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Abstract

Systemic risk refers to the risk of collapse of an entire complex system, as a result of the
actions taken by the individual component entities or agents that comprise the system. Systemic
risk is an issue of great concern in modern financial markets as well as, more broadly, in the
management of complex business and engineering systems. We propose an axiomatic framework
for the measurement and management of systemic risk based on the simultaneous analysis of
outcomes across agents in the system and over scenarios of nature. Our framework defines a
broad class of systemic risk measures that accomodate a rich set of regulatory preferences. This
general class of systemic risk measures captures many specific measures of systemic risk that have
recently been proposed as special cases, and highlights their implicit assumptions. Moreover,
the systemic risk measures that satisfy our conditions yield decentralized decompositions, i.e.,
the systemic risk can be decomposed into risk due to individual agents. Furthermore, one
can associate a shadow price for systemic risk to each agent that correctly accounts for the
externalities of the agent’s individual decision-making on the entire system.

1. Introduction

The measurement and management of systemic risk is of fundamental importance in many business
and engineering domains. The manager of a diversified firm has to assess and control the collective
risk of all individual divisions or business units. The manager of a supply chain network is interested
in the overall risk associated with a complex network of suppliers and sub-contractors. The manager
of an electric power distribution network is interested in the aggregate risk of the generating stations,
transmission facilities, and other entities in the network. As highlighted by the financial crisis of
2007–2008, one example of particular interest is the measurement and regulation of systemic risk
of an economy or a financial market. While our methods are general and we seek to develop an
understanding of systemic risk management broadly, in this paper, we focus on this last case and
use the language of financial markets to present our work.
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Fundamentally, the study of systemic risk in a financial market involves the simultaneous analy-
sis of outcomes across all entities (firms) in the economy. On the other hand, much of the academic
literature on the theoretical foundations for the measurement and estimation of risk, as well as the
main regulatory standards for risk, have been focused on the study of individual firms in isolation.
We seek to bridge this gap by developing an axiomatic framework for a broad class of systemic risk
measures.

Specifically, we are interested in an approach to systemic risk that is based on the analysis of
the joint distribution of profits and losses across all firms in the economy and states of nature.
We consider systemic risk from the perspective of a regulator, who wishes to express a preference
over sets of possible distributions of outcomes for the entire economy. One approach to defining
a systemic risk measure is to apply a traditional, single-firm risk measure such as value-at-risk
or conditional value-at-risk to the distribution of the total profits and losses for all firms in the
economy (e.g., Adrian and Brunnermeier, 2009; Acharya et al., 2010a; Tarashev et al., 2010).
This approach treats the entire economy as a portfolio consisting of the constituent firms, and the
regulator as a portfolio manager. However, the portfolio approach suffers from a number of modeling
shortcomings. It implicitly allows the netting of profits and losses across the portfolio components.
This is reasonable from the perspective of the manager of an investment portfolio. However,
such netting may be undesirable from the perspective of a systemic regulator who, typically, is
not able to directly cross-subsidize different firms with distinct ownership interests. Moreover,
by considering only the total outcome, the portfolio approach lacks the modeling flexibility to
accommodate preferences over the cross-sectional distribution of outcomes in an economy. For
example, the regulator may have views on whether it is preferable for a single firm to have a large
loss or many firms to have small losses, or whether profits at one firm can subsidize losses at another.

Motivated by these concerns, we define a broad class of systemic risk measures that can accom-
modate a rich set of regulatory preferences. The main contributions of this paper are as follows:

• We define an axiomatic framework defining systemic risk, and establish an associated struc-
tural decomposition.

Our work parallels the axiomatic approach to single-firm risk measures introduced by Artzner
et al. (1999). Schied (2006) provides a very good survey of the extensive literature on coherent
and convex risk measures for a single firm. Unlike the single-firm case, however, we consider
a system or economy that consists of multiple components or firms. Systemic risk is then
defined functional on the joint distribution of outcomes across firms in an economy and
scenarios (states of nature) that satisfies a set of axioms. While we impose many axioms
developed originally for single-firm risk measures to systemic risk measures to address similar
concerns; we introduce two new axioms that are new. In particular, as in the case of coherent
risk measures for a single firm, we assume the monotonicity and positive homogeneity of
systemic risk. Besides the usual notion of convexity, we introduce a new risk convexity
concept for situations where outcomes are not directly combined. Additionally, we assume a
preference consistency condition that relates to the interactions between different firms across
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scenarios. The latter condition is novel and fundamentally specific to systemic risk; it has no
analog among the typical conditions for single-firm risk measures, and it becomes trivial if
the economy consists of a single firm.

We demonstrate that any systemic risk measure satisfying our definition can be characterized
by two independent components: (1) an aggregation function that expresses a preference
over the cross-sectional profile of outcomes across firms in a single scenario, and (2) a base
risk measure, similar to existing single-firm risk measures, that expresses a preference over
the profile of aggregated outcomes across scenarios of nature. This structural decomposi-
tion provides a clear structural characterization of systemic risk, and suggests a well-defined
procedure to construct such risk measures by choosing constituent aggregation functions and
base risk measures. This decomposition highlights the power of the preference consistency
condition.

Our framework includes many recently proposed systemic risk measures as special cases. For
example, a number of authors analyze systemic risk by applying single-firm risk measures to
a portfolio consisting of all firms in the economy (e.g., Gauthier et al., 2010; Tarashev et al.,
2010). The ‘systemic expected shortfall’ risk measure of Acharya et al. (2010a) employs a
portfolio approach, with an expected shortfall base risk measure. An alternative reduced-
form approach to systemic risk involves considering the price of deposit insurance or other
credit insurance (e.g., Lehar, 2005; Huang et al., 2009). Giesecke and Kim (2011) consider
a risk measure defined through the fraction of failed firms in the economy. The general
framework in this paper subsumes a number of these approaches. In Section 2, we illustrate
how portfolio-based approaches to systemic risk measures such as the systemic expected
shortfall or deposit insurance can be modeled as special cases in our framework. However,
our framework provides greater flexibility in modeling systemic risk, allowing, for example,
complex non-linear interactions between firms.

• We establish a dual representation for systemic risk, that allows attribution of risk to indi-
vidual agents.

We show that any systemic risk measure can be expressed as the worst-case expected loss
over a family of distributions over scenarios of nature and the cross-sectional profiles of firms,
a generalization of the dual representation for single-firm coherent risk measures (Artzner
et al., 1999). In many cases, this representation provides operational benefits by permitting
decentralized computation of systemic risk by the firms in the economy. Moreover, we show
that the dual variables are, in fact, shadow prices for systemic risk: they represent the
marginal increase in systemic risk as a function of a marginal increase in the loss of a particular
firm in a particular scenario.

In our setting, the dual representation provides a mechanism for risk attribution. The total
systemic risk can always be apportioned across the constituent firms in a way that satisfies
a ‘no-undercut’ condition: the systemic risk allocated to any subset of the firms is no more
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than the systemic risk those firms would face as a stand-alone economy. Our allocation rule
is a generalization of the Aumann-Shapley prices for fair allocation of costs or the Euler
allocation rule for allocating the capital requirements of a portfolio across constituent sub-
portfolios (Denault, 2001; Buch and Dorfleitner, 2008). Similarly, the ‘marginal expected
shortfall’ risk attribution of Acharya et al. (2010a) is a special case of our attribution rule.

We show that the risk attribution can properly account for the externalities imposed on the
system when making decisions involving risk. Specifically, through a decentralized taxation
scheme, the objective of the regulator can be aligned with the incentives of individual firms.
Here, each individual firm maximizes the difference between its individual utility function
and a tax payment that is derived from the firm’s contribution to the systemic risk.

• Our methodology extends to a general class of risk measures. The structural decomposition
of a systemic risk function into an aggregation function and a base risk measure follows from
the preference consistency condition, and therefore, can be extended to broader classes of
risk measures. In Section 5, we consider homogeneous systemic risk measures. These are
systemic risk measures that are positively homogeneous and monotonic, but not necessarily
convex. One example of such a risk measure is that of Adrian and Brunnermeier (2009), who
define a risk measure based on the value-at-risk of the economy-wide portfolio. We show that
homogeneous systemic risk measures that satisfy preference consistency can be decomposed
into a single-firm homogeneous base risk measure and a homogeneous aggregation function.
We describe a risk attribution scheme for a special class of piecewise linear homogeneous sys-
temic risk measures that is a generalization of Aumann-Shapley prices. Similarly, a convex,
monotonic, but not necessarily positively homogeneous, systemic risk measure that satis-
fies preference consistency can also be decomposed into a convex monotonic single-firm risk
measure and a convex monotonic aggregation function.

Other authors have sought to model the structural mechanisms of interaction between firms in
a financial crisis. Such models explicitly describe the contagion of credit events across firms in an
economy through different structural mechanisms. For example, Acharya et al. (2010b) and Staum
(2011a) consider asset price contagion, while Eisenberg and Noe (2001), Liu and Staum (2010), and
Cont et al. (2010) consider counterparty contagion. Staum (2011b) provides an excellent survey
of the literature on contagion and systemic risk. In this paper, we take as given a collection of
exogenous outcomes across firms and scenarios of nature. However, we can accomodate aspects
of endogenous, structural mechanisms for contagion through the choice of risk measure. This is
illustrated in Example 7 in Section 2.

The rest of the paper is organized as follows: In Section 2, we provide an axiomatic definition
of a systemic risk measure. In Section 2.1, we describe the structural decomposition of systemic
risk, and in Section 2.2 we discuss a number of examples of systemic risk measures. In Section 3,
we construct primal and dual variational representations for systemic risk measures. In Section 4,
we discuss a systemic risk attribution scheme. In Section 5, we present extensions of our theory to
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homogeneous systemic risk measures. In the Online Supplement, we demonstrate a decentralized
framework for systemic risk management, as well as provide proofs.

2. Model

We consider a one-period model consisting of a finite set of firms F and a finite set of future
scenarios Ω. We define an economy by a matrix X ∈ R|F|×|Ω|. Here, the quantity Xi,ω is the loss
(or, if negative, the profit) of firm i in scenario ω. We denote by Xω ∈ R|F| the column vector
of outcomes in scenario ω across all firms; we refer to this as the cross-sectional profile of losses
across firms of the economy X, in scenario ω. In some examples, we assume there is a probability
distribution p ∈ R|Ω|+ over the space of scenarios Ω. In these cases, we can interprete the matrix
X ∈ R|F|×|Ω| as a random vector which has outcome Xω ∈ R|F| with probability pω.

In the rest of the paper, the following notation is helpful: the vector 1Ω ∈ R|Ω| denotes a
unit loss of an individual firm in all scenarios, and vector 1F ∈ R|F| denotes a cross-sectional loss
profile in a scenario where each firm has a unit loss, and the matrix 1E , 1F1>Ω ∈ R|F|×|Ω| denotes
an economy with a unit loss for every firm in every scenario. Similarly, the vectors 0F ∈ R|F|,
0Ω ∈ R|Ω|, and the matrix 0E ∈ R|F|×|Ω| correspond to cases with zero profit or loss for every firm
in every scenario. Given an economy X, a cross-sectional loss profile x, and a scenario ω, the matrix
(x,X−ω) ∈ R|F|×|Ω| denotes an economy with loss profile x in scenario ω, but where outcomes in all
other scenarios are given by the corresponding columns in X. Inequalities between pairs of vectors
and matrices are to be interpreted component-wise.

