȳ1‖2,n ≤ λt2, where λ2 is the second largest eigenvalue1 of P . Let τ2 , 1/ log(1/λ2),
and call it the mixing time of P . In order to guarantee ε-accuracy (independent of
y), t > τ2 log(1/ε) suffices and t = Ω(τ2 log(1/ε)) is required.

Consider d-regular graphs and fix a desired error tolerance ε. The number of
iterations required by consensus propagation is Θ(τ ? log τ ?), whereas that required
by linear consensus is Θ(τ2). Both mixing times depend on the size and topology
of the graph. τ2 is the mixing time of a process on vertices that transitions along
edges whereas τ ? is the mixing time of a process on directed edges that transitions
towards vertices. An important distinction is that the former process is allowed to
“backtrack” where as the latter is not. By this we mean that a sequence of states
(i, j, i) can be observed in the vertex process, but the sequence ((i, j), (j, i)) cannot
be observed in the edge process. As we will now illustrate through an example, it
is this difference that makes τ2 larger than τ ? and, therefore, linear consensus less
efficient than consensus propagation.

1Here, we take the standard approach of ignoring the smallest, possibly negative eigenvalue
of P . We will assume that this eigenvalue is smaller than λ2 in magnitude. Note that a constant
probability can be added to each self-loop of any particular matrix P so that this is true.

5.7. PROOFS 103

In the case of a cycle (d = 2) with an even number of vertices n, minimizing the
mixing time over P results in τ2 = Θ(n2) [18, 20]. For comparison, as demonstrated
in the following theorem (whose proof is provided in Section 5.7.3), τ ? is linear in
n.

Theorem 5.6 For the cycle with n vertices, τ ? ≤ n/
√

2.

Intuitively, the improvement in mixing time arises from the fact that the edge
process moves around the cycle in a single direction and therefore travels distance
t in order t iterations. The vertex process, on the other hand, is “diffusive” in na-
ture. It randomly transitions back and forth among adjacent vertices, and requires
order t2 iterations to travel distance t. Nondiffusive methods have previously been
suggested in the design of efficient algorithms for Markov chain sampling (see [27]
and references therein).

The cycle example demonstrates a Θ(n/ log n) advantage offered by consensus
propagation. Comparisons of mixing times associated with other graph topologies
remains an issue for future analysis. Let us close by speculating on a uniform grid
of n vertices over the m-dimensional unit torus. Here, n1/m is an integer, and each
vertex has 2m neighbors, each a distance n−1/m away. With P optimized, it can
be shown that τ2 = Θ(n2/m) [77]. We put forth a conjecture on τ ?.

Conjecture 5.1 For the m-dimensional torus with n vertices,

τ ? = Θ(n(2m−1)/m2).

5.7 Proofs

In the section, we provide proofs for the main results of the chapter.

104 CHAPTER 5. CONSENSUS PROPAGATION

5.7.1 Proof of Theorem 5.3

For the proof of Theorem 5.3, it is helpful to define, for each i ∈ j and j ∈ N(i),
functions corresponding to the updates in (5.5)–(5.6),

Fi→j(K) ,
1 +∑

u∈N(i)\jKu→i

1 + 1
βQij

(
1 +∑

u∈N(i)\jKu→i
) ,

Gi→j(µ,K) ,
yi +

∑
u∈N(i)\jKu→iµ

(t)
u→i

1 +∑
u∈N(i)\jKu→i

.

We define the operators F : R ~E
+→R ~E

+ and G : R ~E ×R ~E
+→R ~E to correspond to the

one-step synchronous updates of the K and µ parameter vectors, respectively,

F(K)i→j , Fi→j(K), ∀ (i, j) ∈ ~E,

G(µ,K)i→j , Gi→j(µ,K), ∀ (i, j) ∈ ~E.

In order to establish Theorem 5.3, we will first study convergence of the pa-
rameters K(t), and subsequently the parameters µ(t).

Convergence of K(t)

Our analysis of the convergence of the inverse variance parameters follows the work
of Van Roy and Rusmevichientong [79]. We begin with a fundamental lemma.

Lemma 5.1 For each (i, j) ∈ ~E, the following facts hold:

(i) The function Fij(·) is continuous.

(ii) The function Fij(·) is monotonic. That is, if K ≤ K ′, where the inequality
is interpreted component-wise, then Fij(K) ≤ Fij(K ′).

(iii) If K ′ij = Fij(K), then 0 < K ′ij < βQij.

(iv) If α > 1, then αFij(K) > Fij(αK).

5.7. PROOFS 105

Proof. Define the function f : R+ → R+ by

f(x) =
1

γ +
1

1 + x

,

where γ > 0. (i) follows from the fact that f is continuous. (ii) follows from the
fact that f(x) is strictly increasing. (iii) follows from the fact that f(x) ∈ (0, 1/γ)
for all x ≥ 0. (iv) follows from the fact that αf(x) ≥ f(αx). �

Lemma 5.2 Let H(0) ∈ R ~E
+ be such that Fij(H(0)) ≥ H(0) for all (i, j) ∈ ~E. Define

H(t), for t ≥ 1, by

(5.25) H(t) , F(H(t−1).

Then H(t) converges to a vector Kβ such that Kβ = F(Kβ).
Similarly, assume that H(0) satisfies Fij(H(0)) ≤ H(0). Then H(t) converges to

a vector Kβ such that Kβ = F(Kβ).

Proof. Convergence follows from the fact that the iterates are component-wise
bounded and monotonic. The limit point must be a fixed point by continuity. �

Given the above lemma, we can establish existence of a unique fixed point.

Lemma 5.3 The F operator has a unique fixed point Kβ.

Proof. Denote Kβ to be the fixed point obtained by iterating (5.25) with initial
conditionH(0) = 0, and letK ′ be some other fixed point. It is clear thatK(0) < K ′,
thus, by monotonicity, we must have Kβ ≤ K ′. Define

γ = inf
{
α ∈ [1,∞) : K ′ ≤ αKβ

}
.

It is clear that γ is well-defined since 0 < {Kβ
ij, K

′
ij} < βQij. Also, we must have

γ > 1, since Kβ 6= K ′. Then,

K ′ij = Fij(K ′) ≤ Fij(γKβ) < γFij(Kβ) = γKβ
ij.

This contradicts the definition of γ. Hence, there is a unique fixed point. �

106 CHAPTER 5. CONSENSUS PROPAGATION

Now, we can establish asynchronous convergence.

Lemma 5.4 Assume that the message updates satisfy the total asynchronism con-
dition of Assumption 2.1. Then, given an arbitrary initial condition K(0) ∈ R ~E

+,
the parameters K(t) converge asynchronously, that is

lim
t→∞

K(t) = Kβ.

Proof. First, define the vectors K(t), for t ≥ 1, by

K
(1)
i→j , 0, ∀ (i, j) ∈ ~E,

K(t) , F(K(t−1)), ∀ t ≥ 2.

Note that K(1) ≤ F(K(1)), thus, the sequence {K(t)} is component-wise monoton-
ically increasing and converges to Kβ.

Similarly, define the vectors K(t), for t ≥ 1, by

K
(1)
i→j , βQij, ∀ (i, j) ∈ ~E,

K
(t)
, F(K(t−1)), ∀ t ≥ 2.

