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Abstract

We consider experimentation in settings where, due to interference or other concerns, experimental
units are coarse. ‘Region-split’ experiments on online platforms, where an intervention is applied
to a single region over some experimental horizon, are one example of such a setting. Synthetic
control is the state-of-the-art approach to inference in such experiments. The cost of these
experiments is high since the opportunity cost of a sub-optimal intervention is borne by an entire
region over the length of the experiment. More seriously, correct inference requires assumptions
limiting the ‘non-stationarity’ of test and control units that we demonstrate fail in practice.
So motivated, we propose a new adaptive approach to experimentation, dubbed Synthetically
Controlled Thompson Sampling (SCTS). SCTS is guaranteed to identify the optimal treatment
without the attendant non-stationarity assumptions of the status quo, thereby allowing for robust
inference. In addition, SCTS minimizes the cost of experimentation by incurring near-optimal,
square-root regret in the experimental horizon, as opposed to linear regret for the status quo.
Experiments on synthetic and real world data highlight the relative merits of SCTS in regard to
both the cost of experimentation and the robustness of inference.

1 Introduction

Experimentation is a crucial tool deployed in the data-driven improvement of modern commerce

platforms. On such platforms, a new product feature or algorithmic tweak is often rolled out only

after its prospective benefit is understood via an appropriately designed experiment. In some

cases, an appropriate unit of experimentation is simply an end user. In such cases, experiment

design and inference is relatively well understood. On the other hand, it is often the case that the

intervention in question induces interactions among individual users of the platform. Often referred

to as ‘interference’, this effectively violates the Stable Unit Treatment Value Assumption (SUTVA)

that is assumed in most designs, and necessary for correct inference. There is an emergent and

exciting literature focused on experiment design and inference in the presence of interference.

It remains unclear how to robustly characterize the bias induced by interference. As such, a

common strategy used to obviate interference concerns in practice, is simply to pick a sufficiently
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coarse unit of experimentation. As a concrete example, a ride hailing platform experimenting with

a new payment feature would simply choose the unit of experimentation to be a region or city and

then implement the intervention in question in a test city, over some experimental horizon. This is

often referred to as a ‘region split’ experiment. Since the pool of such coarse experimental units (i.e.

regions) is by definition smaller, picking the appropriate controls is no longer a simple matter. 1

The very challenge above arises in program evaluation, a common task in empirical economics.

There, the synthetic control method is seen as ‘arguably the most important innovation ... in the

last 15 years’ [16]. The synthetic control method seeks to construct a ‘synthetic’ control via a

linear combination of non-treatment units that best approximates the treatment unit prior to the

treatment period. While originally intended primarily for inference given observational data, this

method now represents the state-of-the-art for the task of inferring treatment effects in experiments

with coarse units, such as the region split experiment described above. While state-of-the-art, this

overall approach suffers from two major drawbacks:

• Cost: The opportunity cost (or ‘regret’) resulting from experimenting with an undesirable

intervention is borne at the level of a city or region (as opposed to a substantially smaller

group of users) over the entire length of the experiment. Thus, in the parlance of the literature

on adaptive experimentation, regret grows linearly with the experiment horizon.

• Fragility: The correctness of the control produced by the synthetic control method depends

heavily on assumptions made on the so-called ‘shared factors’ process, a factor model that

is assumed to underlie the evolution of outcomes in the treatment and control units. These

assumptions can be seen to relate to how estimable this process is from data available in the

pre-treatment period. We will see that these assumptions are not benign and may actually

fail in real data. Moreover, we establish that absent these assumptions on the shared factors

process, it is impossible to guarantee recovery of the treatment effect under any fixed design.

While building on the success of the synthetic control framework, we propose to address the

drawbacks above via an adaptive approach to experiment design: the Synthetically Controlled

Bandit model and an associated algorithm we dub Synthetically Controlled Thompson Sampling

(SCTS). Relative to the status-quo approach described above:

• SCTS attains near-optimal, sub-linear regret.

• SCTS is guaranteed to identify the optimal treatment, even when the factor model assumptions

required for the synthetic control method fail.

• When the factor model assumptions required for the synthetic control method hold, SCTS

estimates the treatment effect at the same rate as that method on the event that the treatment

effect is positive. On the event that the treatment effect is negative, SCTS learns that this is

the case.
1Parenthetically, it is worth noting that the counterfactual value of the outcome being measured for any unit may

have slow-mixing, or even non-stationary, temporal effects so that so-called ‘switch-back’ designs are insufficient.
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As such, SCTS eliminates the cost and fragility of the status quo approach to experimentation

with coarse units. The price paid by this design is that it can quantify the treatment effect only

when the effect is positive while simply learning that the treatment effect is negative when that is

the case. Since in practical applications, a quantification of the treatment effect is only of value

when this treatment effect is positive (so as to facilitate, for instance, cost-benefit analyses for a

roll-out of the intervention), this new approach makes possible an attractive tradeoff.

1.1 The Synthetically Controlled Bandit

We now proceed with describing our contributions in greater detail, focusing in turn on minimizing

regret, inferring the treatment effect, and practical considerations.

The Bandit Model and Minimizing the Cost of Exploration: Consider a setting where the decision

whether or not to treat the treated unit (city, region, etc.) in any given epoch is a dynamic one. Over

some experimentation horizon, a natural goal aligned with minimizing the cost of experimentation,

would be to minimize regret. That is, over the experimentation horizon, we effectively minimize the

expected number of times a sub-optimal treatment option was chosen for the treated unit. It turns

out that in the synthetic control setting, this problem is equivalent to a linear contextual bandit,

wherein the context at each period is an unobserved low-dimensional latent vector (the so-called

‘unobserved common factors’ in the corresponding synthetic control model). This bandit problem

has several salient features that render the application of existing bandit algorithms challenging:

1. Since observations across all units are made contemporaneously, no information about the

context vector is available at the time of decision making.