A systemic risk measure ρ is a summary statistic that quantifies the level of ‘risk’ associated
with an economy X by a single real number ρ(X). Given two economies X and Y , if ρ(X) > ρ(Y )
then we say that X is riskier than Y and thus less preferred. Hence, a systemic risk measure
implicitly encodes the preferences of a regulator over the universe of possible economies.

We first review the axiomatic framework for coherent single-firm1 risk measures2 commonly
used in the literature (Artzner et al., 1999).

Definition 1 (Single-Firm Risk Measure). A single-firm risk measure is a function3 ρ : R|Ω| → R that
satisfies the following conditions (i)–(iv), for all loss vectors x, y ∈ R|Ω| of a single firm:

(i) Monotonicity: If x ≥ y, then ρ(x) ≥ ρ(y).

(ii) Positive homogeneity: For all non-negative scalars α ≥ 0, ρ(αx) = αρ(x).
1In this paper, we use the term ‘single-firm’ risk measure to refer to the risk measures for a single entity, i.e., an

entity for which the outcome in every scenario of nature is a single real number. This is in contrast to the systemic
risk measures which we will introduce shortly, where there is a vector of outcomes (one for each component of the
system) in every scenario of nature. Note that a systemic risk measure could, for example, also be applied in the case
of an individual firm, where the ‘components’ correspond to divisions of the firm that contribute to the overall risk.

2Our terminology is slightly non-standard here: for example, for single-firm risk measures, Schied (2006) defines
a ‘monetary measure of risk’ as satisfying (i) and (v), a ‘convex measure of risk’ as satisfying (i) and (iii)–(v), and a
‘coherent measure of risk as satisfying (i)–(v).

3In what follows, we sometimes consider single-firm risk measures ρ : R|Ω|+ → R defined only on the positive orthant.
In that case, we assume that conditions (i)–(iv) are satisfied for all x, y ∈ R|Ω|+ .
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(iii) Convexity: Given a scalar 0 ≤ α ≤ 1, ρ
(
αx+ (1− αy)

)
≤ αρ(x) + (1− α)ρ(y).

(iv) Normalization: ρ
(
1Ω) = 1.

If in addition, a single-firm risk measure satisfies the following condition (v), it is called coherent:

(v) Cash invariance: For all scalars α ∈ R, ρ(x+ α1Ω) = ρ(x) + α.

The conditions for a single-firm risk measure can be motivated as follows: The monotonicity
condition (i) reflects that, if one firm has greater losses in every scenario than another, it is less
preferred. The positive homogeneity condition (ii) requires that the risk increases in proportion to
the scale of losses. The convexity condition (iii) asserts that diversification reduces risk, i.e., the
risk of a firm diversified between outcomes corresponding to x and y is less than the weighted risk
of the component firms x and y. The normalization condition (iv) fixes the multiplicative scaling4

of the risk measure. The cash invariance condition (v) allows the interpretation of risk as a capital
requirement: when a certain loss α is added to the outcome in every scenario, the risk of the firm
increases by exactly α.

Building on the definition for a single-firm risk measure, we formally define a systemic risk
measure as follows:

Definition 2 (Systemic Risk Measure). A systemic risk measure is a function ρ : R|F|×|Ω| → R that
satisfies the following conditions, for all economies X,Y, Z ∈ R|F|×|Ω|:

(I) Monotonicity: If X ≥ Y , then ρ(X) ≥ ρ(Y ).

(II) Positive homogeneity: For all non-negative scalars α ≥ 0, ρ(αX) = αρ(X).

(III) Preference consistency: Define a partial order �ρ on cross-sectional profiles as follows: Given
cross-sectional profiles x, y ∈ R|F|, we say that x �ρ y iff ρ

(
x1>Ω

)
≥ ρ

(
y1>Ω

)
. Suppose that,

for every scenario ω, Xω �ρ Yω. Then, ρ(X) ≥ ρ(Y ).

(IV) Convexity:

(a) Outcome convexity: Suppose Z = αX + (1− α)Y , for a given scalar 0 ≤ α ≤ 1. Then,
ρ
(
Z
)
≤ αρ(X) + (1− α)ρ(Y ).

(b) Risk convexity: Suppose ρ(Zω1>Ω) = αρ(Xω1>Ω) + (1− α)ρ(Yω1>Ω), ∀ ω ∈ Ω, for a given
scalar 0 ≤ α ≤ 1. Then, ρ

(
Z
)
≤ αρ(X) + (1− α)ρ(Y ).

(V) Normalization: ρ
(
1E) = |F|.

Our definition of a systemic risk measure is justified as follows: conditions (I)–(II) are similar
to the corresponding conditions for a single-firm risk measure, and can be justified in a similar

4Note that in the case of a coherent single-firm risk measure, the normalization condition (iv) follows from positive
homogeneity and cash invariance. In our work, it will be useful to consider non-coherent risk measures, hence we
retain this as a separate condition.
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manner. The preference consistency condition (III), on the other hand, does not have an analog
in the single-firm case. This condition defines an ordering (or, preference relationship) �ρ on
cross-sectional profiles x, y ∈ R|F| by comparing the systemic risk (according to ρ) of the constant
economies5 x1>Ω and y1>Ω . If x �ρ y, we say that y is preferred to x. Preference consistency requires
that if cross-sectional profiles in the economies X and Y are such that if, in every scenario ω, Yω
is preferred to Xω, the systemic risk of Y must be consistent with this preference and thus cannot
be greater than the systemic risk of X. When the economy consists of a single firm, condition (III)
follows from monotonicity.

The preference consistency condition implies independence from irrelevant alternatives (see,
e.g., Kreps, 1988) as follows: suppose that x, y ∈ R|F| are cross-sectional loss profiles such that
x �ρ y, i.e., y is preferred to x. Then, for any economy Z ∈ R|F|×|Ω| and any scenario ω, define
(x, Z−ω) to be the economy where outcomes for firms in scenario ω are given by x, and outcomes
in all other scenarios are given by Z, and define (y, Z−ω) similarly. Preference consistency implies
that ρ(x, Z−ω) ≥ ρ(y, Z−ω). In other words, if y is preferred to x, then, all else being equal,
any economy which realizes y in some scenario is less risky to an economy which realizes x in that
scenario, independent of the scenario and of the outcomes in other scenarios. Thus, by imposing the
preference consistency axiom, we assume that the systemic risk measure expresses a preference over
cross-sectional profiles that is consistent across scenarios. Introducing the preference consistency
condition is one of the major contributions of this paper, in that it allows us to extend the single-firm
risk measure to a systemic risk measure that captures the interaction of many firms.

The convexity conditions (IV-a) and (IV-b) are both concerned with the benefits of diversifi-
cation. Condition (IV-a), labeled ‘outcome convexity’, is the usual notion of convexity: when the
economy Z is a diversified mixture of two economies X and Y , the risk of Z is no greater than
the weighted combination of the risk of economies X and Y . Outcome convexity is concerned
with a ‘portfolio’ of economies X and Y , in that we are allowed to add the outcomes from the
two economies and the risk reduction comes from the fact that outcomes X and Y are possibly
correlated.

Condition (IV-b) is concerned with convexity as it relates to risk aversion. The context of this
condition is as follows. We have two stages of uncertainty. The outcome of the first stage is the
economy X with probability α and the economy Y with probability 1−α. In the second stage, the
scenario ω and the firm outcomes corresponding to ω and the economy selected in the first stage
are revealed. Note that in this setting we do not have a ‘portfolio’ of economies. The economy Z
in condition (IV-b) is such that in every scenario ω ∈ Ω the risk ρ(Zω1>Ω) is a convex combination
of the risk ρ(Xω1>Ω) and ρ(Yω1>Ω), i.e., the outcomes of economy Z are not subject to the first stage
randomness. Condition (IV-b) states that the risk of the ‘average’ economy Z is at most the convex
combination αρ(X) + (1 − α)ρ(Y ). The risk reduction in this case comes from the removing one
stage of randomness. When the economy consists of a single firm, condition (IV-b) is implied by

5Note that, given x ∈ R|F|, the economy x1>Ω has the same cross-sectional profile of losses x in every scenario.
Hence, we call this a constant economy.
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cash invariance and outcome convexity.
Finally, the normalization condition (V) requires the risk of a unit loss by all firms with certainty

to be the total loss, i.e., the number of firms |F|. This is simply a convenient choice of scaling and
is imposed without loss of generality.

Note that our definition of systemic risk does not contain a cash invariance condition, as required
by a coherent single-firm risk measure. This is because we want to allow for systemic risk measures
derived from deposit insurance that are incompatibile with cash invariance: if all outcomes in the
future are reduced by a deterministic amount, this does not necessarily result in a commensurate
reduction in the price of deposit insurance.

2.1. Structural Decomposition

In order to assess the systemic risk of an economy, a regulator is concerned with both the cross-
sectional profile of losses across firms and the distribution of aggregate outcomes across scenarios.
Thus, in order to define a risk preference over the universe of economies, one might seek to inde-
pendently express these two types of preferences. We formalize this notion as follows:

Definition 3 (Aggregation Function). A function Λ: R|F| → R over cross-sectional loss profiles of
firms is an aggregation function if, for all cross-sectional loss profiles x, y ∈ R|F|, it satisfies:

(i) Monotonicity: If x ≥ y, then Λ(x) ≥ Λ(y).

(ii) Positive homogeneity: For all α ≥ 0, Λ(αx) = αΛ(x).

(iii) Convexity: For all 0 ≤ α ≤ 1, Λ
(
αx+ (1− αy)

)
≤ αΛ(x) + (1− α)Λ(y).

(iv) Normalization: Λ
(
1F
)

= |F|.

An aggregation function provides a summary statistic that encapsulates a cross-sectional profile
of losses across firms in a single scenario into a real number, thus expressing a preference over such
profiles. The conditions (i)–(iv) are analogous to the corresponding conditions for a systemic
risk measure, and motivated by similar concerns. Subject to these conditions, the regulator has
considerable freedom in specifying preferences over the distribution of losses across firms, and we
will see a number of examples of aggregation functions in what follows.

Once the cross-sectional outcomes across firms are aggregated, the evaluation of systemic risk
reduces to an evaluation of the profile of aggregated outcomes across scenarios. This can be ac-
complished by a single-firm risk measure ρ0 : R|Ω| → R (Definition 1), which we call the base risk
measure. The independent choice of an aggregation function and a base risk measure provides a
clear way to specify preferences over the universe of economies. The following theorem, whose proof
is deferred until Section 2.3, illustrates how these functions can be composed to yield a systemic
risk measure, and that, in fact, all systemic risk measures admit such a decomposition.