Note that K(1) ≥ F(K(1)), thus, the sequence {K(t)} is component-wise monoton-
ically decreasing and converges to Kβ.

Define, the set K(0) = R ~E
+, and, for t ≥ 1, the set

K(t) =
{
K ∈ R ~E

+ : K(t) ≤ K ≤ K
(t)
}
,

Note that, for all t ≥ 0, K(t+1) ⊂ K(t). Furthermore,
∞⋂
t=0
K(t) =

{
Kβ

}
.

Finally, if, by monotonicity, K ∈ K(t), then F(K) ∈ K(t+1).
Since the asynchronous iteratesK(t) are generated by asynchronous component-

wise updates of the operator F(·), and since the total asynchronism assumption
holds, convergence of K(t) to Kβ follows from Proposition 6.2.1 in [14]. �

5.7. PROOFS 107

Properties of the Map G

In this section, we will consider certain properties of the map G.

Lemma 5.5 There exists α ∈ (0, 1) and ε1 > 0 so that

(i) For all µ, µ′ ∈ R ~E,

‖G(µ,Kβ)− G(µ′, Kβ)‖∞ ≤ α‖µ− µ′‖∞.

(ii) If
‖K −Kβ‖∞ < ε1,

then, for all µ, µ′ ∈ R ~E,

‖G(µ,K)− G(µ′, K)‖∞ ≤ α‖µ− µ′‖∞.

Proof. Define
ᾱ(K) = max

(i,j)∈ ~E
u∈N(i)\j

Kui

1 +∑
u′∈N(i)\jKu′i

.

Observing that ᾱ(Kβ) < 1, Part (i) follows. By the continuity of ᾱ(·) in the
neighborhood of Kβ, Part (ii) follows. �

Lemma 5.5 states that G(·, Kβ) is a maximum norm contraction. This leads to
the following lemma.

Lemma 5.6 The following hold:

(i) There is unique fixed point µβ such that

µβ = G(µβ, Kβ).

(ii) If ‖K −Kβ‖ < ε1, then the operator G(·, K) has a unique fixed point ν(K).
That is,

ν(K) = G(ν(K), K).

108 CHAPTER 5. CONSENSUS PROPAGATION

(iii) For any δ > 0, there exists ε2 ≤ ε1 so that if ‖K −Kβ‖∞ < ε2, then

‖ν(K)− µβ‖∞ < δ.

Proof. For Part (i), since G(·, Kβ) is a maximum norm contraction, existence of a
unique fixed point µβ follows from, for example, Proposition 3.1.1 in [14]. Part (ii)
is established similarly.

For Part (iii), note for vectors K sufficiently close to Kβ, the linear system of
equations

ν = G(ν,K)

over ν ∈ R ~E is nonsingular, by Part (ii). Since the coefficients of this system of
equations continuously converge as K→Kβ to those of

ν = G(ν,Kβ),

we must have ν→µβ. �

Convergence of µ(t)

In order to establish the asynchronous convergence of µ(t), we need some additional
notation.

For each time t ≥ 0, define E(t) to be the earliest time that messages computed
prior to time t have been flushed from the system, that is

E(t) , min {s ≥ 0 : ∀ (i, j) ∈ ~E, r ∈ T i→j with r ≥ s, τi→j(r) ≥ t}.

E(t) exists by our total asynchronism assumption.
For all (i, j) ∈ ~E and t ∈ T i→j, define the vector K(t),i→j ∈ R ~E

+ by

K(t),i→j
u→v ,


K

(τu→i(t))
u→i if u = i and v ∈ N(i) \ j,

Kβ
u→v otherwise.

5.7. PROOFS 109

and the vector µ(t),i→j ∈ R ~E by

µ(t),i→j
u→v ,


µ

(τu→i(t))
u→i if u = i and v ∈ N(i) \ j,

µβu→v otherwise.

Note that the consensus propagation iteration (5.10)–(5.11) is equivalent to

K
(t+1)
i→j = Fi→j(K(t),i→j),

µ
(t+1)
i→j = Gi→j(µ(t),i→j, K(t),i→j),

for t ∈ T i→j. Hence, the vectors K(t),i→j and µ(t),i→j capture the relevant infor-
mation known by vertex i when it computes an update for vertex j at time a
t ∈ T i→j.

The following lemma is a variant of the “box condition” argument of Proposi-
tion 6.2.1 in [14].

Lemma 5.7 For any δ > 0,

lim sup
t→∞

‖µ(t) − µβ‖∞ ≤
1 + α

1− αδ.

Proof. Fix δ > 0. By Lemma 5.6, pick ε2 so that if ‖K − Kβ‖∞ < ε2, then
‖ν(K) − µβ‖∞ < δ. By Lemma 5.4, define the time T2 so that for all t ≥ T2,
‖K(t) −Kβ‖∞ < ε2.

Define the quantity

∆ , max
T2≤t≤E(T2)

‖µ(t) − µβ‖∞.

For k ≥ 0, and (i, j) ∈ ~E, define Ak,i→j ⊂ R to be the set of real numbers
µi→j ∈ R such that

|µi→j − µβ| < αk∆ + 1 + α

1− αδ.

Define Ak ⊂ R ~E to be the set of vectors µ ∈ R ~E such that

µi→j ∈ Ak,i→j, ∀ (i, j) ∈ ~E.

We would like to show that, for every k ≥ 0, there exists a time tk ≥ 0 such
that:

110 CHAPTER 5. CONSENSUS PROPAGATION

(a) For all t ≥ tk,

(5.26) µ(t) ∈ Ak.

(b) For all (i, j) ∈ ~E and t ∈ T i→j with t ≥ tk,

(5.27) µ(t),i→j ∈ Ak.

We proceed by induction on k:
(Base Step.) Set t0 = E(T2). Clearly (5.26) and (5.27) hold at time t = t0, by our
assumptions. Assume that, for some s ≥ t0, they continue to hold for all times
t0 ≤ t ≤ s. Then, if s ∈ T i→j,

|µ(s+1)
i→j − µ

β
i→j| ≤ |µ

(s+1)
i→j − ν(K(s),i→j)i→j|+ |ν(K(s),i→j)i→j − µβi→j|

≤ |Gij(µ(s),i→j, K(s),i→j)− Gij(ν(K(s),i→j), K(s),i→j)|

+ ‖ν(K(s),i→j)− µβ‖∞
< α‖µ(s),i→j − ν(K(s),i→j)‖∞ + δ

< α‖µ(s),i→j − µβ‖∞ + (1 + α)δ

< α
(
∆ + 1 + α

1− αδ
)

+ (1 + α)δ

= α∆ + 1 + α

1− αδ.