2. We never observe historical context vectors directly either; instead we only ever observe an

unknown, noisy, linear transformation of these vectors.

3. This unknown linear transformation can never be recovered exactly even with infinite data:

instead, we can only hope to recover it up to an orthogonal transformation.

Put succinctly, the underlying contextual bandit is one where no information regarding the

context is available at the time of decision making, and can, post-facto, only be recovered up to

an unknown orthogonal transformation and noise. Algorithms for stochastic linear bandits (such

as LinUCB or Linear Thompson Sampling) simply do not apply to the setting; these algorithms

fundamentally require that the contexts be observed. Adversarial bandit algorithms (such as Exp3)

may be applied in this setting, but by virtue of being robust to all possible contexts, these algorithms

will essentially disregard the data from the control units. This results in substantially larger regret;

in particular, the leading regret constants are arbitrarily larger than what we eventually show

possible in this model. As an aside it is worth noting that the synthetically controlled bandit model

is interesting beyond the realm of experiments, to settings where the observed outcomes of our

actions are confounded by unobserved latent factors.

Beyond proposing this bandit model that extends the synthetic control framework, our primary

technical contribution is an algorithm that, despite the challenges above, achieves a regret that
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scales like rσ
√
T . Here r is the dimension of the latent context, σ is the standard deviation of

exogenous additive noise in the test unit observations, and T is the experimentation horizon. We dub

our approach Synthetically Controlled Thompson Sampling (SCTS). SCTS consists of a Thompson

sampling routine with carefully designed ‘exploration noise’. Contexts are recovered via principal

components analysis (PCA) on historical observations. Importantly, our sampler is robust to the

errors in context recovery due to noise and the inability to recover rotations.

Let us put this result in context. Whereas there is no stochastic bandit algorithm to readily

benchmark against, it is worth noting that if one were allowed to observe contexts without noise in

the period immediately following a decision (an information structure substantially more generous

than what we have), Linear Thompson sampling would achieve regret that scales like r3/2σ
√
T , so

that despite having less information SCTS achieves superior regret; a result of independent interest.

An adversarial algorithm such as Exp3 would yield regret that scales like B
√
T where B is an upper

bound on the magnitude of observed outcomes. In contrast, the leading constant in our regret term,

rσ is independent of the magnitude of observed outcomes, and in fact goes to zero with exogenous

noise – this reflects the power of using the control units to control for confounding.

Inference: Turning to inference, we first focus on simply the task of identifying the optimal

treatment. There we show that for any fixed design, there exists a synthetic control model (i.e.

an outcome process for the experimental and control units satisfying the synthetic control model)

for which no algorithm can identify the optimal treatment irrespective of horizon. The situation

highlighted by this negative result is effectively assumed away in the traditional use of the synthetic

control method via assumptions that limit the ‘non-stationarity’ of the latent shared factors process.

We demonstrate through a real world dataset that such assumptions are not benign and that the

basic inferential task of identifying the optimal treatment with a fixed design is challenging in

real data. In contrast to this situation, we show that SCTS will identify the optimal arm with

high probability in the length of the experimental horizon, an observation also reflected in our

experimental results.

In settings favorable to fixed designs – i.e., those where non-stationarity in shared factors is

limited – SCTS admits estimation of the treatment effect at rates that line up precisely with those

achieved by the synthetic control method in the fixed design setting. More precisely, we provide the

same quality of inference as in a traditional fixed design experiment with synthetic control inference

on the event the treatment effect is positive. When the effect is negative, we are only able to detect

that this is the case. Quantification of the treatment effect is typically only relevant when the effect

is positive, so as to facilitate, for instance, cost-benefit analyses for a roll-out of the intervention. As

such, it would appear that the inability to precisely estimate a negative treatment effect (beyond

identifying that it is negative) is a small price to pay for the mitigation of cost and fragility afforded

by the approach.

Finally, with an eye to practice, we propose the use of re-randomization based hypothesis tests

and confidence intervals derived from inverting these tests. We see, on real world data, that these

tests are highly powered even for small treatment effects and that the confidence intervals derived
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from them provide near-ideal coverage.

Computational Experience: We present experimental work on both a synthetic data setup (wherein

the synthetic control model holds by construction), as well as on real world data, where this setup

is, at best, an approximation. In both cases, we see that SCTS employs a sub-optimal intervention

for a negligible fraction (typically a single digit percentage) of epochs over the experimentation

horizon. Compared with both a fixed and switchback design, SCTS thus materially reduces the cost

of exploration. Despite this, we see that our treatment effect estimator correctly identifies whether

or not the treatment effect is positive in every single one of our instances. Importantly, on the

instances where the treatment effect is positive, the relative RMSE of our estimator is comparable to

state-of-the-art estimators for both the switchback and fixed designs, and in fact outperforms these

incumbents in the real-data setting. As mentioned previously, re-randomization based hypothesis

tests and confidence intervals provide near-ideal coverage, even on real-world data, allowing for

effective inference.

1.2 Related Literature

Synthetic Control and Inference The notion of synthetic control was introduced initially in the

context of program evaluation: [4, 2] are seminal papers that propose to recover the counterfactual in

an observational setting by creating a “synthetic control”. Specifically, they proposed constructing

a convex combination of control units that matches the treated unit in pre-treatment periods.