Theorem 1. (i) A function ρ : R|F|×|Ω| → R is a systemic risk measure with image Im ρ = R
if and only if there exist an aggregation function Λ: R|F| → R with image Im Λ = R and a
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coherent single-firm risk measure ρ0 : R|Ω| → R, such that ρ is the composition of ρ0 and Λ,
i.e.,

ρ(X) = (ρ0 ◦ Λ)(X) , ρ0
(
Λ(X1),Λ(X2), . . . ,Λ(X|Ω|)

)
, ∀ X ∈ R|F|×|Ω|.

(ii) A function ρ : R|F|×|Ω| → R is a systemic risk measure with image Im ρ = R+ if and only if
there exist an aggregation function Λ: R|F| → R with image Im Λ = R+ and a single-firm risk
measure ρ0 : RΩ

+ → R, such that ρ is the composition of ρ0 and Λ, i.e.,

ρ(X) = (ρ0 ◦ Λ)(X) , ρ0
(
Λ(X1),Λ(X2), . . . ,Λ(X|Ω|)

)
, ∀ X ∈ R|F|×|Ω|.

Note that for a systemic risk measure ρ the positive homogeneity and the normalization con-
ditions imply that Im ρ is either R or R+. Hence, the two parts in Theorem 1 state that, in all
cases, the choice of a systemic risk measure is equivalent to the choice of a base risk measure and
an aggregation function. Further, Theorem 1 does not guarantee the uniqueness of the base risk
measure and aggregation function corresponding to a particular systemic risk measure.

As shown in Theorem 1, the key ingredient that bridges single-firm risk measures to systemic
risk measures is the choice of aggregation function. An aggregation function allows us to measure
the risk of aggregate positions as that of a single firm’s positions. We emphasize that it is the
preference consistency condition in Definition 2 that makes this structural decomposition possible.
In fact, when the other conditions (including monotonicity, positive homogeneity, and convexity)
are modified, a similar structural decomposition result continues to hold so long as preference
consistency is satisfied. For example, in Section 5, we provide a structural decomposition when
the convexity condition is dropped and the positive homogeneity condition is kept; similarly, a
structural decomposition can also be constructed if the positive homogeneity condition is dropped
and the convexity condition is kept. Simply put, the preference consistency condition connects a
reasonable single-firm risk measure to a systemic version, and one has the freedom to choose other
appropriate conditions for risk measure.

2.2. Applications

We now consider some examples to illustrate how the choice of an aggregation function and a base
risk measure describes a systemic risk measure.

Example 1 (Systemic Expected Shortfall). Consider the aggregation function

(1) Λtotal(x) ,
∑
i∈F

xi = 1>Fx, ∀ x ∈ R|F|.

This aggregation function defines the aggregate loss of a cross-sectional profile to be the sum of the
profits and losses of individual firms. Assume there is a given distribution p ∈ R|Ω|+ over the space
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of scenarios Ω, and define

(2)

CVaRζ(y) , maximize
q∈R|Ω|

q>y

subject to 0Ω ≤ q ≤ p/ζ,
1>Ωq = 1,

for all y ∈ R|Ω|. Here, CVaRζ(y) is the expected shortfall or conditional value at risk of the ζ-
percentile of the aggregate loss vector y, where 0 < ζ < 1. By taking this as the base risk measure,
we can define the systemic risk measure

ρSES(X) , CVaRζ
(
1>FX1, . . . ,1>FX|Ω|

)
, ∀ X ∈ R|F|×|Ω|.

This systemic risk measure is closely related6 to the ‘systemic expected shortfall’ of the economy
discussed by Acharya et al. (2010a). Note that this choice of aggregation function treats losses and
gains symmetrically. Further, it allows gains from one firm to cancel with losses of another firm.
This approach might be undesirable if the regulator cannot subsidize the losses of some firms with
the profits of others.

Example 2 (Deposit Insurance). Consider the aggregation function7

(3) Λloss(x) ,
∑
i∈F

x+
i , ∀ x ∈ R|F|.

This aggregation function considers only the losses of the firms. Assume there is a given distribution
p ∈ R|Ω|+ over the space of scenarios Ω, and define the base risk measure to be the expectation

E[y] = p>y, ∀ y ∈ R|Ω|.

Then, we have

ρDI(X) = E
[∑
i∈F

X+
i,ω

]
, ∀ X ∈ R|F|×|Ω|.

In this example, the risk measure is the expected value of total losses only. When the expectation
is taken over the risk neutral distribution, ρ(X) equals the price of a ‘deposit insurance’ contract
that pays out the losses of insolvent firms. This is similar in spirit to a number of proposed systemic
risk measures (Lehar, 2005; Huang et al., 2009). Note that the aggregation function Λloss treats
losses and gains asymmetrically, and does not allow the gains of some firms to subsidize losses of
other firms.

One feature common to both Examples 1 and 2 is that they are indifferent to how a large
6Strictly speaking, Acharya et al. (2010a) define a risk measure via preferences over the collection of returns of

individual firms, while we express preferences over the losses, in absolute terms, experienced by individual firms. This
difference is minor, however, and our risk measures could easily be defined in that setting.

7Given a scalar z ∈ R, we define z+ , max(z, 0) to be the positive part of z, and z− , max(−z, 0) to be the
negative part of z.
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loss is spread out across firms in an economy. In particular, the aggregation functions Λtotal and
Λloss assign the same aggregate outcome to a cross-sectional profile where one firm losses a lot
of money and other firms have zero loss, or a profile where all firms lose an average amount of
money. In practice, a regulator may have a preference over two such profiles. Through the design
of appropriate aggregation functions, our framework is sufficiently rich to express such preferences.

Example 3 (Investing with Performance Fees). Consider an investor with investments in a collection
of hedge funds indexed by the set F . Here, given a loss profile x ∈ R|F|, we interpret xi as the
gross loss incurred by the investor due to the investment in the hedge fund i. Consider the following
two cases: (a) the investor is a direct investor in the individual hedge funds; (b) the investor is
indirectly invested in the individual hedge funds via a fund-of-funds. We assume that each hedge
fund i charges a performance fee that is a fraction γi ∈ [0, 1] of the gross profits (if any) generated by
the fund for the investor. The fund-of-funds charges a performance fee that is a fraction γ ∈ [0, 1]
of the aggregate profits (if any) of the investor across all of the funds, net of performance fees paid
to the individual funds. In case (a), the direct hedge fund investor can express preferences over loss
profiles via the aggregation function

(4) ΛHF(x) ,
∑
i∈F

(
xi + γix

−
i

)
, ∀ x ∈ R|F|.

In case (b), the fund-of-funds investor can do so via the aggregation function

(5) ΛFoF(x) ,
∑
i∈F

(
xi + γix

−
i

)
+ γ

(∑
i∈F

(
xi + γix

−
i

))−
, ∀ x ∈ R|F|.

These aggregation functions consider the total profit or loss across all funds to the investor, net of
all performance fees.

In the above example, we measure the systemic risk from a portfolio management viewpoint of
an investor. Here, because of performance fees, losses and gains must be treated asymmetrically.
Moreover, dispersion risk is important: holding the gross profit

∑
i∈F xi fixed, the investor prefers

to eschew profiles where the individual fund outcomes {xi} are dispersed, and the investor pays
fees to the positively performing funds, but does not recover fees from the negatively performing
funds. With modifications, more complicated performance fee structures or tax schemes imposed
on profits can be captured by a similar aggregation functions. In these examples, the choice of the
base risk measure is left up to the investor.

In the following examples, we illustrate systemic risk measures that are not restricted to financial
applications. For complex systems with many interacting components, we can often design systemic
risk measures with specialized structure appropriate for the application at hand. The examples we
consider involve aggregation functions that are special cases of the following general class:

Example 4 (Optimization Aggregation Function). Given matrices A ∈ RK×|F|+ , B ∈ RK×N , a vector
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c ∈ RN+ , and a convex cone K ⊂ RN , define ΛOPT : R|F| → R by

(6)
ΛOPT(x) , minimize

y∈K
c>y

subject to Ax ≤ By.

for all loss profiles x ∈ R|F|. If we assume that, for example,

∃ ȳ ∈ K such that Bȳ > 0, ∃ z̄ ∈ RK+ such that B>z̄ = c,

then it is not difficult to see that the program (6) is feasible and bounded for all x, and that ΛOPT is
monotonic, positively homogeneous, and convex. Further, if ΛOPT(1F ) > 0, c can be rescaled such
that ΛOPT is normalized as well, and thus is an aggregation function.

Note that ΛOPT captures a broad class of aggregation functions, including all of the previous
examples in this section. In the following examples, we illustrate that optimization aggregation
functions can be naturally applied in practical settings, including many non-financial applications.

Example 5 (Resource Allocation). Consider a resource allocation setting, where F denotes a set of
capacitated resources, and A denotes a collection of activities. Suppose activity a consumes resource
r ∈ F at rate bra ≥ 0 per unit of activity. Given a loss profile x ∈ R|F|, we interpret each loss xr as
a shortage (or, if negative, the surplus) to the available supply of resource r, relative to a baseline
utilized capacity. Define the aggregation function

(7)
ΛRA(x) , minimize

u∈R|A|

∑
a∈A

caua

subject to
∑
a∈A

braua ≥ xr, ∀ r ∈ F .

Here, each decision variable ua is the reduction (or, if negative, the increase) of the level of activity
a. The constraint enforces the requirement that consumption of each resource r across activities be
adjusted so as to accommodate the resource supply reduction xr. The vector c ≥ 0 specifies the cost
associated with reductions in the level of each activity. Given a resource supply shock x, ΛRA(x)
measures the cost of the corresponding optimized reduction in activities. Hence, ΛRA reflects the
preferences of a system manager in a resource allocation setting.

Example 6 (Flow Network). Consider a network with vertices V and a set F ⊂ V × V of directed
edges. Each edge (u, v) ∈ F corresponds to a capacitated link, and the goal of the network manager
is to direct maximal flow from a source s ∈ V to a destination t ∈ V. Given a loss profile x ∈ R|F|,
we interpret each loss x(u,v) as a reduction (or, if negative, an increase) to the capacity of link
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(u, v) ∈ F , relative to a baseline level of utilized capacity. Define the aggregation function

(8)

ΛNF(x) , minimize
f∈R|F|

∑
v: (s,v)∈F

f(s,v)

subject to f(u,v) ≥ x(u,v), ∀ (u, v) ∈ F ,∑
u: (u,w)∈F

f(u,w) =
∑

v: (w,v)∈F
f(w,v), ∀ w ∈ V \ {s, t}.

Here, each decision variable f(u,v) represents the required reduction of flow along the link (u, v). The
first constraint enforces the requirement that flows be reduced so as to accommodate the capacity
shock x, while the second constraint is a flow balance equation. Given a capacity shock x, ΛNF(x)
measures the minimal necessary flow reduction, and hence reflects the preferences of a manager in
a max-flow setting.