Thus, µ(s+1)
i→j ∈ A1,i→j. In s /∈ T i→j, the quantity µ(s+1)

i→j is unchanged, the µ(s+1)
i→j ∈

A0,i→j. In any event, (5.26)–(5.27) continue to hold at time s+ 1.
(Induction Step.) Assume that tk exists, for some k ≥ 0. For (i, j) ∈ ~E, define

5.7. PROOFS 111

ti→j to be the first element of T i→j with ti→j ≥ tk. Then, if s ∈ T i→j,

|µ(s+1)
i→j − µ

β
i→j| ≤ |µ

(s+1)
i→j − ν(K(s),i→j)i→j|+ |ν(K(s),i→j)i→j − µβi→j|

≤ |Gij(µ(s),i→j, K(s),i→j)− Gij(ν(K(s),i→j), K(s),i→j)|

+ ‖ν(K(s),i→j)− µβ‖∞
< α‖µ(s),i→j − ν(K(s),i→j)‖∞ + δ

< α‖µ(s),i→j − µβ‖∞ + (1 + α)δ

< α
(
αk∆ + 1 + α

1− αδ
)

+ (1 + α)δ

= αk+1∆ + 1 + α

1− αδ.

Since µ(s+1)
i→j is not updated for s /∈ T i→j, we have µ(s)

i→j ∈ Ak+1,i→j, for all s ≥
ti→j + 1. Thus, if we define tk+1 ≥ E(ti→j + 1), for all (i, j) ∈ ~E, (a) and (b) will
hold for k + 1.

We have established that

lim sup
t→∞

‖µ(t) − µβ‖∞ ≤ αk∆ + 1 + α

1− αδ,

for all k ≥ 0. Taking a limit as k→∞, we get the desired result. �

Overall Convergence

We are now ready to prove Theorem 5.3.

Theorem 5.3 The following hold:

(i) There exist unique vectors Kβ ∈ R ~E
+ and µβ ∈ R ~E that satisfy

Kβ
i→j =

1 +∑
u∈N(i)\jK

β
u→i

1 + 1
βQij

(
1 +∑

u∈N(i)\jK
β
u→i

) ,
µβi→j =

yi +
∑
u∈N(i)\jK

β
u→iµ

β
u→i

1 +∑
u∈N(i)\jK

β
u→i

,

for all i ∈ V and j ∈ N(i).

112 CHAPTER 5. CONSENSUS PROPAGATION

(ii) Suppose that the message updates satisfy the total asynchronism condition
of Assumption 2.1. Then, independent of the initial condition (µ(0), K(0)) ∈
R ~E × R ~E

+,
lim
t→∞

K(t) = Kβ, and lim
t→∞

µ(t) = µβ.

(iii) For every i ∈ V ,

xβi =
yi +

∑
u∈N(i) K

β
u→iµ

β
u→i

1 +∑
u∈N(i) K

β
u→i

.

Hence, under the assumptions of Part (ii),

lim
t→∞

x(t) = xβ.

Proof. Existence and uniqueness of the fixed point Kβ and convergence of the
vector K(t) to Kβ follow from Lemmas 5.3 and 5.4, respectively. Existence and
uniqueness of the fixed point µβ follows from Lemma 5.6.

Part (ii) follows from Lemma 5.7.
Part (iii) follows from the fact that , when the min-sum algorithm converges

for pairwise quadratic optimization problems, it computes the global minimum.
[90, 79, 88, 60]. �

5.7.2 Proof of Theorems 5.4 and 5.5

In this section, we will prove Theorems 5.4 and 5.5. We will start with some
preliminary lemmas.

Preliminary Lemmas

The following lemma provides bounds on kβ and γβ in terms of β.

Lemma 5.8 If d = 2,
2
√
β − 1/2 < kβ < 2

√
β,

1
2
√
β + 1 < γβ <

1
2
√
β + 1/2 .

5.7. PROOFS 113

If d > 2, (
1− 1

d− 1

)
β − 1

d− 1 < kβ < β,

1
1 + (d− 1)β < γβ <

1
(d− 2)β .

Proof. Starting with the fixed point equation (5.20), some algebra leads to

d− 1
β

(kβ)2 + (2 + 1
β
− d)kβ − 1 = 0.

The quadratic formula gives us

kβ = β

2 −
β + 1

2(d− 1) +

√√√√(β
2 −

β + 1
2(d− 1)

)2

+ 4 β

d− 1 ,

from which it is easy to derived the desired bounds. �

The following lemma offers useful expressions for the fixed point µβ and the
optimal solution xβ.

Lemma 5.9

µβ =
∞∑
τ=0

γβ(1− γβ)τ P̂ τ ŷ,(5.28a)

xβ = y

1 + dkβ
+ dkβ

1 + dkβ

∞∑
τ=0

γβ(1− γβ)τAP̂ τ ŷ.(5.28b)

Proof. If we consider the algorithm when k0 = kβ, then kt = kβ and γt = γβ for
all t ≥ 0. Then, using (5.22) and induction, we have

µ(t) =
t∑

τ=0
γβ(1− γβ)τ P̂ τ ŷ,

x(t) = y

1 + dkβ
+ dkβ

1 + dkβ

t∑
τ=0

γβ(1− γβ)τAP̂ τ ŷ.

The result follows from the fact that, as t→∞, µ(t)→µβ and x(t)→xβ (Theo-
rem 5.3). �

114 CHAPTER 5. CONSENSUS PROPAGATION

The following lemma provides an estimate of the distance between fixed points
µβ and µβ′ in terms of the quantity |γβ − γβ′ |.

Lemma 5.10 Given 0 ≤ β′ < β, we have

‖µβ − µβ′‖2,nd ≤ τ ?(γβ′ − γβ)(1 + 4/γβ).

Proof. Using (5.28),

‖µβ − µβ′‖2,nd

=

∥∥∥∥∥∥
∞∑
τ=0

γβ(1− γβ)τ P̂ τ ŷ −
∞∑
τ=0

γβ
′(1− γβ′)τ P̂ τ ŷ

∥∥∥∥∥∥
2,nd

≤

∥∥∥∥∥∥
∞∑
τ=0

(
γβ(1− γβ)τ − γβ′(1− γβ′)τ

)
P̂ τ

∥∥∥∥∥∥
2,nd

.

Since
∞∑
τ=0

(
γβ(1− γβ)τ − γβ′(1− γβ′)τ

)
= 0,

we have

‖µβ − µβ′‖2,nd

≤

∥∥∥∥∥∥
∞∑
τ=0

(
γβ(1− γβ)τ − γβ′(1− γβ′)τ

)
(P̂ τ − P̂ ?)

∥∥∥∥∥∥
2,nd

=

∥∥∥∥∥∥
∞∑
τ=0

∞∑
s=τ

(
(γβ)2(1− γβ)s

− (γβ′)2(1− γβ′)s
)
(P̂ τ − P̂ ?)

∥∥∥∥∥∥
2,nd

=

∥∥∥∥∥∥
∞∑
s=0

(
(γβ)2(1− γβ)s

− (γβ′)2(1− γβ′)s
) s∑
τ=0

(P̂ τ − P̂ ?)

∥∥∥∥∥∥
2,nd

≤ τ ?
∞∑
s=0
|(γβ)2(1− γβ)s − (γβ′)2(1− γβ′)s|.

5.7. PROOFS 115

Hence, we wish to bound the sum

∆ ,
∞∑
s=0
|(γβ)2(1− γβ)s − (γβ′)2(1− γβ′)s|.

Set
T ,

⌊
2 log γβ′ − log γβ
log(1− γβ)− log(1− γβ′)

⌋
.