A series of follow-on studies proposed distinct estimators by employing different constraints and

regularizers (e.g, [44, 38, 50, 14, 21]). See [1] for a review of this vibrant literature. Since the

underlying generative model justifying the synthetic control framework is in fact a factor model, it

is natural to consider using PCA-like techniques in the recovery of a synthetic control; the present

work leverages such techniques in a dynamic context. This approach is especially relevant in the

setting where the size of the ‘donor pool’ is large. [15, 63, 12, 20, 11, 9, 40] are all papers in this vein.

[40] in particular compute a min-max optimal estimator for a generalization of the synthetic control

problem. It is indeed possible to compute limiting distributions for synthetic control estimators in

various special cases. For instance, if one were willing to make probabilistic assumptions on the

data, it is possible to compute a limiting distribution for the synthetic control estimator (roughly,

this distribution is a projection of the OLS limiting distribution to a convex set); [49]. In practice,

however, inference for average treatment effects in synthetic control is done via non-parametric

methods such as permutation tests; see [33].

Synthetic Control in Experiment Design for Commerce Not surprisingly, synthetic control

approaches have gained traction in modern commerce settings; as a relatively early example [27]

describes an approach and corresponding software used by Google in the context of marketing

attribution. Going further, however, synthetic control has come to be viewed as an important tool

in experiment design as well, as opposed to simply in observational settings. For instance, [32, 46]

describe practical designs, at Lyft and Uber respectively, that assume a synthetic control model

holds across units. In a theoretical direction, [37] and [5] consider the problem of how best to
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select an experimental unit assuming the synthetic control model holds, motivated by problems at

Facebook and the ‘region-split’ experiments common to ride-sharing platforms respectively. Like

this work, the present paper also actively uses the synthetic control model in experiment design; in

our case these designs are ‘dynamic’.

Contextual Bandits and Inference The dynamic design that this paper constructs is, in a certain

idealized sense, a linear contextual bandit. This sort of bandit is classical, studied at least as early

as [17]. The practical constraints around our design necessitate a sampling methodology that draws

from recent work on Thompson sampling for such bandits; see [10, 8, 47]. As noted elsewhere, the

fundamental challenge we must address is that we never observe contexts directly. There is some

limited work discussing the use of dynamic bandit based designs in clinical trials, [62, 22].

Turning to inference, it is well known that naive sample estimates of arm means in bandits are

biased (see e.g. [62, 54]). A recent line of work considers ‘post-contextual bandit’ inference, where

certain importance-weighted estimators are shown to be unbiased and asymptotically normal; see

[42, 24] and also [36] for a different approach to the problem under a linear reward model. Extending

these to our setting is an exciting direction for future work. In addition to the observability of

the contexts, such an extension will also need to address the general problem that this line of

work requires a type of forced exploration of arms which may not be consistent with our bandit

algorithm. The present paper simply constructs high probability confidence intervals via the usual

self-normalized martingale concentration bounds. While loose in practice, they already illustrate

that we can expect rates that are essentially on par with what is possible for the vanilla synthetic

control estimator. In our experimental work, we complement these with bootstrapped confidence

intervals and permutation tests for significance that we show work adequately.

Non-stationary bandits A number of existing approaches address the problem of adaptive experi-

ment design with non-stationary outcomes. Foremost among these is the adversarial bandit setting

[18], which typically allows for bounded but otherwise arbitrary non-stationarity in outcomes for each

arm, and attempts to compete with the best arm on average in hindsight. Related to this literature,

[23] analyzes a setting where non-stationarity in outcomes is constrained by a fixed budget, and

characterizes regret relative to the best arm at each time. However, the regret guarantees possible

in such a setting scale poorly with T , relative to the usual adversarial bandit setting. Compared to

these settings, we propose a model which is realistic but significantly more structured, and obtain

correspondingly tighter guarantees; see for example the discussion in Section 3.1.

Concurrently to our work, [58] introduces a Thompson sampling variant in a setting in which

outcomes are linear functions of contexts, and the goal is to identify the best arm for some fixed

context known a priori. Similarly to SCTS, their approach does not require knowledge of the

context at time t prior to choosing the action at. Their setting differs from ours in several important

respects: they provide guarantees for the problem of best-arm identification (i.e., they do not present

a regret-minimizing algorithm; in fact their setting has no notion of regret); they assume that

contexts are fully observable ex-post, whereas in our setting contexts are latent and only recoverable

up to rotation; and they address the Bayesian setting, whereas our results are fully frequentist.
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The remainder of this paper is organized as follows:

1. Section 2 formalizes our setting and outlines our key contributions.

2. Section 3 introduces the SCTS algorithm and formalizes our main regret bound.

3. Section 4 presents a proof for the regret bound, which relies on a novel recovery bound for the

latent factors which is independent of condition number.

4. Section 5 presents guarantees regarding the recovery of the treatment effect and optimal

action, including comparisons against those available under fixed-design synthetic control.

5. Section 6 evaluates SCTS’ performance on both synthetic and real-world data, relative to

existing alternatives.

2 Model and Results

We measure some quantity of interest for an experimental unit (e.g., a region, in a region-split

experiment) over a pre-treatment period of length T0, and a subsequent treatment period of length

T . We denote the measurement made on this experimental unit at any epoch t by y0t ∈ R. We

assume that the pre-treatment period consists of epochs in {−T0 + 1, . . . , 0} and that the treatment

period consists of epochs in {1, 2, . . . , T}. We denote by at ∈ {0, 1} the indicator of whether or not

the experimental unit is treated at time t, so that at = 0 for all epochs in the pre-treatment period.