In previous examples, we have viewed outcomes across firms and scenarios of nature as ex-
ogenously specified and did not consider structural mechanisms by which the loss of one firm can
create losses at other firms, i.e., contagion. The following example illustrates that it is possible to
introduce mechanisms for contagion, through the careful definition of the value function.

Example 7 (Contagion Model8). Let F denote a collection of firms, each of whom has certain assets
and obligations to each other. Let Πij denote the fraction of the total debt of firm i that is owed to
firm j. Let x ∈ R|F| denote the loss profile in a particular scenario. Define the aggregation function

(9)
ΛCM(x) , minimize

y∈R|F|+ , b∈R|F|+

∑
i∈F

yi + γ
∑
i∈F

bi

subject to bi + yi ≥ xi +
∑
j∈F

Πjiyj , ∀ i ∈ F .

We interpret x as losses external to the obligations the firms have to each other. The loss xi
must be covered either by firm i reducing the payments on its obligations to other firms by an amount
yi, or relying on an injection of external funds from the regulator in the amount bi. The parameter
γ > 1 balances the preferences of the regulator in trading off between, on the one hand, the aggregate
shortfalls across the economy on inter-firm obligations

∑
i∈F yi and, on the other hand, the cost∑

i∈F bi of injecting new capital to support the economy. The feasibility constraints reflects the fact
that the reduction in payment yi by firm i results in an additional loss of an amount Πijyi for firm
j. The aggregation function ΛCM measures the net systemic cost of the contagion. It is monotonic,
positively homogeneous, and convex. Also, it can be normalized since ΛCM(1F ) > 0.

The contraint in (9) is inspired by the structural contagion model of Eisenberg and Noe (2001).
However, in their model, the firms have limited liability, i.e., y ≤ p̄ for some vector p̄ ∈ R|F|+ of
total liabilities, and there is no external injection of capital, i.e., b , 0. In that case, however, the
aggregation function would not be positively homogeneous. Motivated by this example, an interesting

8We thank an anonymous reviewer for suggesting this example.
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possible extension of our work would be to consider such convex but not positively homogeneous
systemic risk measures.

2.3. Proof of Theorem 1

The two parts in this theorem have essentially one proof with minor differences. First, suppose
that ρ is a systemic risk measure. For each loss profile x ∈ R|F|, define

Λ(x) , ρ(x1>Ω).

In other words, Λ computes the systemic risk of a constant economy represented by x. The mono-
tonicity, convexity and positive homogeneity of Λ holds due to the monotonicity, convexity, and
positive homogeneity of ρ. Also, Λ

(
1F
)

= |F|, since ρ
(
1E) = |F|. Let Q , Im(Λ) be the image of

Λ. We know |F| ∈ Q. By the positive homogeneity of Λ, we conclude that R+ ⊂ Q. Suppose there
exists an economy X such that ρ(X) < 0. We can find a vector x ∈ R|F| such that x1>Ω ≤ X. So
Λ(x) = ρ(x1>Ω) ≤ ρ(X) < 0. By the positive homogeneity of Λ, we conclude that R− ⊂ Q. Thus,
for part (i), Q = R; for part (ii), Q = R+. For each vector z ∈ QΩ, define

ρ0(z) , ρ(X),

where X is an economy that satisfies

Λ(Xω) = zω, ∀ ω ∈ Ω.

First, we show ρ0 is well-defined. Suppose two economies X,Y have that

Λ(Xω) = Λ(Yω), ∀ ω ∈ Ω.

Since ρ has preference consistency across scenarios, we have that

Λ(Xω) = ρ(Xω1>Ω) ≥ Λ(Yω) = ρ(Yω1>Ω), ∀ ω ∈ Ω ⇒ ρ(X) ≥ ρ(Y ),

Λ(Xω) = ρ(Xω1>Ω) ≤ Λ(Yω) = ρ(Yω1>Ω), ∀ ω ∈ Ω ⇒ ρ(X) ≤ ρ(Y ).

Thus, we conclude that ρ(X) = ρ(Y ), and ρ0 is well-defined. Clearly, ρ0 is monotonic and positively
homogeneous, from the monotonicity and positive homogeneity of Λ and ρ. We show that ρ0 is
convex. For two vectors x, y ∈ QΩ, given a scalar 0 ≤ α ≤ 1, define z = αx + (1 − α)y. Define
vectors X̂, Ŷ , Ẑ ∈ R|Ω| such that

ρ0(x) = ρ(X̂), ρ0(y) = ρ(Ŷ ), ρ0(z) = ρ(Ẑ).
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Then, for all scenarios ω ∈ Ω,

Λ(Ẑω) = zω = αxω + (1− α)yω = αΛ(X̂ω) + (1− α)Λ(Ŷω).

From the risk convexity of ρ, we have that

ρ0(z) = ρ(Ẑ) ≤ αρ(X̂) + (1− α)ρ(Ŷ ) = αρ0(x) + (1− α)ρ0(y).

This establishes the convexity of ρ0. In addition,

ρ0(1Ω) = ρ(a1>Ω),

where
Λ(a) = ρ(a1>Ω) = 1.

It follows that ρ0(1Ω) = 1. For part (i), −1 ∈ Q, we can show ρ0(−1Ω) = −1 similarly. Now, we
can show that for part (i), for a scalar α ∈ R, by the sub-additivity (as a result of convexity and
positive homogeneity) of ρ0, we have that

ρ0(x+ α1Ω) ≥ ρ0(x) + αρ0(1Ω) = ρ0(x) + α,

and
ρ0(x− α(−1Ω)) ≤ ρ0(x)− αρ0(−1Ω) = ρ0(x) + α.

Hence, ρ0 has the cash invariance property ρ0(x+ α1Ω) = ρ0(x) + α for part (i).
To summarize, for part (i), we have shown that ρ0 is a coherent single-firm risk measure; for

part (ii), we have shown that ρ0 is a single-firm risk measure. From the definition of Λ and ρ0, we
have the structural decomposition,

ρ(X) = (ρ0 ◦ Λ)(X) = ρ0
(
Λ(X1),Λ(X2), . . . ,Λ(X|Ω|)

)
.

For the converse of the theorem, suppose that Λ is an aggregation function and ρ0 is a base risk
measure. Since Λ and ρ0 are monotonic, convex and positively homogeneous, it is clear that ρ has
the properties of monotonicity, convexity and positive homogeneity. The normalization condition
is due to that of Λ and the fact that ρ0(1Ω) = 1. To show the preference consistency of ρ, consider
two economies X,Y ∈ R|F|×|Ω| where, in every scenario ω ∈ Ω,

ρ
(
Xω1>Ω

)
= (ρ0 ◦ Λ)(Xω1>Ω) ≥ ρ

(
Yω1>Ω

)
= (ρ0 ◦ Λ)(Yω1>Ω).

By the monotonicity of ρ0, we have

Λ(Xω) ≥ Λ(Yω), ∀ ω ∈ Ω.
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Then, by using the monotonicity of ρ0 again, we conclude that

ρ
(
X
)

= (ρ0 ◦ Λ)(X) ≥ (ρ0 ◦ Λ)(Y ) = ρ
(
Y
)
.

Now, we show the risk convexity of ρ. For any three economies X,Y, Z ∈ R|F|×|Ω| and any scalar
0 ≤ α ≤ 1, suppose for all scenarios ω ∈ Ω,

(ρ0◦Λ)(Zω1Ω) = ρ(Zω1Ω) = αρ(Xω1Ω)+(1−α)ρ(Yω1Ω) = α(ρ0◦Λ)(Xω1Ω)+(1−α)(ρ0◦Λ)(Yω1Ω).

We know that for part (i), we have that ρ0(±1Ω) = ±1, and for part (ii), we have ρ0(1Ω) = 1.
Thus, we can simplify the above equation, for both part (i) and part (ii), as

Λ(Zω) = αΛ(Xω) + (1− α)Λ(Yω), ∀ ω ∈ Ω.

Using the convexity of ρ0, we conclude that, for all scenarios ω ∈ Ω,

ρ(Z) = (ρ0 ◦ Λ)(Z) ≤ α(ρ0 ◦ Λ)(X) + (1− α)(ρ0 ◦ Λ)(Y ) = αρ(X) + (1− α)ρ(Y ).

In addition, for part (i), there exists a vector x ∈ R|F| such that Λ(x) < 0. So we have ρ(x1>Ω) =
Λ(x) < 0 and ρ

(
1E) = |F| > 0. By positive homogeneity of ρ, we conclude that Im ρ = R. For

part (ii), Λ(x) ≥ 0, for all x ∈ R|F|. So ρ(X) ≥ ρ0(0E) = 0, for all X ∈ R|F|×|Ω|. We also know
ρ
(
1E) = |F| > 0. By positive homogeneity of ρ, we conclude that Im ρ = R+.

3. Variational Representations

In this section, we develop two variational representations for systemic risk measures. In Section 3.1,
we introduce a primal representation, where the systemic risk is the value of an optimization prob-
lem over a set of ‘acceptable’ economies. In Section 3.2, we develop a dual representation, where
the systemic risk is the worst-case scaled expected loss across the economy. The dual representa-
tion provides a ‘shadow price ’ to capture the systemic risk externality of the decision making of
individual firms. This suggests a decentralized framework for systemic risk based decision-making
that is further explored in the Online Supplement.

3.1. Acceptance Sets and Primal Representation

For the case of coherent single-firm risk measures, Artzner et al. (1999) describe a representation
for the risk as the minimum quantity of cash that needs to be injected into each scenario such that
the collection of outcomes is contained in a set of ‘acceptable’ outcomes. Motivated by this, we
wish to construct a similar primal representation for systemic risk measures. In order to do this,
we need the following definition.
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Definition 4 (Acceptance Set). Consider a finite set of entities N . An acceptance set over N is a
set S ⊂ R× R|N |, that is a non-empty closed convex cone, and that satisfies:

(i) Monotonicity: If (m,x1) ∈ S, x2 ∈ R|N |, and x1 ≥ x2, then (m,x2) ∈ S.

(ii) Epigraph property: If (m1, x) ∈ S, m2 ∈ R, and m2 ≥ m1, then (m2, x) ∈ S.

We take the set of entities N in Definition 4 either to be the collection of firms F or scenarios Ω.
In the former case, when N = F , (m,x) ∈ R×R|F| is contained in the acceptance set if the cross-
sectional profile x is considered acceptable at a given level of ‘risk exposure’ m. The monotonicity
property suggests that, at a fixed level of risk exposure, loss profiles that are dominated by an
acceptable profile are also acceptable. The epigraph property suggests that if a loss profile is
acceptable at a certain level of risk exposure, it is also acceptable at higher levels of risk exposure.
Similarly, when N = Ω, the acceptance set captures sets of risk exposures across scenarios, in
addition to an overall risk measure, such that the per scenario risk exposures are acceptable relative
to the overall risk measure. The properties of acceptance sets follow from the underlying properties
of aggregation functions and base risk measures; in fact, we will shortly see that acceptance sets
are epigraphs of these objects. Note that, relative to the case considered by Artzner et al. (1999),
we require an additional dimension corresponding to the level of risk exposure of the regulator.
If a cash invariance assumption held as in Artzner et al. (1999), this extra dimension could be
eliminated, but in the present context it is necessary.