Note that

(γβ)2(1− γβ)s ≤ (γβ′)2(1− γβ′)s, if s ≤ T ,

(γβ)2(1− γβ)s ≥ (γβ′)2(1− γβ′)s, if s > T .

Holding γβ fixed, it is easy to verify that T is nondecreasing as γβ′ ↘ γβ. Hence,

T ≤ 2 log γβ′ − log γβ
log(1− γβ)− log(1− γβ′)

≤ lim
γβ′↘γβ

2 log γβ′ − log γβ
log(1− γβ)− log(1− γβ′)

= 2(1− γβ)/γβ.

(5.29)

Using the above results,

∆ =
T∑
s=0

(
(γβ′)2(1− γβ′)s − (γβ)2(1− γβ)s

)
+

∞∑
s=T+1

(
(γβ)2(1− γβ)s − (γβ′)2(1− γβ′)s

)
= γβ

′ − γβ − 2γβ′(1− γβ′)T+1 + 2γβ(1− γβ)T+1

≤ γβ
′ − γβ + 2γβ′

(
(1− γβ)T+1 − (1− γβ′)T+1

)
.

Now, note that if 0 < a ≤ b ≤ 1, for integer ` > 0,

b` − a` = b`(1− (a/b)`) = b`(1− a/b)
`−1∑
i=0

(a/b)i

≤ `b`−1(b− a) ≤ `(b− a).

116 CHAPTER 5. CONSENSUS PROPAGATION

Applying this inequality and using (5.29), we have

∆ ≤ (γβ′ − γβ)
(
1 + 2(T + 1)γβ′

)
≤ (γβ′ − γβ)

(
1 + 2γβ′(2/γβ − 1)

)
≤ (γβ′ − γβ)(1 + 4γβ′/γβ)

≤ (γβ′ − γβ)(1 + 4/γβ),

which completes the proof. �

The following lemma characterizes the rate at which γt ↘ γβ.

Lemma 5.11 Assume that γβ ≤ γ0 ≤ 1. Then, {γt} is a nonincreasing sequence
and

|γt − γβ| ≤
(d− 1)t

(1/β + γβ + d− 1)2t .

Proof. Define the function
f(γ) , 1

1 + d−1
1/β+γ

.

Note that, from the definition of γt and (5.21), γt = f(γt−1). Further, from the
definition of γβ and (5.20), it is clear that γβ = f(γβ). Since k0 ≤ kβ, then γ0 ≥ γβ,
and since kt ↗ kβ (from Lemma 5.1(ii)), γt ↘ γβ. Also, if γ ∈ [γβ, 1],

f ′(γ) = d− 1
(1/β + γ + d− 1)2 ≤

d− 1
(1/β + γβ + d− 1)2 .

Then, by the Mean Value Theorem,

|γt − γβ| = |f(γt−1)− f(γβ)|

≤ max
γ∈[γβ ,1]

|f ′(γ)||γt−1 − γβ|

≤ d− 1
(1/β + γβ + d− 1)2 |γt−1 − γβ|

≤ (d− 1)t

(1/β + γβ + d− 1)2t |γ0 − γβ|.

�

5.7. PROOFS 117

The following lemma establishes a bound on the distance between x(t) and ȳ1
in terms of the distance between µ(t) and µβ.

Lemma 5.12
‖x(t) − ȳ1‖2,n ≤ γt + γβτ ? + ‖µ(t) − µβ‖2,nd.

Proof. First, note that, using (5.28),

‖µβ − P̂ ?ŷ‖2,nd =
∥∥∥∥∥
∞∑
τ=0

γβ(1− γβ)τ P̂ τ − P̂ ?

∥∥∥∥∥
2,nd

=
∥∥∥∥∥
∞∑
τ=0

γβ(1− γβ)τ (P̂ τ − P̂ ?)
∥∥∥∥∥

2,nd

=
∥∥∥∥∥
∞∑
τ=0

(γβ)2
∞∑
s=τ

(1− γβ)s(P̂ τ − P̂ ?)
∥∥∥∥∥

2,nd

≤ (γβ)2
∞∑
s=0

(1− γβ)s
∥∥∥∥∥

s∑
τ=0

(P̂ τ − P̂ ?)
∥∥∥∥∥

2,nd

≤ γβτ ?.

(5.30)

Next, using Theorem 5.1, Lemma 5.8, and (5.30), we have

ȳ1 = lim
β→∞

xβ

= lim
β→∞

y

1 + dkβ
+ dkβ

1 + dkβ
Aµβ

= lim
β→∞

Aµβ

= AP̂ ?ŷ.

Now,

‖x(t) − ȳ1‖2,n ≤
1

1 + dkt
‖y − ȳ1‖2,n

+ dkt
1 + dkt

‖Aµ(t) − ȳ1‖2,n

≤ γt + ‖Aµ(t) − ȳ1‖2,n

≤ γt + ‖Aµ(t) − AP̂ ?ŷ‖2,n

118 CHAPTER 5. CONSENSUS PROPAGATION

By examining the structure of A, it follows from the Cauchy-Schwartz Inequality
that

‖A(µ(t) − P̂ ?ŷ)‖2,n ≤ ‖µ(t) − P̂ ?ŷ‖2,nd.

Thus, using (5.30)

‖x(t) − ȳ1‖2,n ≤ γt + ‖µ(t) − P̂ ?ŷ‖2,nd

≤ γt + ‖µβ − P̂ ?ŷ‖2,nd + ‖µ(t) − µβ‖2,nd

≤ γt + γβτ ? + ‖µ(t) − µβ‖2,nd.

�

Proof of Theorem 5.4

Theorem 5.4 follows immediately from the following lemma.

Lemma 5.13 Fix ε > 0, and pick β so that

β ≥ max
{
(2(1 + τ ?)/ε− 1/2)2/4, 9/16

}
, if d = 2,

β ≥ max {2(1 + τ ?)/(ε(d− 2)), 3/(d− 2)} , if d > 2.

Assume that k0 ≤ kβ. Define

t∗ ,
(
1 + 2

√
β
)

log
2 + 9τ ?

(
5 + 8

√
β
) (

1/2 +
√
β
)

ε/2

 ,
if d = 2, and

t∗ , (1 + (d− 1)β) log
(

2 + 4τ ? (5 + 4(d− 1)β)
ε/2

)
,

if d > 2. Then, t∗ is an ε-convergence time.

Proof. Let βt be the value of β implied by kt, that is, the unique value such that
kt = kβt . Define

∆t , ‖µ(t) − µβt‖2,nd.

5.7. PROOFS 119

Note that the matrix P̂ is doubly stochastic and hence nonexpansive under the
‖ · ‖2,nd norm. Then, from (5.22) and the fact that µβt is a fixed point,

∆t = ‖γtŷ + (1− γt)P̂ µ(t−1) − γtŷ − (1− γt)P̂ µβt‖2,nd

= ‖(1− γt)P̂ (µ(t−1) − µβt)‖2,nd

≤ (1− γt)‖µ(t−1) − µβt‖2,nd

≤ (1− γβ)‖µ(t−1) − µβt‖2,nd

≤ (1− γβ)
(
∆t−1 + ‖µβt−1 − µβt‖2,nd

)
.