We assume that y0t is determined by the structural equation

y0t = τ∗at + ⟨λ∗, z̄t⟩+ ϵ0t , (1)

where τ∗ ∈ R is an unknown treatment effect, z̄t ∈ Rr is an (unknown) set of r ‘shared common

factors’ and λ∗ ∈ Rr is a set of (unknown) ‘factor loadings’ specific to the experimental unit.

The noise ϵ0t is assumed to be independent Gaussian with mean zero, and standard deviation σ.

The synthetic control paradigm assumes a generative setting where a weighted combination of

observations in the pool of donor units closely approximates counterfactual observations on the

experimental unit. Specifically we assume a pool of n ≥ r donor units, where for the ith such unit

yit = ⟨λi, z̄t⟩+ ϵit. (2)

Here z̄t is the same set of shared common factors and λi ∈ Rr is a set of factor loadings specific to

the ith donor unit. As before, ϵit ∼ N (0, σ2).

The factors z̄t are assumed to be bounded and adapted to history (precisely, {z̄t} is adapted to

the σ-algebra generated by (as, z̄s, ϵ
i
s)i∈[n],s<t), but may otherwise be arbitrary or even adversarially

chosen; this lack of assumptions on the factors gives the synthetic control model a great deal flexibility.

2.1 Fixed Design and Estimation

For context, it will be useful to review the status-quo approach to experimental design and

estimation in this setting, due to [4]. This approach employs a fixed experimental design, which
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simply sets at = 1 over the treatment period, (i.e. for t ∈ {1, 2, . . . , T}).
An estimate for τ∗ is then computed via the “vanilla”synthetic control method τSC, as in [2, 3].

[2] gives the following guarantee for the vanilla synthetic control estimator:

Proposition 1. With probability 1−O(δ),

|τSC − τ∗| ≲ σ√
T

√
log(1/δ) +

c2σ√
c1T0

√
log(1/δ) + log(n).

where c1 = σr(1/T0
∑

t=−T0+1,...,0 z̄tz̄
⊤
t ) and c2 ≜ maxt ∥zt∥2. In particular, c1 is loosely a metric

of non-stationarity in the latent factor process {z̄t}: if, for example, some dimension of z̄t is not

present during the pre-treatment period, then c1 can be arbitrarily small.

As a result, fixed-design synthetic control can utterly fail to learn the treatment effect when c1 is

not bounded away from zero, and is therefore not “safe” to use without strong assumptions on the

latent factor process. Existing literature (e.g., [2]) typically simply assumes that c1 is a constant,

but we will see in our experiments (Section 6) that this is often not a benign assumption in the real

world.

2.2 Dynamic Design and Estimator

As a solution to these two key weaknesses of fixed-design synthetic control – linear regret

and sensitivity to the latent factor process {z̄t} – we will propose a design which allows at to be

dynamic. Specifically, we allow at to be selected according to a randomized policy that is adapted to

Ft = σ((as, y
i
s)i∈[n],s<t), i.e. the filtration generated by observations up to and including time t− 1.

Define the cost of experimentation incurred at time t by the ‘regret’ incurred in that epoch,

Rt ≜ |τ∗| ·
(
1 {τ∗ < 0} at + 1 {τ∗ ≥ 0} (1− at)

)
.

This definition captures both the negative impact of a sub-optimal treatment, and the opportunity

cost of not using the treatment should it be optimal. The total cost incurred by the fixed synthetic

control design may then scale linearly with the length of the treatment period, T .

The total expected cost (or regret) of experimentation, R(T ), is then simply E
[∑T

t=1Rt

]
, where

the expectation is over the noise in observations and randomization in the design.

We will sometimes refer to this setup as the ‘Synthetically Controlled Bandit’.

Finally, an estimator is simply an FT+1 measurable random variable, that ideally provides a

good approximation to an estimand of interest: either the treatment effect τ∗, or the optimal action

a∗. With this setup, we now state the problems we wish to address:

• First, we would like to produce a dynamic design, i.e., a process {at}, that minimizes the total

cost of experimentation R(T ).

• Second, on the inferential side, we would like to identify the optimal action, a∗, with high

probability – without requiring assumptions on the latent factor process such as those in

2We write A ≲ B if A ≤ cB for some absolute constant c.
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Proposition 1. In addition, we wish to design an estimator of the treatment effect τ∗, τ̂ , for

which |τ̂ − τ∗| is ‘small’ with high probability on the event where a∗ = 1 (i.e. τ∗ > 0).

2.3 Results

In what follows, we describe our main results, making precise the regret achieved by our proposed

dynamic design, and the associated inferential results.

SCTS achieves
√
T regret: We propose a dynamic design, dubbed Synthetically Controlled

Thompson Sampling (SCTS), which we show achieves near-optimal experimentation cost:

Theorem 1 (Informal). Assume that the number of donor units n = Ω(T ). Then, under mild

assumptions on the shared common factors, we have that SCTS incurs a cost of experimentation,

R(T ) = O
(
r
√
T log(T )

)
.

In a nutshell, SCTS essentially eliminates the cost of experimentation, which as we noted earlier

will scale linearly with T for the fixed design. It is also worth placing the regret guarantee in context.

To that end, note that we have no information pertaining to z̄t (which is essentially arbitrary in the

synthetic control model) at the time we decide on at. Imagine for a moment, however, that at time t

we observed z̄s for all s < t. Of course, this is substantially more information than we have, but the

problem at hand reduces to a two-armed linear contextual bandit amenable to Linear Thompson

sampling 3. Linear Thompson sampling applied to this setup will achieve Õ(r3/2
√
T ) regret [8].4

In our setting, even the history of the shared common factors (i.e. z̄s for all s < t) is not available;

rather these must be inferred from our observations over the donor units. There we will see that

even with noiseless observations of yis on the donor units we would only succeed in recovering the

common factors z̄s up to a rotation. In light of these salient problem features it is notable that our

regret guarantee depends linearly on r, where r is typically much smaller than the ambient number

of donor units, n. This guarantee is our main theoretical result.