The following theorem provides a primal representation to a systemic risk measure, as the value
of an optimization problem over a feasible set defined through acceptable sets:

Theorem 2 (Primal Representation). Suppose ρ is a systemic risk measure. Then, there exist accep-
tance sets A ⊂ R×R|Ω| and B ⊂ R×R|F| over scenarios and firms, respectively, such that, for all
economies X ∈ R|F|×|Ω|, ρ(X) can be expressed as the value of the optimization problem

(10)

ρ(X) = minimize
m,`

m

subject to (m, `) ∈ A,
(`ω, Xω) ∈ B, ∀ ω ∈ Ω,
m ∈ R, ` ∈ R|Ω|.

Further, if ρ is characterized by a base risk measure ρ0 and an aggregation function Λ, i.e., ρ =
ρ0 ◦ Λ, then the acceptance sets can be taken as the epigraphs of ρ0 and Λ, i.e.,

(11) A ,
{

(m, z) ∈ R× R|Ω| : m ≥ ρ0(z)
}
, B ,

{
(`, x) ∈ R× R|F| : ` ≥ Λ(x)

}
.

Proof. Given ρ, by Theorem 1 a base risk measure ρ0 and an aggregation function Λ exist such
that ρ = ρ0 ◦Λ. Define A and B to be their epigraphs through (11). From the properties of ρ0 and
Λ, it is clear that these are acceptance sets.
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Moreover, we have the epigraph representations

ρ0(`) = minimize
m∈R

m

subject to (m, `) ∈ A.

Λ(x) = minimize
`∈R

`

subject to (`, x) ∈ B.

for all ` ∈ R|Ω|, x ∈ R|F|. Using the fact that ρ = ρ0 ◦Λ, and the epigraph representation of ρ0, we
have for all X ∈ R|F|×|Ω|,

ρ(X) = minimize
m∈R

m

subject to
(
m,Λ(X1), . . . ,Λ(X|Ω|)

)
∈ A.

Using the fact that A is monotonic, and applying the epigraph representation of Λ, the result
follows. �

The primal program (10) is easily interpreted: the vector of decision variables ` defines the
regulator’s minimal risk exposure in each scenario given the corresponding cross-sectional loss
profile, while the scalar decision variable m is overall systemic risk given the vector ` of risk
exposures across scenarios.

3.2. Dual Representation

In this section, we define a dual representation for systemic risk measures. This variational rep-
resentation provides an alternative way to compute systemic risk measures and an alternative
interpretation of their meaning. Moreover, it provides certain computational and operational ad-
vantages. In Section 4, we show that the dual representation also provides the basis of a risk
attribution rule.

To begin, suppose ρ = ρ0 ◦ Λ is a systemic risk measure. As in Theorem 2, take the epigraphs
of ρ0 and Λ as the acceptance sets A and B, respectively. Define

A∗ ,
{

(π0, π̂) ∈ R× R|Ω| : π0m− π̂>` ≥ 0, ∀ (m, `) ∈ A
}
,(12)

B∗ ,
{

(ξ0, ξ̂) ∈ R× R|F| : ξ0`− ξ̂>x ≥ 0, ∀ (`, x) ∈ B
}
.(13)

Up to a sign change, A∗ and B∗ are the dual cones to A and B, respectively. Then, the following
theorem, whose full proof can be found in the Online Supplement, holds.

Theorem 3. Suppose ρ = ρ0 ◦Λ is a systemic risk measure characterized by an aggregation function
Λ and a base risk measure ρ0. Then, for all economies X ∈ R|F|×|Ω|, ρ(X) can be expressed as the
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value of the optimization problem

(14)

ρ(X) = maximize
π̄,Ξ

∑
i∈F

∑
ω∈Ω

Ξi,ωXi,ω

subject to (1, π̄) ∈ A∗,

(π̄ω,Ξω) ∈ B∗, ∀ ω ∈ Ω,

π̄ ∈ R|Ω|, Ξ ∈ R|F|×|Ω|.

In addition, feasible points (π̄,Ξ) for this problem must satisfy

(15) π̄ ≥ 0Ω, 1>Ω π̄ ≤ 1, Ξ ≥ 0E , 1>FΞ ≤ |F|π̄>.

In order to interpret the dual problem (14), observe that (15) implies that, for feasible (π̄,Ξ), π̄
is a sub-stochastic vector. This can be interpreted as a probability distribution over the augmented
set of scenarios Ω ∪ {ω0}, where ω0 is an additional, artificial scenario in which every firm has a 0
outcome. Define the matrix Ξ̂ ∈ R|F|×|Ω| by

Ξ̂i,ω ,

Ξi,ω/πω if πω > 0,

0 otherwise,

for each firm i and scenario ω. Then, the objective in (14) becomes

∑
ω∈Ω

π̄ω
∑
i∈F

Ξ̂i,ωXi,ω,

where (15) implies that
Ξ̂ ≥ 0E ,

∑
i∈F

Ξ̂i,ω ≤ |F|, ∀ ω ∈ Ω.

In other words, the dual objective is the worst-case expected loss, over some set of feasible probability
distributions π̂ and scaling functions Ξ̂, of a scaled economy in which the participation of the
|F| firms in the economy in scenario ω is rescaled according to the vector Ξ̂1,ω, . . . , Ξ̂|F|,ω. This
is analogous to the robust interpretation of a single-firm coherent risk measure as a worst-case
expected loss.

The following is an immediate corollary of Theorem 3:

Corollary 1. Suppose that ρ is a systemic risk measure with dual representation (14). Given an
economy X, if (π̄∗,Ξ∗) is a dual optimal solution, then Ξ∗ is a subgradient of ρ at X.

Corollary 1 suggests another interpretation of the optimal dual solution Ξ∗ for an economy X.
The quantity Ξ∗i,ω is the minimal marginal increase in systemic risk as function of a marginal increase
in the losses of firm i in scenario ω. In other words, Ξ∗i,ω captures the externalities imposed by the
decision-making of a firm on the system regulator, and hence is a shadow price for systemic risk.
Note that these shadow prices can vary both by scenario — incremental losses in some scenarios
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may have a much larger impact than in other scenarios — and by the identity of the firm. These
shadow prices could be used to coordinate decision-making by individual firms with the goals of
the regulator. For example, it is possible to design tax schemes based on these prices, in the spirit
of Acharya et al. (2010a), such that individual firms optimize their portfolios to distribute profits
and losses across scenarios in a way that is aligned with the concerns of the regulator. This topic
is further explored in the Online Supplement.

The dual optimization problem (14) may also lead to useful decentralized schemes for computing
systemic risk. Here, a centralized regulator can seek to choose optimal values for the dual variables
(π̄,Ξ), while relying on constituent firms to compute their individual weighted profits and losses,
scaled according to each putative choice of dual variables. The utility of the dual representation from
analytical, operational, and computational perspectives is illustrated by the following examples.

Example 8 (Total P&L). Consider the total profit and loss aggregation function Λtotal, defined by
(1). For this aggregation function, it is easy to see that

B∗ =
{

(ξ0, ξ01F ) ∈ R× R|F| : ξ0 ∈ R+
}
.

Then, the dual representation (14) takes the simplified form

ρ(X) = maximize
π̄∈R|Ω|

∑
i∈F

∑
ω∈Ω

π̄ωXi,ω

subject to (1, π̄) ∈ A∗.

In Example 8, the base risk measure (and thus the constraint set A∗) has not been specified.
However, independent of this choice, given an optimal dual solution π̄∗, a shadow price for systemic
risk for each firm i in a scenario ω is given by π̄∗ω and is independent of the identity of the firm.
This is consistent with the choice of aggregation function: the impact of a marginal increase in the
loss of any firm is the same, since the sum total of all profits and losses is of concern.

Example 9 (Total Loss). Consider the total loss aggregation function Λloss, defined by (3). Then,
we have that

B∗ =
{(
ξ0, ξ̂

)
∈ R× R|F| : 0F ≤ ξ̂ ≤ ξ01F

}
.

Thus, the dual representation (14) takes the simplified form

ρ(X) = maximize
π̄∈R|Ω|

∑
i∈F

∑
ω∈Ω

π̄ω
(
Xi,ω

)+
subject to (1, π̄) ∈ A∗.

In Example 9, given an optimal dual solution π̄∗, a shadow price for systemic risk for firm i in
scenario ω is given by π̄∗ω if Xi,ω ≥ 0, and is 0 otherwise. This is because a firm can only marginally
impact the systemic risk in scenarios where it is not profitable.
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Example 10 (CVaR). Suppose, given 0 < ζ < 1, the aggregation function is taken to be

ΛCVaR(x) , inf
`∈R
|F|`+ 1

ζ

∑
i∈F

(xi − `)+.

This corresponds to the aggregate total profits and losses of the worst ζ-percentile of firms in the
cross-sectional profile, i.e., it is analogous to the CVaRζ risk measure of (2), but taken across firms
rather than scenarios. Then, we have that

B∗ =
{(
ξ0, ξ̂

)
∈ R× R|F| : 0F ≤ ξ̂ ≤ ξ0

ζ 1F , 1>F ξ̂ = ξ0|F|.
}
.

Thus, the dual representation (14) takes the simplified form

ρ(X) = maximize
π̄,Ξ

∑
i∈F

∑
ω∈Ω

Ξi,ωXi,ω

subject to (1, π̄) ∈ A∗,

0E ≤ Ξ ≤ 1
ζ π̄1>Ω ,

1>FΞ = |F|π̄,

π̄ ∈ R|Ω|, Ξ ∈ R|F|×|Ω|.

In Example 10, a shadow price for systemic risk Ξ∗i,ω, in general, depends both on the identity
of the firm i and the particular scenario ω.

4. Risk Attribution

In this section, we consider the problem of attributing or allocating the systemic risk across the
firms that compose the economy. The spirit here is to identify systemically risky institutions, and
quantify their overall impact on the risk in the economy. Motivated by the discussion of shadow
prices in Section 3.2, consider the following definition:

Definition 5 (Risk Attribution). Suppose ρ is a systemic risk measure, with dual decomposition (14).
For each economy X ∈ R|F|×|Ω|, defineM(X) ⊂ R|F|×|Ω| to be the set of dual optimal solutions for
ρ(X). Given a shadow price for systemic risk Ξ∗ ∈ M(X), we define a vector y∗(X,Ξ∗) ∈ R|F|,
with component

y∗i (X,Ξ∗) ,
∑
ω∈Ω

Ξ∗i,ωXi,ω

as the systemic risk attributable to firm i. We define set of all attribution vectors

Y , {y∗(X,Ξ∗) : Ξ∗ ∈M(X)} .