Now, using Lemmas 5.10 and 5.11,

∆t ≤ (1− γβ) (∆t−1 + τ ∗(γt−1 − γt)(1 + 4/γt))

≤ (1− γβ)
(
∆t−1 + τ ∗

(
γt−1 − γβ

) (
1 + 4/γβ

))
≤ (1− γβ)

(
∆t−1 + τ ∗αt−1

(
1 + 4/γβ

))
.

(5.31)

Here, we define

α ,


1/(γβ + 1)2, if d = 2,

1/(d− 1), if d > 2.

We would like to ensure that α < 1 − γβ. For d = 2, some algebra reveals
that this is is true when 0 < γβ < (

√
5 − 1)/2. By the fact that β ≥ 9/16 and

Lemma 5.8, we have

0 < γβ <
1

2
√
β + 1 ≤ 2/5 <

√
5− 1
2 .

For d > 2, using the fact that β ≥ 3/(d− 2) and Lemma 5.8,

0 < α

1− γβ <
(d− 2)β

(d− 1)((d− 2)β − 1)

<
3

2(d− 1) ≤ 3/4 < 1.
(5.32)

By induction using (5.31), we have

∆t ≤ (1− γβ)t + τ ∗
(
1 + 4/γβ

) t−1∑
s=0

(1− γβ)t−sαs

≤ (1− γβ)t
(

1 + τ ∗
1 + 4/γβ

1− α/(1− γβ)

)
.

120 CHAPTER 5. CONSENSUS PROPAGATION

Now, notice that using the above results and Lemmas 5.10, 5.11, and 5.12,

‖x(t) − ȳ1‖2,n

≤ γt + γβτ ? + ‖µ(t) − µβ‖2,nd

≤ γt + γβτ ? + ∆t + ‖µβt − µβ‖2,nd

≤ γβ(1 + τ ?) + (γt − γβ) + ∆t

+ τ ?(γt − γβ)(1 + 4/γβ)

≤ γβ(1 + τ ?) + αt

+ (1− γβ)t
(

1 + τ ∗
1 + 4/γβ

1− α/(1− γβ)

)

+ τ ?αt(1 + 4/γβ)

≤ (1− γβ)t
(

2 + τ ∗
(
1 + 4/γβ

)(
1 + 1

1− α/(1− γβ)

))

+ γβ(1 + τ ?).

When d = 2, using Lemma 5.8 and the fact that β ≥ (2(1 + τ ?)/ε − 1/2)2/4,
we have

(1 + τ ?)γβ < 1 + τ ?

2
√
β + 1/2 ≤ ε/2.

Similarly, when d > 2, since β ≥ 2(1 + τ ?)/(ε(d− 2)),

(1 + τ ?)γβ < 1 + τ ?

(d− 2)β ≤ ε/2.

Thus, we will have ‖x(t) − ȳ1‖2,n ≤ ε if

(5.33) (1− γβ)t
(

2 + τ ∗
(
1 + 4/γβ

)(
1 + 1

1− α/(1− γβ)

))

≤ ε/2.

This will be true when

(5.34) t ≥ 1
γβ

log
2 + τ ∗

(
1 + 4/γβ

) (
1 + 1

1−α/(1−γβ)

)
ε/2

 .

5.7. PROOFS 121

(We have used the fact that log(1 − γβ) ≤ −γβ.) To complete the theorem, it
suffices to show that t∗ is an upper bound to the right hand side of (5.34).

Consider the d = 2 case. From Lemma 5.8, it follows that

1/γβ < 1 + 2
√
β,

1 + 4/γβ < 5 + 8
√
β.

Finally,

1
1− α/(1− γβ) = 1

1− 1
(1+γβ)2(1−γβ)

= 1
γβ

(1 + γβ)2(1− γβ)
1− γβ − (γβ)2

= h(γβ)
γβ

.

Since β ≥ 9/16, from Lemma 5.8, γβ ∈ (0, 1/2). It is easy to verify that for such
γβ, the rational function h(γβ) satisfies h(γβ) < h(1/2) = 9/2. Thus,

1
1− α/(1− γβ) <

9
2γβ < 9/2 + 9

√
β.

For the d > 2 case, from Lemma 5.8, it follows that

1/γβ < 1 + (d− 1)β,

1 + 4/γβ ≤ 5 + 4(d− 1)β.

Finally, using (5.32)
1

1− α/(1− γβ) <
1

1− 3/4 = 4.

�

122 CHAPTER 5. CONSENSUS PROPAGATION

Proof of Theorem 5.5

Theorem 5.5 follows immediately from the following lemma.

Lemma 5.14 Fix ε > 0, and pick β so that

β ≥ (2(1 + τ ?)/ε− 1/2)2/4, if d = 2,

β ≥ 2(1 + τ ?)/(ε(d− 2)), if d > 2.

Assume that k0 = kβ, and define

t∗ ,


(
1 + 2

√
β
)

log(2/ε), if d = 2,

(1 + (d− 1)β) log(2/ε), if d > 2.

Then, t∗ is an ε-convergence time.

Proof. Note that in this case, we have kt = kβ and γt = γβ, for all t ≥ 0. We will
follow the same strategy as the proof of Lemma 5.13. Define

∆t , ‖µ(t) − µβ‖2,nd.

Note that the matrix P̂ is doubly stochastic and hence nonexpansive under the
‖ · ‖2,nd norm. Then, from (5.22) and the fact that µβt is a fixed point,

∆t = ‖γβ ŷ + (1− γβ)P̂ µ(t−1) − γβ ŷ − (1− γβ)P̂ µβ‖2,nd

= ‖(1− γβ)P̂ (µ(t−1) − µβ)‖2,nd

≤ (1− γβ)‖µ(t−1) − µβ‖2,nd

= (1− γβ)∆t−1

≤ (1− γβ)t,

where the last step follows by induction.
Now, notice that, using the result and Lemma 5.12,

‖x(t) − ȳ1‖2,n ≤ γβ(1 + τ ?) + ∆t

≤ γβ(1 + τ ?) + (1− γβ)t.

5.7. PROOFS 123

When d = 2, using Lemma 5.8 and the fact that β ≥ (2(1 + τ ?)/ε − 1/2)2/4,
we have

(1 + τ ?)γβ < 1 + τ ?

2
√
β + 1/2 ≤ ε/2.

Similarly, when d > 2, since β ≥ 2(1 + τ ?)/(ε(d− 2)),

(1 + τ ?)γβ < 1 + τ ?

(d− 2)β ≤ ε/2.

Thus, we will have ‖x(t) − ȳ1‖2,n ≤ ε if

(1− γβ)t ≤ ε/2.

This will be true when

(5.35) t ≥ 1
γβ

log(2/ε).

(We have used the fact that log(1 − γβ) ≤ −γβ.) To complete the theorem, it
suffices to show that t∗ is an upper bound to the right hand side of (5.35).

Consider the d = 2 case. From Lemma 5.8, it follows that

1/γβ < 1 + 2
√
β.

For the d > 2 case, from Lemma 5.8, it follows that

1/γβ < 1 + (d− 1)β.