SCTS estimates the treatment effect as efficiently as vanilla SC: We now turn to inference.

There we know that, under the usual fixed design, the nominal [2, 3] synthetic control estimator

τSC achieves with probability 1−O(δ),

|τSC − τ∗| ≲ σ√
T

√
log(1/δ) +

c2σ

c1
√
T0

√
log(1/δ) + log n.

The regularization implicit in this estimator achieves a rate that is largely independent of n.5

Loosely, the constant c1 measures non-stationarity in the latent factor process {z̄t}. The constant

c2 depends on the size of the shared common factors. Asymptotic distributions for this estimator

without further distributional assumptions on the common factor process are unknown.

3this information relaxation continues to remain unamenable to LinUCB however, since the context at time t is
unavailable at the time of selecting at.

4The Õ(·) notation suppresses dependence on logarithmic factors, log(T ) and log(r).
5We write A ≲ B if A ≤ cB for some absolute constant c.

9



Our own estimator, τSCTS achieves similar rates: When τ∗ > 0, with probability 1 − O(δ) −
Õ(1/

√
T ),

|τSCTS − τ∗| ≲ σ√
T

√
log(1/δ) +

c2σ

c1
√
T0

√
log(1/δ) + log n.

On the other hand, when τ∗ ≤ 0, with probability 1 − Õ(1/
√
T ), τSCTS = 0 (i.e. we correctly

identify that the treatment effect is non-positive).

Contrasting this with the high probability confidence intervals for τSC, we see that on the event

that τ∗ > 0, we get the same intervals as the synthetic control estimator. On the event that τ∗ < 0,

we correctly learn that the treatment effect is non-positive. The result follows from a simple idea

expanded on in Section 5. In our computational experiments, we see that re-randomization tests

for p-values and the corresponding inverted hypothesis tests [41] for confidence intervals provide

adequate power and coverage.

SCTS robustly identifies the optimal treatment: The above guarantees are meaningful in the case

where c1 is large. However, when the shared common factors process {z̄t} is arbitrary, c1 can in-fact

be arbitrarily small. As a result, not only are the guarantees for the synthetic control estimator,

τSC vacuous, but in addition, we are able to show that for any fixed design, and any estimator â

of the optimal treatment a∗, there exists a problem instance for which P (â ̸= a∗) = Θ(1) (where

expectations are over the randomness in the instance). This is a striking negative result. In fact, we

also see that the result is not pathological: a real-world dataset we study exhibits a common factor

process for which the constant c1 is apparently small.

In contrast to this fragility, we show that under the SCTS design, it is simple to construct an

estimator of the optimal treatment, â, for which P (â = a∗) = 1 − O( 1
T ); in other words, SCTS

recovers the optimal treatment correctly with probability approaching 1 as T grows large – even

when the contexts {z̄t} are chosen by an Ft-adapted adversary. As we see in our experiments, this

robustness enables meaningfully better estimation of the treatment effect in real world datasets.

In their totality, these results show that we can largely eliminate the key challenges with typical

approaches to experiment design with synthetic controls: the cost of experimentation, and fragility

to the latent factor process. We achieve this while paying only a modest cost to inference, in

scenarios favorable to fixed-design synthetic controls: when the treatment effect is negative we only

learn that this is the case with high probability, as opposed to getting a precise estimate of the effect.

Since in practical settings a precise estimate of the treatment effect is typically only needed when

the treatment effect is positive (so as to ascertain whether the cost of implementing the intervention

is justified), this is perhaps a modest price to pay.

3 Synthetically Controlled Thompson Sampling

This section introduces Synthetically Controlled Thompson Sampling (SCTS), which adapts

Thompson Sampling (TS) to the Synthetically Controlled Bandit model introduced in the previous

section. The algorithm is conceptually simple: at the start of each epoch, t + 1, we compute a

distribution DTS
t over ‘plausible’ values of τ∗. This distribution may be thought of informally as an
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approximation to a posterior over τ∗ under a non-informative prior, given the information available

up to and including time t. We then sample from this distribution, and pick at+1 = 1 if and only if

the sampled value, τ̃t is non-negative. To construct DTS
t , we

1. First, estimate via PCA the (unobserved) shared common factors z̄s for s ≤ t.

2. Plugging in the estimates obtained for z̄s above into the structural equation (1), we compute

an estimate of τ∗ and λ∗ via ridge regression.

3. We use the estimates of τ∗ and the precision matrix obtained from the regression in the

previous step to construct our approximation to the posterior on τ∗, DTS
t .

Next, we make precise each of these steps, assuming, simply for notational convenience, that

T0 = 0.

Estimating Shared Common Factors Recall from (2), that for each donor unit i and epoch s, we

observe yis = ⟨λi, z̄s⟩+ ϵis. Define by Yt ∈ Rn×t the matrix with (i, s) entry yis, and similarly, define

by Et ∈ Rn×t the noise matrix with (i, s) entry ϵis. Now, let Λ ∈ Rn×r be the factor loadings matrix

with ith row λi⊤, and denote by Z̄t ∈ Rt×r the common factors matrix with sth row z̄⊤s . By (2), we

then observe at time t+ 1 the outcomes Yt = ΛZ̄⊤
t + Et. We estimate Z̄t at time t+ 1 by solving

min
Z∈Rt×r, Λ∈Rn×r

∥∥∥Yt − ΛZ⊤
∥∥∥2 . (3)

We fix a specific solution to the above optimization problem via PCA. Specifically, let Yt = ÛtΣ̂tV̂
⊤
t

be any singular value decomposition (SVD) of Yt. Denote by Û r
t and V̂ r

t the matrices obtained

from the first r columns of Ût and V̂t respectively. Finally, let Σ̂
r
t be the sub-matrix obtained from

Σ̂t from its first r rows and columns. By the Young-Eckart theorem, an optimal solution to (3),

(Λ̂t, Ẑt), can be obtained by setting Λ̂t ≜
√
nÛ r

t , and

Ẑt ≜
1√
n
V̂ r
t Σ̂

r
t .