Note that the attribution rule is unique if the dual optimal solution for ρ(X) is unique at X.
This definition allocates systemic risk to each firm according its entire profile of profits and losses
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across scenarios, where each profit or loss is valued according to the appropriate shadow price for
systemic risk. Note that the risk allocation is an immediate by-product of the dual representation,
and hence requires no computation if the dual solution is available.

The allocation of Definition 5 has a number of desirable properties. First, since Theorem 3
guarantees that the dual optimum equals ρ(X), it is immediate that

ρ(X) =
∑
i∈F

y∗i , ∀ y∗ ∈ Y

In order words, the individual risk attributions add up to the total systemic risk. Second, following
Corollary 1, the sensitivity of the attribution yi of firm i to a change in the loss Xi,ω in some
scenario ω is precisely the shadow price for systemic risk. Hence, the local incentives created by
this allocation are aligned with the systemic risk objective. Finally, the risk attribution that we
propose has the following fairness property:

Theorem 4. Fix a systemic risk measure ρ. Let X ∈ R|F|×|Ω| denote a given economy.
For a vector α ∈ RF+, define r(α) to be the systemic risk associated with an economy α ∗ X

that has outcomes for firm i in scenario ω given by αiXi,ω. Then, for any risk attribution y∗ ∈ Y,
α>y∗ ≤ r(α).

Proof. From the dual representation in Theorem 3, we have that

(16)

r(α) = maximize
π̄,Ξ

∑
i∈F

αi
∑
ω∈Ω

Ξi,ωXi,ω

subject to (1, π̄) ∈ A∗,

(π̄ω,Ξω) ∈ B∗, ∀ ω ∈ Ω,

π̄ ∈ R|Ω|, Ξ ∈ R|F|×|Ω|.

Suppose y∗ is obtained by a dual optimal solution Ξ∗. Since Ξ∗ is a feasible solution of the dual
representation of ρ(X) in (14), Ξ∗ is also a feasible solution of the dual representation of r(α) in
(16), for any α. The objective value achieved by Ξ∗ in (16) is α>y∗, which can be no greater than
the optimal value r(α), i.e., α>y∗ ≤ r(α). �

Theorem 4 is a ‘no-undercut’ result, in the spirit of Denault (2001). Here, r(α) is the systemic
risk associated with an economy where each firm i participates proportionally to the factor αi ≥ 0.
The result states that, if a fractional coalition of firms specified by the vector α form a new economy
α ∗X, the systemic risk of that economy r(α) , ρ(α ∗X) is at least as large as the weighted sum
of risk attributed to the firms in the original economy. Thus, the risk attribution is fair: the risk
attributed to any fractional coalition is no greater than it would incur as a standalone economy.

The risk attribution we propose is closely related to prices of Aumann and Shapley (1974)
for allocating the cost in a fractional coalition game. If we assume that r is differentiable at the
point α = 1F , then by positive homogeneity, it is differentiable on the ray {t1F : t ≥ 0}. The
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Aumann-Shapley prices are then defined by

yAS ,
∫ 1

0
∇r
(
t1F

)
dt = ∇r

(
1F
)
.

The last equality follows from the fact that r is positively homogeneous, and is sometimes referred
to as the Euler allocation rule or gradient allocation rule (Denault, 2001; Buch and Dorfleitner,
2008). In fact, when these latter attribution rules are well-defined, they correspond with our notion
of risk allocation:

Theorem 5. Given a systemic risk measure ρ and an economy X ∈ R|F|×|Ω|, if ρ is differentiable
at X, then the risk attribution y∗ is unique and coincides with the Aumann-Shapley prices yAS.

Proof. Under the hypothesis, r(α) defined in Theorem 4 is differentiable at α = 1F . Observing
that the constraint set in (16) is compact, we can apply Danskin’s theorem (Bertsekas, 1999) to
(16) to obtain

∂r(α)
∂αi

=
∑
ω∈Ω

Ξ∗i,ωXi,ω,

for all firms i , where Ξ∗ ∈ R|F|×|Ω| is the unique dual optimal solution for ρ(X). Therefore,
yAS = y∗. �

Note that the work of Denault (2001), Fischer (2003), and Buch and Dorfleitner (2008) suggests
the gradient allocation rule for risk attribution in a portfolio setting; that setting is a special case
of systemic risk measure corresponding to the total P&L aggregation function Λtotal of (1). In
that case, the gradient allocation rule is identical to our dual risk attribution y∗. Our dual risk
attribution y∗, however, requires no differentiability assumption, and can apply to a more general
class of aggregation functions. When ρ is not differentiable at X, several attribution rules y∗ are
possible and how to choose among them may require further investigation. Related discussion on
risk attribution can be found in the work of Tsanakas (2009) and Cherny and Orlov (2011).

5. Homogeneous Systemic Risk Measures

In this section, we extend our analysis to value-at-risk-like measures that are monotonic, positively
homogeneous but non-convex. Value-at-risk (VaR) (see, e.g., Jorion, 2006) is a single-firm risk
measure of particular importance, because it is extensively used in the practice of financial risk
management. Originally developed by practitioners in the financial industry, it is widely employed
both by firm managers and regulators to compute and manage market risk — in fact, VaR is the
preferred measurement of market risk of the Basel II regulatory regime. The popularity of VaR as
a single-firm risk measure has motivated a number of VaR-based measures of systemic risk, such
as the CoVaR measure proposed by Adrian and Brunnermeier (2009).

The VaR at a confidence level ζ ∈ (0, 1) is defined as follows: suppose x ∈ R|Ω| is a vector
of losses across scenarios Ω, and that p ∈ R|Ω|+ with 1>Ωp = 1 is a probability distribution over Ω.
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Then, the VaR of the random loss x is the minimum loss threshold value ` such that the probability
of the loss exceeding ` is at most 1− ζ, i.e.,

(17) VaRζ(x) , inf

` ∈ R :
∑

ω∈Ω: xω>`

pω ≤ 1− ζ

 .
From the definition of VaR, it is clear that this risk measure is positively homogeneous, monotonic,
normalized, and cash invariant, i.e., it satisfies conditions (i), (ii), (iv), and (v) of Definition 1.
However, it is not convex.

The lack of convexity is the principal difference between homogeneous risk measures and the
(convex) risk measures defined in Section 2. Aside from their wide use in practice, homogeneous
risk measures have also generated some interest in the literature (e.g., Kou et al., 2009; Cerreia-
Vioglio et al., 2010). Our goal here is to illustrate the impact of the absence of this axiom on our
framework for systemic risk.

In what follows, we investigate the impact of dropping the convexity requirement for systemic
risk measures. In Section 5.1, we give a complete structural decomposition for homogeneous risk
measures. The benefit from this analysis is two-fold. First, as in the case with convex systemic
risk measures discussed in the previous sections, the characterization gives us a rule for construct-
ing homogeneous systemic risk measures from a homogeneous base risk measure and homogeneous
aggregation functions. The second and equally important benefit is that the characterization elu-
cidates the implicit assumptions that are being made when one combines single-firm homogeneous
risk measures to create a systemic risk measure. As a by-product of our characterization, in Sec-
tion 5.2 we show that a homogeneous systemic measures have a convex representation. Finally, in
Section 5.4 we consider some examples of homogeneous systemic risk measures.

5.1. Structural Decomposition

Motivated by the discussion above, we define homogeneous systemic risk measures as follows:

Definition 6 (Homogeneous Systemic Risk Measure). A homogeneous systemic risk measure is a
function ρ : R|F|×|Ω| → R that satisfies the following conditions, for all economies X,Y ∈ R|F|×|Ω|:

(I) Monotonicity: X ≥ Y implies ρ(X) ≥ ρ(Y ).

(II) Positive homogeneity: For all α ≥ 0 and ρ(αX) = αρ(X).

(III) Preference consistency: ρ
(
Xω1>Ω

)
≥ ρ

(
Yω1>Ω

)
, ∀ ω ∈ Ω, implies ρ

(
X
)
≥ ρ

(
Y
)
.

(IV) Normalization: ρ
(
1E) = |F|.

We define homogeneous single-firm risk measures and homogeneous aggregation functions as
follows:
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Definition 7 (Homogeneous Single-Firm Risk Measure). A homogeneous single-firm risk measure is
a function9 ρ : R|Ω| → R that, for all loss vectors x, y ∈ R|Ω| of a single firm, satisfies the following
conditions:

(i) Monotonicity: If x ≥ y, then ρ(x) ≥ ρ(y).

(ii) Positive homogeneity: For all non-negative scalars α ≥ 0, ρ(αx) = αρ(x).

(iii) Normalization: ρ
(
1Ω) = 1.

Definition 8 (Homogeneous Aggregation Function). A function Λ: R|F| → R over cross-sectional
loss profiles of firms is a homogeneous aggregation function if, for all cross-sectional loss profiles
x, y ∈ R|F|, it satisfies:

(i) Monotonicity: If x ≥ y, then Λ(x) ≥ Λ(y).

(ii) Positive homogeneity: For all α ≥ 0, Λ(αx) = αΛ(x).

(iii) Normalization: Λ
(
1F
)

= |F|.

The (convex) single-firm risk measures and the (convex) aggregation functions defined earlier
in Definitions 1 and 3 are in fact also homogeneous single measures and aggregation functions,
respectively; in addition, those functions are also convex.

homogeneous systemic risk measures admit a structural decomposition analogous to that of
Theorem 1, as follows:

Theorem 6. (i) A function ρ : R|F|×|Ω| → R is a homogeneous systemic risk measure with image
Im ρ = R if and only if there exist a homogeneous aggregation function Λ: R|F| → R and a
homogeneous single-firm risk measure ρ0 : R|Ω| → R with ρ0(±1Ω) = ±1 such that ρ is the
composition of ρ0 and Λ, i.e.,

ρ(X) = (ρ0 ◦ Λ)(X) , ρ0
(
Λ(X1),Λ(X2), . . . ,Λ(X|Ω|)

)
.

(ii) A function ρ : R|F|×|Ω| → R is a homogeneous systemic risk measure with image Im ρ = R+

if and only if there exist a homogeneous aggregation function Λ: R|F| → R with Im Λ = R+

and a homogeneous single-firm risk measure ρ0 : R|Ω|+ → R such that ρ is the composition of
ρ0 and Λ, i.e.,

ρ(X) = (ρ0 ◦ Λ)(X) , ρ0
(
Λ(X1),Λ(X2), . . . ,Λ(X|Ω|)

)
.

Proof. The proof is a simplified version of the proof of Theorem 1, since, in this case, it is not
necessary to establish convexity. It is thus omitted. �

9As was the case with Definition 1, we sometimes consider homogeneous single-firm risk measures ρ : R|Ω|+ → R
defined only on the positive orthant. In that case, we assume that conditions (i)–(ii) are satisfied for all x, y ∈ R|Ω|+ .
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Observe that, comparing Theorem 1 and Theorem 6, preference consistency condition (III) is
key to establishing this structural decomposition. The other conditions, namely homogeneity and
monotonicity, imply these same properties for the single-firm risk measure ρ0 and the aggregation
function Λ.