�

5.7.3 Proof of Theorem 5.6

Theorem 5.6 For the cycle with n vertices, τ ? ≤ n/
√

2.

Proof. Let eij ∈ R2n be the vector with the (i, j)th component equal to 1 and
every other component equal to 0. It is easy to see that for any (i, j) ∈ ~E,

sup
t

∥∥∥∥∥
t∑

τ=0
(P̂ τ − P̂ ?)eij

∥∥∥∥∥
2

2,2n
=

∥∥∥∥∥∥
bn/2c∑
τ=0

(P̂ τ − P̂ ?)eij
∥∥∥∥∥∥

2

2,2n

≤ 1
2
√

2
.

124 CHAPTER 5. CONSENSUS PROPAGATION

We then have

τ ? = sup
t,µ

∥∥∥∑t
τ=0(P̂ τ − P̂ ?)µ

∥∥∥
2,2n

‖µ‖2,2n

= sup
t,µ

∥∥∥∑t
τ=0(P̂ τ − P̂ ?)∑{i,j} µijeij∥∥∥2,2n∥∥∥∑{i,j} µijeij∥∥∥2,2n

≤ sup
t,µ

∑
{i,j} µij

∥∥∥∑t
τ=0(P̂ τ − P̂ ?)eij

∥∥∥
2,2n∥∥∥∑{i,j} µijeij∥∥∥2,2n

≤ sup
µ

∑
{i,j} µij

2
√

2‖∑{i,j} µijeij‖2,2n

= sup
µ

∑
{i,j} µij

2
√

2
√∑

{i,j} µ
2
ij/2n

≤ sup
µ

∑
{i,j} µij

2
√

2∑{i,j} |µij|/2n
≤ n√

2
.

�

6

CONCLUDING REMARKS

Graphical models encompass a class of optimization programs that are very rele-
vant to modern engineering and management applications. Message-passing algo-
rithms are an emerging set of methods to the seek to exploit graphical structure in
order to provide efficient, decentralized solutions to large-scale optimization prob-
lems. They have shown much promise in practice, but a general theory has been
thus far lacking.

In this thesis, we have sought to understand message-passing algorithms by
highlighting the connections to classical methods in optimization. In particular,
we have seen that messages, for resource allocation problems, can be interpreted
as generalizations of prices or Lagrange multipliers, and that these methods yield
equivalent solutions for convex problems. In the context of unconstrained convex
optimization, we have developed sufficient conditions for the asynchronous conver-
gence of message-passing algorithms that are equivalent to conditions known for
the convergence of traditional local search methods, such as gradient descent or
coordinate descent.

We have further argued that message-passing offers a number of advantages over
traditional methods. For nonconvex resource allocation problems, message-passing
algorithms can yield better solutions than price-based methods, by providing a
richer description of the externalities of decentralized decision-making. In the case
of the distributed consensus problem, we have shown that message-passing scales
to large problem sizes more efficiently than competing local search methods.

125

126 CHAPTER 6. CONCLUDING REMARKS

However, there are many open questions that remain to be addressed. We
highlight some of these below:

Stronger guarantees of solution quality. As we have seen in Theorems 3.4, 4.1,
4.2, and 5.3, message-passing fixed-points typically yield optimal solutions in the
case of convex problems. For nonconvex problems, however, only much weaker
guarantees of the form provided by Theorem 3.2 are available. However, as we
saw in the example of Section 3.6.1, message-passing often has more impressive
performance in practice than this theory suggests. It would be interesting to
reconcile theory and empirical observation of message-passing as an approximation
method for nonconvex problems. This could be done by, for example, identifying
instances where global approximation guarantees can be proved.

Guarantees of convergence for a broader class of problems. In Chapter 4,
we established convergence of message-passing for a scaled diagonally dominant
class of convex programs under a totally asynchronous model of computation. A
partially asynchronous or even synchronous model of computation may allow for
convergence across a much broader class of convex problems, however, as is the
case with local search methods.

More general analysis of rate of convergence. The analysis of the rate of
convergence of message-passing algorithms is limited to special cases such as in
Section 5.5. A more general understanding is needed, both to compare message-
passing to other decentralized algorithms, such as local search methods, and to
centralized algorithms, such as Newton’s method.

Approximate parametrization of messages. When the decision variables take
values over continuous domains, messages take the form of real-valued functions
and cannot, in general, be computed or stored on digital computers. Implementable
variants of message-passing, such as those proposed in Section 4.4, use finitely
parameterized functions to approximate messages. Developing a theory for such
approximate message-passing algorithms is crucial for any practical use. Here,
ideas from the theory of approximate dynamic programming may prove relevant.

BIBLIOGRAPHY

[1] S. M. Aji and R. J. McEliece. The generalized distributive law. IEEE Trans-
actions on Information Theory, 46:325–343, 2000.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey
on sensor networks. IEEE Communications Magazine, 40(9):102–114, August
2002.

[3] D. Aldous. The ζ(2) limit in the random assignment problem. Random Struc-
tures and Algorithms, 18:381–418, 2001.

[4] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12:308–340, 1991.

[5] K. J. Arrow and L. Hurwicz, editors. Studies in Resource Allocation. Cam-
bridge University Press, Cambridge, UK, 1977.

[6] E. Aurell, U. Gordon, and S. Kirkpatrick. Comparing beliefs, surveys, and
random walks. In Advances in Neural Information Processing Systems 18,
Cambridge, MA, 2005. MIT Press.

[7] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Count-
ing distinct elements in a data stream. In Proceedings of the Annual Workshop
on Randomization and Approximation Techniques (RANDOM), 2002.

[8] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating aggre-
gates on a peer-to-peer network. Technical report, Computer Science Depart-
ment, Stanford University, 2003.

127

128 BIBLIOGRAPHY

[9] M. Bayati, D. Shah, and M. Sharma. Maximum weight matching via max-
product belief propagation. In International Symposium of Information The-
ory, Adelaide, Australia, September 2005.

[10] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara. Soft-output decoding
algorithms in iterative decoding of turbo codes. JPL TDA Progress Report,
42(124):63–87, February 1996.

[11] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-
correcting coding and decoding. In Proc. Int. Communications Conf., pages
1064–1070, Geneva, Switzerlang, May 1993.

[12] U. Bertelè and F. Brioschi. Nonserial Dynamic Programming. Academic
Press, New York, 1972.

[13] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scien-
tific, Belmont, MA, 1995.

[14] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, Belmont, MA, 1997.

[15] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis. Con-
vergence in multiagent coordination, consensus, and flocking. In Proceedings
of the Joint 44th IEEE Conference on Decision and Control and European
Control Conference, Seville, Spain, September 2005.

[16] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chro-
matic index on partial k-trees. J. Algorithms, 11:631–643, 1990.

[17] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica,
11:1–21, 1993.

[18] S. Boyd, P. Diaconis, P. Parillo, and L. Xiao. Symmetry analysis of reversible
Markov chains. Internet Mathematics, 2(1):31–71, 2005.

[19] S. Boyd, P. Diaconis, J. Sun, and L. Xiao. Fastest mixing Markov chain on a
path. The American Mathematical Monthly, 113(1):70–74, January 2006.