We recognize Ẑt as precisely the usual ‘PCA loadings’; Ẑt will serve as our approximation to Z̄t.

Ridge Regression Recall that in our synthetic control model, we have for the treatment unit,

y0s = τ∗as + ⟨λ∗, z̄s⟩ + ϵ0s at each epoch s. At time t + 1, we employ this structural equation to

estimate τ∗ via least squares, using as a plug-in estimator6 for z̄⊤s , ẑ
⊤
s,t, the sth row of Ẑt. Our

estimate of τ∗ at time t+ 1, τ̂t, is obtained as the solution to the regularized least squares problem:

min
τ∈R, λ∈Rr

∑
s≤t

(
y0s − τas − ⟨λ, ẑs,t⟩

)2
+ ρ(τ2 + ∥λ∥22). (4)

Here, ρ > 0 is a regularization penalty.7

6While the subscript t in ẑs,t makes precise that this is our estimate of z̄s at time t, we will sometimes drop the t
subscript when clear from context.

7We fix ρ ≜ 1 throughout the paper.
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We find it convenient to define the ‘precision matrix’ Ωt ∈ R(r+1)×(r+1) of the estimator

θ̂⊤t ≜ [τ̂t λ̂
⊤
t ]. Specifically, if we denote x⊤s,t ≜ [as ẑ⊤s,t], then Ωt ≜ ρI +

∑
s≤t xs,tx

⊤
s,t. The ‘variance’8

of our estimator τ̂t is simply (Ωt)
−1
1,1 ≜ σ̂2

t .

Approximate Posterior For our approximation to the posterior on τ∗ at time t+1, we take DTS
t to

be the uniform distribution, Unif[τ̂t − βtσ̂t, τ̂t + βtσ̂t]. Here βt > 0 is a time-dependent ‘expansion’

factor we make precise later; for now we may simply consider βt to be an increasing sequence with

βt = O(
√
r log(rt)). As discussed earlier, SCTS draws a sample, τ̃t from DTS

t at time t+ 1. Then,

SCTS sets at+1 = 1 if and only if τ̃t ≥ 0.

Remark 1 (Inconsistent Designs). Notice that the design employed in the regression (4) is inconsistent

from period to period in the sense that the estimate for any fixed context z̄s in the design matrix

changes from period to period. Part of this is simply due to noise – as time goes on we hope to

compute a more accurate estimate of z̄s for any fixed s. However, as it turns out even in the absence

of noise (i.e., if Et were identically zero), we would still not expect consistency in the design since

even in that case, we would only ever be able to recover the contexts up to a rotation. A priori it is

unclear whether this inconsistency will allow for effective recovery of the treatment effect, and as

such it is unclear whether we can expect the algorithm we have described to achieve low regret.

Prior to stating out main result for SCTS, it is worth considering the relative merits of natural

alternatives.

3.1 Alternative Approaches

We consider in turn three alternatives to SCTS. The first is a natural UCB variant to SCTS that

points to the necessity of randomization in SCTS. Subsequently we consider LinUCB and Linear

Thompson Sampling (which we see do not naturally extend) and Exp3 (which we see incurs large

regret).

3.1.1 The Failure of UCB

A natural upper confidence bound (UCB) style alternative to the algorithm we have described, might

proceed by defining the upper confidence bound UCBt ≜ τ̂t + βtσ̂t, and then setting at+1 = 1 if and

only if UCBt ≥ 0. Perhaps surprisingly, this algorithm would incur linear regret in general; see

Proposition 2 below. We thus see that the randomization in SCTS plays a crucial role in achieving

sub-linear regret.

We will provide a class of simple and decidedly non-pathological instances wherein the above

UCB alternative to SCTS incurs linear regret. To begin, consider the case for r = 1 and σ = 0

(i.e. the noiseless scenario). Suppose the treatment effect is negative: τ∗ < 0. We also assume

λ∗ = 1− τ∗ and λi = 1 for i ∈ [n]. Further, let z̄t = 1. Then the outcome model implies that yit = 1

for all i ∈ [n], and y0t = 1− τ∗ + atτ
∗.

8While for expositional purposes we use the terminology ‘precision matrix’ and ‘variance’, these quantities are of
course not a precision matrix or variance since the design of the regression problem is not fixed.
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Recall that UCB chooses actions by the following procedure: (i) compute ẑt by estimating the

common factors through SVD; (ii) solve the ridge regression problem to obtain τ̂t and its ‘variance’

estimate σ̂t; (iii) play at = 1 if τ̂t + βtσ̂t ≥ 0, and at = 0 otherwise. Next, we will show that this

algorithm will constantly choose at = 1, for any ridge regularizer ρ and any sequence of βt, thereby

incurring O(T |τ∗|) regret.

Estimating shared common factors. By the SVD of Yt, one has Yt =
√
ntÛ⊤V̂ with Ûi =

√
1/n

and V̂s =
√

1/t. Then the estimator ẑt ≜
√
1/n

√
ntV̂s = 1, i.e., in the noiseless setting, ẑt = z̄t = 1.