5.2. Convex Representation

In this section, we develop a convex representation for homogeneous (non-convex) systemic risk
measures as the pointwise minima of a collection of convex risk functions. To begin, consider the
following lemma, a proof of which that follows the argument of Castellani (2000) is provided in the
Online Supplement:

Lemma 1. A function g : Rn → R is positively homogeneous and monotonic if and only if there
exists an index set S where, for each s ∈ S, g(s) : Rn → R ∪ {∞} is a positively homogeneous,
monotonic, and convex extended real-valued function, such that

g(x) = minimize
s∈S

g(s)(x), ∀ x ∈ Rn.

The following is a corollary of Lemma 1. It establishes a representation for homogeneous
systemic risk measures in terms of convex single-firm risk measures and aggregation functions.

Corollary 2. Suppose ρ is a homogeneous systemic risk measure with Im ρ = R. For all economies
X ∈ R|F|×|Ω|, ρ(X) can be expressed as the value of the optimization problem

(18) ρ(X) = minimize
t∈T , s1∈S, ..., s|Ω|∈S

ρ(t)(Λ(s1)(X1), . . . ,Λ(s|Ω|)(X|Ω|)
)
.

Here, S and T are index sets. For each s ∈ S, the aggregation function Λ(s) : R|F| → R ∪ {∞}
satisfies conditions (i)–(iii) of Definition 3 (i.e., monotonicity, positive homogeneity, convexity).
For each t ∈ T , the single-firm risk measure ρ(t)

0 : R|Ω| → R ∪ {∞} satisfies conditions (i)–(iii) of
Definition 1 (i.e., monotonicity, positive homogeneity, convexity).

Proof. The result follows by first applying Theorem 6 to obtain the representation ρ = ρ0 ◦ Λ in
terms of a homogeneous single-firm base risk measure ρ0 and a homogeneous aggregation function
Λ, and then applying Lemma 1 to ρ0 and Λ. �

As an example of this construction, consider the following:

Example 11 (VaR). Define the single-firm base measure ρ0(x) = VaRζ(x) to be the value-at-risk
defined in (17), given a uniform probability distribution p , 1Ω/|Ω| and a confidence level ζ ∈ (0, 1).
In this case, we have that ρ0(x) = x[k∗], where k∗ , dζ|Ω|e and, for each 1 ≤ k ≤ |Ω|, x[k] is the kth
order statistic of the vector x. Define q(k) ∈ R|Ω| to be a vector with the first |Ω| − k components
equal to 1, and the rest equal to 0, and define T ⊂ R|Ω|×|Ω| to be the set of |Ω| × |Ω| permutation
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matrices. Then, we have that

ρ0(x) =
|Ω|∑
k=k∗

x[k] −
|Ω|∑

k=k∗+1
x[k] = max

P∈T
x>Pq(k∗) −max

P∈T
x>Pq(k∗+1) = min

P∈T
ρ(P )(x),

where, for each P ∈ T ,
ρ(P )(x) , max

Q∈T
x>
(
Qq(k∗) − Pq(k∗+1)

)
is a convex base risk measure.

5.3. Risk Attribution

Next, we discuss the issue of attributing the total risk ρ(X) across the |F| firms in the economy.
We show below that a good risk attribution rule exists for a subset of homogeneous systemic risk
measures that includes VaR.

For a systemic risk measure ρ, an economy X, and a vector α ∈ R|F|+ , define rρ(α) , ρ(α ∗X),
where α ∗X is defined by setting the outcomes for firm i in scenario ω to αiXi,ω. In this setting,
a risk allocation function Ψ|F| takes as inputs two arguments, namely the function rρ : R|F|+ → R
and a vector of fractional participation α ∈ R|F|+ , and returns a risk allocation to each firm. The
following are certain desirable properties for Ψ that are typically assumed in the literature (e.g.,
Billera and Heath, 1982). Suppose we have any two systemic risk measures ρ1 and ρ2.

1. Full risk allocation: α>Ψ|F|(rρ, α) = rρ(α).

2. Additivity: Ψ|F|(rρ1 , α) + Ψ|F|(rρ2 , α) = Ψ|F|(rρ1 + rρ2 , α).

3. Monotonicity: If rρ1(α) ≥ rρ2(α), for all α ∈ R|F|+ , then

Ψ|F|(rρ1 , α) ≥ Ψ|F|(rρ2 , α), ∀ α ∈ R|F|+ .

4. Rescaling invariance: For a vector β ∈ R|F|+ , define β ∗ α , (β1α1, β2α2, . . . , β|F|α|F|). If
rρ1(α) = rρ2(β ∗ α), then

Ψ|F|i (rρ1 , β
−1 ∗ α) = βiΨ|F|i (rρ2 , α), ∀ i ∈ F .

5. Consistency: If there is a function r̄ such that r(α) = r̄(1>Fα), then

Ψ|F|i (r, α) = Ψ1(r̄,1>Fα), ∀ i ∈ F .

Here, Ψ1 is a single-firm cost allocation function.

Note that for the general class of differentiable risk functions r, Billera and Heath (1982) show
that Aumann-Shapley prices are the only attribution rule that satisfies all five properties. For
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piecewise linear risk functions, Haimanko (2001) shows that the Mertens (1988) mechanism is the
unique cost allocation scheme that satisfies the five properties. Specifically, the Mertens mechanism
ΨM is given by

(19) Ψ|F|M,i(r, α) , E
[∫ 1

0
Dα∗C,eir(tα) dt

]
,

where ei ∈ R|F| is the ith unit vector, the expectation is taken over a random vector C ∈ R|F| of
independent standard Cauchy random variables, and

(20) Dur(α) , lim
ε→0+

r(α+ εu)− r(α)
ε

, Du,vr(α) , lim
ε→0+

Du+εvr(α)−Dur(α)
ε

,

are directional derivatives of r(α), given directions u, v ∈ R|F|.
We propose the Mertens mechanism for the attribution rules in the context of piecewise linear

systemic risk measures. The following lemma gives a sufficient condition for a homogeneous systemic
risk measures ρ to be piecewise linear. Recall that ρ is generated by index sets S and T in
Corollary 2.

Lemma 2. Suppose index sets S and T are finite, Λ(s) is a piecewise linear continuous function for
all s ∈ S, and ρ(t) is a piecewise linear continuous function for all t ∈ T . Then the homogeneous
systemic risk measure ρ generated by index sets S and T is piecewise linear and continuous.

Proof. It is immediate from the representation in Corollary 2. �

Suppose the hypothesis of Lemma 2 is satisfied. Then, rρ(α) is clearly piecewise linear. Thus
the Mertens mechanism can be used for risk attribution. Note that this attribution scheme does
not have the ‘no-undercut’ property introduced in Theorem 4. Further, risk attribution for general
non-differentiable systemic risk measures beyond this piecewise linear class is an area for future
investigation.

5.4. Examples

In this section, we describe examples of homogeneous systemic risk measures.

Example 12 (VaR). Consider the aggregation function Λtotal(x) , 1>Fx of (1), i.e., the total profit
and loss across all firms. Given a probability distribution p over the scenarios Ω and a confi-
dence level ζ, consider the value-at-risk function VaRζ of (17) as a base risk measure. Then the
homogeneous systemic risk measure

ρVaR(X) , (VaRζ ◦ Λtotal)(X) = VaRζ
(
1>FX1, . . . ,1>FX|Ω|

)
,

is simply the value-at-risk of the aggregated outcomes. Note that Λtotal and VaRζ are piecewise
linear and continuous.
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When the probability measure p over the scenarios is arbitrary, we can consider conditional
probability measures of the form P(ω|A) where A ⊂ Ω denotes a set of stress scenarios. This
conditional variation of the value-at-risk is in the same spirit as the CoVaR measure defined by
Adrian and Brunnermeier (2009). Unlike them, we only condition on subsets of the exogenously
defined scenarios. This restriction is required in order to be able compare different sets of outcomes
on the same set of scenarios.

In this example, we can also illustrate the Mertens mechanism for risk attribution. For ease
of exposition, assume that the probability distribution over scenarios is given by the uniform dis-
tribution, i.e., p , 1Ω/|Ω|. As in Example 11, the risk ρVaR(X) takes the value (1>FX)[k∗], i.e.,
the k∗th order statistic of the aggregated losses across all firms. Now, assume that this value
is achieved by a unique scenario ω∗, so that ρVaR(X) = 1>FXω∗. Then, in fact, for all t > 0,
rVaR(t1F ) = ρVaR(tX) = t1>FXω∗. Also, in this case, rVaR will be a linear function in the neighbor-
hood of each α = t1F . Thus, we have the directional derivatives

DurVaR(t1F ) = u>Xω∗ , Du,eirVaR(t1F ) = Xi,ω∗ ,

for all directions u. Then, the risk attribution to firm i according to the Mertens mechanism (19)
simplifies to become

Ψ|F|M,i(rVaR,1F ) = Xi,ω∗ .

In other words, the risk attribution of firm i will be the loss incurred by the firm in the critical sce-
nario ω∗. More generally, if the value-at-risk is achieved in multiple scenarios, the risk attribution
for each firm will be an average of losses across these scenarios.

Example 13 (Comonotonic Risk Measures). Following Kou et al. (2009), one can defined homoge-
neous aggregation functions of the form

Λ(x) ,
|F|∑
k=1

γkx[k],

where γ ∈ R|F|+ , 1>Fγ = |F|, and x[k] denotes the kth order statistic of the vector x. Note that the
value-at-risk and the median are special cases of this risk function. Fix a probability measure p over
the scenarios. Combining this aggregation function with the homogeneous single-firm risk measure

ρ0(x) , p>x,

we get the homogeneous systemic risk measure

ρ(X) , (ρ0 ◦ Λ)(X) =
∑
ω∈Ω

pωΛ(Xω).

Note that Λ and ρ0 are piecewise linear and continuous. Since all comonotonic risk measures are
homogeneous risk measures, it follows that all our results in this section apply to such risk measures.
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A. Decentralized Implementation

In this section, we explore the decentralization of systemic risk management. In particular, we
establish that the dual representation of Section 3 and the risk attribution rule of Section 4 provide
the basis of a tax scheme for internalizing the systemic risk into the decisions of individual firms.

To this end, for each firm i ∈ F , let T (i) ⊂ R|Ω| denote the convex feasible set of possible
outcomes for firm i over the set of scenarios Ω. The set T (i) can be interpreted as the set of possible
investment opportunities available to firm i. Denote by T , T (1) × T (2) × . . . × T (|F|) ⊂ R|F|×|Ω|

the resulting set of possible economies. Let Ui : T (i) → R denote the utility function of firm i. We
assume that Ui is strictly concave and differentiable. Given a systemic risk measure ρ : R|F|×|Ω| → R,
we make the following definition:

Definition 9 (Social Optimality). An economy X̄ =
(
X̄(1); X̄(2); . . . ; X̄(|F|)) ∈ T is socially optimal

if it maximizes risk-adjusted welfare according to the optimization problem

(A.1) X̄ ∈ argmax
X∈T

{∑
i∈F

Ui(X(i))− τρ(X)
}
.