[20] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algo-
rithms. IEEE Transactions on Information Theory, 52(6):2508–2530, June
2006.

129

[21] A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: An algo-
rithm for satisfiability. Random Struct. Algorithms, 27(2):201–226, 2005.

[22] A. Braunstein and R. Zecchina. Survey propagation as local equilib-
rium equations. Journal of Statistical Mechanics: Theory and Experiment,
2004(06):P06007, 2004.

[23] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as
optimization decomposition: A mathematical theory of network architectures.
Proceedings of the IEEE, 95(1):255–312, January 2007.

[24] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate aggregation tech-
niques for sensor databases. In International Conference on Data Engineering,
2004.

[25] J. Coughlan and S. Ferreira. Finding deformable shapes using loopy belief
propagation. In European Conference on Computer Vision, 2002.

[26] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors.
Journal of Parallel and Distributed Computing, 7:279–301, 1989.

[27] P. Diaconis, S. Holmes, and R.M. Neal. Analysis of a nonreversible Markov
chain sampler. Annals of Applied Probability, 10(3):726–752, 2000.

[28] R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest
neighbor load balancing. Parallel Computing, 25(789–812), 1999.

[29] M. Fazel and M. Chiang. Network utility maximization with nonconcave
utilities using sum-of-squares method. In Proceedings of the 44th Conference
on Decision and Control, 2005.

[30] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.

[31] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level
vision. Intl. J. Computer Vision, 40(1):25–47, 2000.

[32] W. T. Freeman and Y. Weiss. On the optimality of solutions of the max-
product belief propagation algorithm in arbitrary graphs. IEEE Transactions
on Information Theory, 47:736–744, 2001.

[33] A. Fréville. The multidimensional 0–1 knapsack problem: An overview. Eu-
ropean Journal of Operational Research, 155:1–21, 2004.

130 BIBLIOGRAPHY

[34] B. J. Frey. Graphical Models for Machine Learning and Digital Communica-
tion. M.I.T. Press, Cambridge, MA, 1998.

[35] R. G. Gallager. Low-Density Parity Check Codes. M.I.T. Press, Cambridge,
MA, 1963.

[36] P. Hande, S. Zhang, and M. Chiang. Distributed rate allocation for inelastic
flows. Submitted to IEEE/ACM Transactions of Networking, 2005.

[37] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scal-
able and robust communication paradigm for sensor networks. In Proceedings
of the ACM/IEEE International Conference on Mobile Computing and Net-
working, 2000.

[38] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Transactions on Au-
tomatic Control, 48(6):988–1001, 2003.

[39] M. Jelasity and A. Montresor. Epedemic-style proactive aggregation in large
overlay networks. In Proceedings of the 24th International Conference on
Distributed Computing, 2004.

[40] F. Kelly. Charging and rate control for elastic traffic. European Transactions
on Telecommunications, 8:33–37, 1997.

[41] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate
information. In ACM Symposium on Theory of Computing, 2004.

[42] A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving partial
constraint satisfaction problems with tree decomposition. Networks, 40:170–
180, 2002.

[43] S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. Journal of
the Royal Statistical Society Series B, 50:157–224, 1988.

[44] S. L. Lauritzen. Graphical Models. Number 17 in Oxford Statistical Science
Series. Clarendon Press, Oxford, UK, 1996.

[45] J. W. Lee, R. R. Mazumdar, and N. B. Shroff. Non-convex optimization and
rate control for multi-class services in the Internet. IEEE/ACM Trans. on
Networking, 13(4):841–853, 2005.

131

[46] M. Leone and A. Pagnani. Predicting protein functions with message passing
algorithms. Bioinformatics, 21:239–247, 2005.

[47] S. Letovsky and S. Kasif. Predicting protein function from protein/protein
interaction data: a probabilistic approach. Bioinformatics, 19 Suppl 1:i197–
204, 2003.

[48] Q. Li and D. Rus. Global clock syncronization in sensor networks. IEEE
Transaction on Computers, 55(2):214–226, 2006.

[49] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent rendezvous prob-
lem: an extended summary. In A. S. Morse, V. Kumar, and N. E. Leonard,
editors, Proceedings of the 2003 Block Island Workshop on Cooperative Con-
trol, volume 309 of Lecture Notes in Control and Information Sciences, pages
257âĂŞ–282, New York, 2004. Springer Verlag.

[50] S. R. Madden, M. J. Franklin, J. Hellerstein, and W. Hong. Tag: A tiny
aggregation service for ad hoc sensor networks. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation, 2002.

[51] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler. Supporting ag-
gregate queries over ad-hoc wireless sensor networks. In Proceedings of the
Workshop on Mobile Computing Systems and Applications, 2002.

[52] D. M. Malioutov, J. K. Johnson, and A. S. Willsky. Walk-sums and belief
propagation in Gaussian graphical models. Journal of Machine Learning Re-
search, 7:2031–2064, October 2006.

[53] E. N. Maneva, E. Mossel, and M. J. Wainwright. A new look at survey prop-
agation and its generalizations. In Proceedings of the Symposium on Discrete
Algorithms, 2005.

[54] A. McCallum. Efficiently inducing features of conditional random fields. In
Uncertainty in Artifificial Intelligence: Proceedings of the Nineteenth Confer-
ence, 2003.

[55] M. Mézard, G. Parisi, and M. A. Virasoro. Spin Glass Theory and Beyond.
World Scientific, Singapore, 1987.

[56] M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solutions to
random satisfiability problems. Science, 297(5582):812–815, 2002.

132 BIBLIOGRAPHY

[57] C. C. Moallemi and B. Van Roy. Distributed optimization in adaptive net-
works. In Advances in Neural Information Processing Systems 16, Cambridge,
MA, 2004. MIT Press.

[58] C. C. Moallemi and B. Van Roy. Consensus propagation. IEEE Transactions
on Information Theory, 52(11):4753–4766, 2006.

[59] C. C. Moallemi and B. Van Roy. Consensus propagation. In Advances in
Neural Information Processing Systems 18, Cambridge, MA, 2006. MIT Press.

[60] C. C. Moallemi and B. Van Roy. Convergence of the min-sum message
passing algorithm for quadratic optimization. Technical report, Manage-
ment Science & Engineering Department, Stanford University, 2006. URL:
http://moallemi.com/ciamac/papers/qms-2006.pdf.

[61] C. C. Moallemi and B. Van Roy. Convergence of the min-sum algorithm
for convex optimization. Technical report, Management Science & Engineer-
ing Department, Stanford University, 2007. URL: http://moallemi.com/
ciamac/papers/cc-2007.pdf.

[62] C. C. Moallemi and B. Van Roy. A message-passing paradigm for resource al-
location. Technical report, Management Science & Engineering Department,
Stanford University, 2007. URL: http://moallemi.com/ciamac/papers/
ra-2007.pdf.

[63] A. Montanari, B. Prabhakar, and D. Tse. Belief propagation based multi-
user detection. In Proceedings of the Allerton Conference on Communication,
Control, and Computing, 2005.

[64] A. Montresor, M. Jelasity, and O. Babaoglu. Robust aggregation protocols for
large-scale overlay networks. In Proceedings of the International Conference
on Dependable Systems and Networks, 2004.