Ridge regression. Recall that we will solve the following (regularized) least squares problem at

time step t+ 1.

min
τ∈R,λ∈Rr

∑
s≤t

(
y0s − τas − ⟨λ, ẑs⟩

)2
+ ρ(τ2 + ∥λ∥22)

Under the constructed setting and the assumption that as = 1 for s ≤ t, the problem is equivalent

to

min
τ∈R,λ∈Rr

∑
s≤t

(1− τ − λ)2 + ρ(τ2 + λ2)

which has the closed-form solution

τ̂t = λ̂t =
t

ρ+ 2t
.

Action decision. Since τ̂t > 0, we have τ̂t + βtσ̂t ≥ 0 and hence at+1 = 1. This implies the UCB

algorithm will play at = 1 for all t, thereby incurring regret T |τ∗|.

It is remarkable that this example would apply identically to the situation where the common factors

z̄s were observed exactly. The above discussion thus establishes:

Proposition 2. There exists a class of synthetically controlled bandit problem instances with r = 1

such that the UCB algorithm has linear regret, T |τ∗|.

3.1.2 Inapplicability of contextual bandit algorithms

While the outcome model (1) resembles that of a linear contextual bandit, it is worth emphasizing

that no information about the ‘context’ z̄t is available to the experimenter when choosing the

treatment at. As discussed earlier, LinUCB requires z̄t to be observed prior to choosing an action at.

This information structure can be relaxed: Linear Thomson Sampling requires only that z̄s for all

s < t be observed prior to choosing an action at. In our setting, while it is obvious that the contexts

z̄s are never observed, it is worth noting that they can never be recovered either, even as t grows
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large. Specifically, as noted earlier, this is due to the fact that (3) allows identification of contexts

only up to a rotation even in the absence of noise. SCTS addresses these issues by choosing actions

which are simultaneously (1) invariant to rotations of context, (2) robust to the ‘inconsistency’ in

designs over time steps and (3) nonetheless enjoy low single-step regret.

3.1.3 Adversarial bandits are overly conservative

‘Adversarial’ bandit algorithms such as Exp3 [18] are an approach to low-regret experimentation

when counter-factual outcomes vary adversarially; these algorithms are guaranteed to incur low

regret with respect to the best single action in hindsight. In our setting, the Exp3 algorithm could

be applied to the experimental unit, and doing so would obtain Õ(
√
T ) regret. In doing so, we would

be entirely discounting all of the information in the control units, which otherwise would intuitively

help control for confounding. The price paid for this is that the regret achieved by Exp3 depends

linearly on the magnitude of the rewards; here, roughly B + σ where B is an upper bound on ∥z̄t∥2.
This is problematic since we expect B to be large relative to the treatment effect τ∗ in practice; as

noted in [55], ‘the outside world often has a much larger effect on metrics than product changes do’.

In contrast, by virtue of using information from the control units to control for confounding, we will

see that the regret of SCTS depends only logarithmically on B, and as the noise level σ goes to

zero, the regret of SCTS goes to a constant.

3.2 SCTS Achieves Near-Optimal Regret

We now state a formal regret bound for SCTS (i.e. a formal restatement of Theorem 1). In order

to do so, we must first state our assumptions, which concern the expected value of the observation

matrix on the donor units, i.e., EYT ≜ ȲT , a rank r matrix. Specifically, we make assumptions on

the decomposition ȲT = ΛZ̄⊤
T . To do so, we first note that in our model, it is possible to assume,

without loss, a canonical version of this decomposition (note that the selection of Λ and Z̄T is not

unique due to the free choice of a rotation). In particular, letting ȲT = Ū Σ̄V̄ ⊤ be an SVD of ȲT ,

we may assume without loss, that Λ =
√
nŪ and Z̄T = V̄ Σ̄/

√
n; see Appendix A for details. Given

this canonical decomposition, we assume:

Assumption 1. For all t, ∥z̄t∥2 is upper bounded by a constant, B, and ∥λ∗∥2 = O(
√
r).

This assumption controls the scale of the mean rewards E[yit|at, zt] = τ∗at+ ⟨λ∗, z̄t⟩, in particular

guaranteeing that they are bounded. The assumption on ∥λ∗∥2 is satisfied when the mean rewards

E[yit|at, zt] have magnitude constant in n, t (i.e., scaling n actually yields more information about the

latent factors z̄t), and is implied by (and is substantially weaker than) the incoherence assumption

typically made in the matrix completion and panel data literature [28, 51, 7, 31, 19, 52, 20, 40].

We can now state our main regret bound for SCTS.

Theorem 1 (SCTS Regret). Let n = Ω(T ). Under Assumption 1, SCTS achieves expected regret

R(T ) = O(r
√
T log(T )).
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The O(·) notation in the above regret bound ignores terms that depend polynomially on σ and

logarithmically on B. As stated earlier, the linear dependence on r above is of note. We also observe

that beyond its rank, our guarantee remarkably has no further dependence on the spectrum of ȲT

(in particular, this matrix could be arbitrarily badly conditioned). This is encouraging since existing

methods such as synthetic control [2] typically make strong assumptions for the spectrum, which

are not benign in the real world; see Section 6. We achieve this using a novel matrix recovery bound

(Theorem 2; see Section 4.3) which we believe is of general interest for the field of low-rank matrix

recovery.