Here, τ > 0 is a parameter that captures the impact of the systemic risk externality.

A regulator or central planner wishes to drive individual firms to make decisions so that, collec-
tively, these decisions results in a socially optimal economy. However, the regulator is not able to
directly control the outcomes of each firm; it is only able to influence investment decisions indirectly
via incentives. In particular, suppose the regulator imposes a tax ti(X(i)) on firm i given outcomes
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X(i) ∈ T (i). The firm would then choose outcomes so as to optimize its tax-adjusted utility, i.e., it
would solve the optimization problem

maximize
X(i)∈T (i)

{
Ui(X(i))− ti(X(i))

}
.

Motivated by the dual representation of Section 3 and the risk attribution rule of Section 4, the
following theorem suggests a taxation scheme to implement any socially optimal economy:

Theorem 7. Suppose that X̄ ∈ T is a socially optimal economy. There exists Ξ∗ ∈ R|F|×|Ω| that
is an optimal solution to the dual problem (14) for the systemic risk ρ(X̄) so that if we define, for
each firm i, the tax function

ti(X(i)) , τ
∑
ω∈Ω

Ξ∗i,ωXi,ω,

then, X̄(i) is an optimal outcome for firm i, i.e.,

(A.2) X̄(i) ∈ argmax
X(i)∈T (i)

Ui(X(i))− τ
∑
ω∈Ω

Ξ∗i,ωXi,ω.

Proof. Since X̄ is a socially optimal economy, first order conditions for optimality for (A.1) imply
that there must be a subgradient Ξ∗ ∈ R|F|×|Ω| of ρ at X̄ so that

(A.3)
∑
i∈F

∑
ω∈Ω

(
∇i,ωUi(X(i))− τΞ∗i,ω

) (
Xi,ω − X̄iω

)
≤ 0,

for all X ∈ T . Any subgradient Ξ∗ is clearly a dual optimal solution to (14), according to Danskin’s
theorem (Bertsekas, 1999).

Now, given i ∈ F , we can take X(j) = X̄(j) for all j 6= i in (A.3). We obtain that, for all i ∈ F ,

(A.4)
∑
ω∈Ω

(
∇i,ωUi(X(i))− τΞ∗i,ω

) (
Xi,ω − X̄iω

)
≤ 0,

for all X(i) ∈ T (i). Note that (A.4) is the first order optimality condition for (A.2), and thus X̄(i)

is an optimal solution to (A.2). �

Theorem 7 demonstrates that the objective of the regulator can be aligned with the incentives
of individual firms through taxation schemes. Moreover, the tax paid by each firm is (up to the
constant τ) determined by the risk attribution of that firm, c.f. Definition 5.

Since the taxation scheme in Theorem 7 is based on a subgradient Ξ∗ at the social optimal
economy X̄, it appears that, in order to compute this taxation scheme, the regulator would need
to solve the centralized problem (A.1). In other words, the regulator would need to know the
utilities Ui and investment opportunities T (i) of each firm i. While it is reasonable to assume that
the regulator knows the risk function ρ and that it can demand that the firms reveal their losses
X across scenarios, it is unlikely that the firms would reveal their utility functions or investment
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opportunities. This obstacle can be overcome via an iterative scheme provided we assume that each
Ui is a smooth, strictly concave function, and that

(i) the firms are myopic, i.e., the optimize their loss profiles with the given taxation scheme
without considering the impact of their decisions on future taxes, and

(ii) the firms report their loss profiles truthfully.

The second condition can be achieved in a regulatory regime with suitable penalties. The first can
be justified on the basis of bounded rationality on the part of the firms. Consider the following
scheme, in each iteration k:

1. Each firm i computes

X
(i)
k ∈ argmax

X∈T (i)

{
Ui(X(i))− τ(Ξ(k)

i )>(X(i) −X(i)
k−1)− νk

2 ‖X
(i) −X(i)

k−1‖
2
2

}
,

where X(i)
k−1 denotes the loss profile of the firm in iteration prior k− 1, and νk‖X(i)−X(i)

k−1‖22
is a proximal term that prevents large changes in X(i) in each iteration. The optimization
problem above can be interpreted as a utility maximization problem with convex taxes.

2. The regulator receives the outputs Xk = (X(i)
k , . . . , X

(|F|)
k ) and computes a subgradient Ξk of

ρ at Xk.

There exists a suitable choice for the sequence of regularization parameters {τk} such that proximal
subgradient scheme above converges to a socially optimal economy X̄ and the subgradient Ξk
converge to a subgradient Ξ̄ of ρ at X̄ such that the first order optimality condition (A.4) hold for
the pair (X̄, Ξ̄) (e.g., Bertsekas, 1999). Note that each iteration of the above subgradient scheme,
the regulator only requires the firms to truthfully communicate the current iterate Xk and not their
utility functions.

B. Proofs

Theorem 3. Suppose ρ = ρ0 ◦Λ is a systemic risk measure characterized by an aggregation function
Λ and a base risk measure ρ0. Then, for all economies X ∈ R|F|×|Ω|, ρ(X) can be expressed as the
value of the optimization problem

(B.1)

ρ(X) = maximize
π̄,Ξ

∑
i∈F

∑
ω∈Ω

Ξi,ωXi,ω

subject to (1, π̄) ∈ A∗,

(π̄ω,Ξω) ∈ B∗, ∀ ω ∈ Ω,

π̄ ∈ R|Ω|, Ξ ∈ R|F|×|Ω|.

3



In addition, feasible points (π̄,Ξ) for this problem must satisfy

(B.2) π̄ ≥ 0Ω, 1>Ω π̄ ≤ 1, Ξ ≥ 0E , 1>FΞ ≤ |F|π̄>.

Proof. In this proof, we use the primal representation of Theorem 2. Recall that primal represen-
tation of ρ is

ρ(X) = inf
(m,`)∈R×R|Ω|

m+ IA(m, `) +
∑
ω∈Ω

IB(`ω, xω),

where IA and IB are indicator functions of sets A and B from (11) respectively. Here, given a set
C ∈ Rn, we define the indicator function IC : Rn → R ∪ {∞} by

(B.3) IC(x) ,

0 if x ∈ C,

∞ otherwise.

For the convex set A, define the support function by

SA(−π0, π̄) , sup
(m,`)∈R×R|Ω|

−π0m+ π̄>` =

0 if (π0, π̄) ∈ A∗,

∞ otherwise,

where A∗ is given by (12). From convex duality, the indicator function of A can be expressed as
the Fenchel-Legendre conjugate of its support function, i.e.,

IA(m, `) = sup
(π0,π̄)∈R×R|Ω|

−π0m+ π̄>`− SA(−π0, π̄) = sup
(π0,π̄)∈A∗

−π0m+ π̄>`.

Similarly, the indicator function for the set B can be expressed as

IB(`ω, xω) = sup
(ξ0ω ,ξ̂ω)∈B∗

−ξ0ω`ω + ξ̂>ω xω,

where B∗ is given by (13).
Thus, applying convex duality to the primal representation, we obtain that

ρ(X) = inf
(m,`)∈R×R|Ω|

sup
(π0,π̄)∈A∗

(ξ0ω ,ξ̂ω)∈B∗, ∀ω∈Ω

m− π0m+ π̄>`+
∑
ω∈Ω

(
−ξ0ω`ω + ξ̂>ω xω

)

= sup
(π0,π̄)∈A∗

(ξ0ω ,ξ̂ω)∈B∗, ∀ω∈Ω

inf
(m,`)∈R×R|Ω|

m− π0m+ π̄>`+
∑
ω∈Ω

(
−ξ0ω`ω + ξ̂>ω xω

)

= sup
(1,π̄)∈A∗

(π̄ω ,ξ̂ω)∈B∗, ∀ω∈Ω

∑
ω∈Ω

ξ̂>ω xω.

This establishes (B.1).
Now, we show the sub-stochastic properties (B.2) for feasible dual variables (π̄,Ξ). Up to a sign
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change, A∗ and B∗ are the dual cones to A and B, respectively. The monotonicity of the acceptance
sets A and B implies that

π̄ ≥ 0Ω, Ξ ≥ 0E .

From the normalization property of ρ0, we have that (1,1Ω) ∈ A. This implies that

1− 1>Ω π̄ ≥ 0.

From the normalization property of Λ, we have that (|F|,1F ) ∈ B. This implies that

|F|π̄ω − 1>FΞω ≥ 0, ∀ ω ∈ Ω.

�

Lemma 1. A function g : Rn → R is positively homogeneous and monotonic if and only if there
exists an index set S where, for each s ∈ S, g(s) : Rn → R ∪ {∞} is a positively homogeneous,
monotonic, and convex extended real-valued function, such that

g(x) = minimize
s∈S

g(s)(x),

for all x ∈ Rn.

Proof. This proof closely follows the argument presented by Castellani (2000). Let S , {x ∈ Rn :
‖x‖2 = 1} denote the unit sphere in Rn. For s ∈ S, define

Ts , K◦s + g(s)s,

where Ks , {λs : λ ≥ 0} denotes the cone generated by s ∈ S, and K◦s , {y : y>s ≤ 0} denotes
the polar cone of Ks. Given s ∈ S, define

(B.4) g(s)(x) , sup
y∈Ts∩Rn

+

y>x.

Then g(s) : Rn → R∪ {∞} is clearly monotonic, positively homogeneous and convex. Using convex
duality, we can rewrite g(s) as

g(s)(x) = sup
y∈Ts, y≥0

y>x

= inf
β≥0

sup
y∈Ts

y>(x+ β)

= inf
β≥0

{
g(s)s>(x+ β) + inf

z∈K◦s
z>(x+ β)

}
= inf

β≥0
g(s)s>(x+ β) + IKs(x+ β),

where IKs(z) denotes the indicator function (B.3) for the set Ks. The second equality follows from

5



strong duality since Ts and Rn+ are non-empty polyhedral sets, and the last equality follows from
the fact that, for all z ∈ Rn,

sup
y∈K◦s

y>z = IKs(z).

Since S is a compact set, for any x ∈ Rn, infs∈S g(s)(x) is achieved, i.e., the infimum is, in fact, a
minimum. Moreover,

min
s∈S

g(s)(x) = min
s∈S

inf
β≥0

g(s)s>(x+ β) + IKs(x+ β)

= inf
β≥0

min
s∈S

g(s)s>(x+ β) + IKs(x+ β).
(B.5)

Note that IKs(z) < ∞ only if z = λs, for some λ ≥ 0. In that case, by positive homogeneity,
g(s)s>z + IKs(z) = λg(s) = g(λs) = g(z). Thus, it follows that for all z ∈ Rn,

min
s∈S

g(s)s>z + IKs(z) = g(z).

Then, from (B.5), it follows that

min
s∈S

g(s)(x) = inf
β≥0

g(x+ β) = g(x),

where the second equality follows from the fact that g is monotonically increasing and β ≥ 0. �
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