[65] B. S. Mordukhovich. Nonlinear prices in nonconvex economies with classical
Pareto and strong Pareto optimal allocations. Positivity, 9:541–568, 2005.

[66] L. Moreau. Stability of multiagent systems with time-dependent communica-
tion links. IEEE Transactions on Automatic Control, 50(2):169–182, 2005.

[67] D. Mosk-Aoyama and D. Shah. Computing separable functions via gossip. In
Proceedings of the ACM Symposium on Principles of Distributed Computing,
2006.

http://moallemi.com/ciamac/papers/qms-2006.pdf
http://moallemi.com/ciamac/papers/cc-2007.pdf
http://moallemi.com/ciamac/papers/cc-2007.pdf
http://moallemi.com/ciamac/papers/ra-2007.pdf
http://moallemi.com/ciamac/papers/ra-2007.pdf

133

[68] S. Muthukrishnan, B. Ghosh, and M. Schultz. First and second order diffusive
methods for rapid, coarse, distributed load balancing. Theory of Computing
Systems, 31:331–354, 1998.

[69] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents
with switching topology and time-delays. IEEE Transactions on Automatic
Control, 49(9):1520–1533, 2004.

[70] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman,
San Mateo, CA, 1988.

[71] D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table extraction using
conditional random fields. In Proceedings of the ACM SIGIR, 2003.

[72] W. Ren and R. W. Beard. Consensus seeking in multiagent systems under
dynamically changing interaction topologies. IEEE Transaction on Automatic
Control, 50(5):655–661, 2005.

[73] T. Richardson and R. Urbanke. The capacity of low-density parity check codes
under message-passing decoding. IEEE Transactions on Information Theory,
47:599–618, 2001.

[74] T. Richardson and R. Urbanke. An introduction to the analysis of iterative
coding systems. In Codes, Systems, and Graphical Models, IMA Volume in
Mathematics and Its Applications, pages 1–37. Springer, 2001.

[75] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. J.
Comb. Theory Series B, 35:39–61, 1983.

[76] N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-
decomposition. J. Comb. Theory Series B, 52:153–190, 1991.

[77] S. Roch. Bounding fastest mixing. Electronic Communications in Probability,
10:282–296, 2005.

[78] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton,
NJ, 1970.

[79] P. Rusmevichientong and B. Van Roy. An analysis of belief propagation on
the turbo decoding graph with Gaussian densities. IEEE Transactions on
Information Theory, 47(2):745–765, 2001.

134 BIBLIOGRAPHY

[80] D. Shah. Max product for max-weight independent set and matching.
Preprint. URL: http://arxiv.org/abs/cs.DS/0508097, August 2005.

[81] S. Shenker. Fundamental design issues for the future Internet. IEEE Journal
on Selected Areas in Communications, 13(7):1176–1188, 1995.

[82] S. L. Smith, M. E. Broucke, , and B. A. Francis. A hierarchical cyclic pursuit
scheme for vehicle networks. Automatica, 41(6):1045–1053, 2005.

[83] J. Sun, Shum H. Y, and N. N. Zheng. Stereo matching using belief propaga-
tion. In European Conference on Computer Vision, 2002.

[84] C. Sutton, K. Rohanimanesh, and A. McCallum. Dynamic conditional random
fields: Factorized probabilistic models for labeling and segmenting sequence
data. In Proceedings of the International Conference for Machine Learning,
2004.

[85] M. Talagrand. Spin Glasses: A Challenge for Mathematicians. Springer,
2003.

[86] S. Tatikonda and M. I. Jordan. Loopy belief propagation and Gibbs mea-
sures. In Uncertainty in Artificial Intelligence: Proceedings of the Eighteenth
Conference, 2002.

[87] J. N. Tsitsiklis. Problems in Decentralized Decision-Making and Computation.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1984.

[88] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Tree-based reparameteri-
zation framework for analysis of sum-product and related algorithms. IEEE
Transactions on Information Theory, 49(5):1120–1146, 2003.

[89] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Tree consistency and
bounds on the performance of the max-product algorithm and its generaliza-
tions. Statistics and Computing, 14:143–166, 2004.

[90] Y. Weiss and W. T. Freeman. Correctness of belief propagation in Gaussian
graphical models of arbitrary topology. Neural Computation, 13:2173–2200,
2001.

[91] N. Wiberg. Codes and Decoding on General Graphs. PhD thesis, Linköping
University, Linköping, Sweden, 1996.

http://arxiv.org/abs/cs.DS/0508097

135

[92] L. Xiao, S. Boyd, and S.-J. Kim. Distributed average consensus with
least-mean-square deviation. Journal of Parallel and Distributed Computing,
67(1):33–46, 2007.

[93] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fu-
sion based on average consensus. In International Conference on Information
Processing in Sensor Networks, pages 63–70, Los Angeles, CA, April 2005.

[94] J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring
wireless sensor networks. In Proceedings of the International Workshop on
Sensor Net Protocols and Applicatinos, 2003.

	Abstract
	Acknowledgments
	Preliminaries
	Introduction
	Graphical Models
	Motivating Applications
	Network Rate Allocation
	Distributed Estimation
	Distributed Consensus

	Classical Decentralized Algorithms
	Message-Passing Algorithms
	Advantages of Message-Passing Algorithms
	Organization of This Thesis

	Message-Passing Algorithms
	Pairwise Graphical Models
	Dynamic Programming
	The Min-Sum Algorithm
	Relationship to Dynamic Programming
	Normalization
	Distributed and Asynchronous Implementation
	Nonuniqueness of Estimates

	Higher-Order Graphical Models
	The Min-Sum Algorithm

	Nonserial Dynamic Programming

	Resource Allocation
	Decentralized Decision Making
	Benefits of Decentralized Methods
	Priced-Based Methods
	Contributions of This Chapter

	Problem Formulation
	Decentralization and Externalities
	Concave Utility Functions

	Solution Concept
	Message-Passing Equilibrium
	Optimality
	Concave Utility Functions
	Messages Versus Prices

	Message-Passing Algorithms
	Tractability
	Distributed and Asynchronous Implementation
	Convergence

	Network Rate Control
	Inelastic Rate Control
	Distributed Message-Passing
	Constructing Solutions
	Numerical Results

	Proofs
	Proof of Theorems 3.1 and 3.3
	Proof of Theorems 3.4 and 3.5

	Unconstrained Convex Optimization
	Pairwise Separable Convex Programs
	The Min-Sum Algorithm
	Convergence
	The Computation Tree
	Proof of Theorem 4.1

	General Separable Convex Programs
	Asynchronous Convergence
	Implementation
	Open Issues

	Consensus Propagation
	Problem Formulation
	Message-Passing
	Intuitive Interpretation

	General Algorithm
	Convergence
	Convergence Time for Regular Graphs
	The Case of Regular Graphs
	The Cesàro Mixing Time
	Bounds on the Convergence Time
	Adaptive Mixing Time Search

	Comparison with Linear Consensus
	Rate of Convergence

	Proofs
	Proof of Theorem 5.3
	Proof of Theorems 5.4 and 5.5
	Proof of Theorem 5.6

	Concluding Remarks
	Bibliography