4 Regret Analysis

4.1 Proof Architecture for Theorem 1

The proof of Theorem 1 follows a familiar architecture that decomposes regret over time. We

lay out this architecture here and will make precise two key results (Propositions 3 and 4) that

enable the proof. Establishing these propositions is the core challenge in establishing a useful regret

guarantee. In what follows, we find it convenient to define the ‘true context’ vector x̄⊤t ≜ [at z̄
⊤
t ],

and the associated precision matrix Ω̄t ≜ ρI +
∑t

s=1 x̄sx̄
⊤
s . The Elliptical Potential Lemma [6] then

states

Lemma 1 (Elliptical Potential Lemma). Under Assumption 1, it holds that

T−1∑
t=0

∥x̄t+1∥Ω̄−1
t

= O
(√

rT log T
)
.

Now, we must control the error in our estimates of the context vectors, Z̄t, and the consequent error

in estimating τ∗. Specifically, define C latent
t to be the event that the error in recovering Z̄t is small:

C latent
t ≜

{
inf

Φ∈Or

∥Z̄t − ẐtΦ∥ ≤ α

}
.

Here Or is the set of r-dimensional rotations, and α ≤ cσ for some universal constant c. Observe

that we only control this error up to a rotation. We define the event that the error in estimating τ∗t

is small, Cest
t , according to Cest

t ≜ {|τ∗ − τ̂t| ≤ βtσ̂t/2} .
We will control single-step regret on the ‘clean’ event that both these errors are controlled,

Ct ≜ C latent
t ∩ Cest

t ; this is a high probability event:

Proposition 3 (clean event). For all t, under Assumption 1, P (Ct) ≥ 1−O(1/t2).

This result is proved in Appendix C. The result relies on an analysis generalizing the Davis-Kahan

theorem (to control C latent
t ) and the usual self-normalized martingale concentration bounds (to

control Cest
t ). A key additional ingredient is needed — in controlling Cest

t , we must deal with the

issue of inconsistent designs in the regression (4). As discussed in Section 3, one issue driving this

inconsistency is the fact that Z̄t can only be recovered up to a rotation. The proof of Proposition 3

overcomes this challenge by showing that the distribution of actions is invariant to rotations of Z̄t,
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so that we can assume a canonical rotation without loss of generality. We now state our bound on

single-step regret; this is the key result in our regret analysis and will be proved later in this section:

Proposition 4 (Single-step regret). For some universal constant c1, we have for all t,

E [Rt+1 | Ct] ≤ c1(1 + α)βtE
[
∥x̄t+1∥Ω̄−1

t

∣∣Ct

]
.

Theorem 1 then follows immediately from summing single-step regret and applying the Elliptical

Potential Lemma.

4.2 Bounding the Single-Step Regret

Proposition 4 is a critical enabler of our regret guarantee. The proof is remarkably short and

intuitive in the case of two treatments, which we present here. Our results generalize to K treatments

(see Section 7.1) via a more complicated geometric argument. We will begin with stating three

lemmas key to the proof. To that end, let x̄∗⊤t+1 ≜ [a∗ z̄⊤t+1], where a∗ = 1 if τ∗ > 0 and a∗ = 0

otherwise; and recall that x̄⊤t+1 ≜ [at+1 z̄⊤t+1]. Then we have:

Lemma 2. On Cest
t , Rt+1 ≤ 2βt

(
∥x̄∗t+1∥Ω−1

t
+ ∥x̄t+1∥Ω−1

t

)
.

This lemma is crucial to connecting single-step regret with an appropriate norm of x̄t so as to

eventually facilitate the use of the elliptical potential lemma and will be proved later in this section.

It is interesting to note that [8] proves a version of this result which in our setting would eventually

yield regret that scaled like Õ(r3/2
√
T ) as opposed to the Õ(r

√
T ) accomplished here; further, the

present proof is short. We also note that there is a norm mis-match in the lemma above since

we ideally want to measure x̄t in the ∥ · ∥Ω̄−1
t

norm. To relate these two norms we note that the

following is true on the event that Z̄t is well approximated:

Lemma 3. On C latent
t , we have ∥x∥Ω−1

t
≤ (1 + α)∥x∥Ω̄−1

t
for all x ∈ Rr+1.

The proof crucially uses the fact that the distribution of actions is in fact invariant to rotations of

Ẑt, so that we can assume a canonical rotation without loss. Finally, we observe that the probability

that the optimal action is selected is lower bounded by a constant:

Lemma 4. On Ct, SCTS selects the optimal action with constant probability, P (at+1 = a∗ | Ct) ≥ 1
4 .

So equipped, we have

Rt+1 ≤ 2βt

(
∥x̄∗t+1∥Ω−1

t
+ ∥x̄t+1∥Ω−1

t

)
≤ 2βt(1 + α)

(
∥x̄∗t+1∥Ω̄−1

t
+ ∥x̄t+1∥Ω̄−1

t

)
≤ 2βt(1 + α)

(
E[∥x̄t+1∥Ω̄−1

t
| Ct]

P
(
x̄t+1 = x̄∗t+1 | Ct

) + ∥x̄t+1∥Ω̄−1
t

)
≤ 2βt(1 + α)

(
4E[∥x̄t+1∥Ω̄−1

t
| Ct] + ∥x̄t+1∥Ω̄−1

t

)
where the first inequality is Lemma 2, the second uses Lemma 3, the third uses the law of total

expectation, and the final inequality is via Lemma 4. Taking expectations conditioned on Ct now

yields the result of the proposition. In the remainder of this Section, we prove Lemmas 2 and 4.
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Proof of Lemma 2 First observe that if 0 /∈ [τ̂t−βtσ̂t, τ̂t+βtσ̂t], then at+1 = a∗. On the other hand,

if 0 ∈ [τ̂t − βtσ̂t, τ̂t + βtσ̂t], then |τ∗| ≤ 2βtσ̂t. Consequently, if at+1 ̸= a∗, then Rt+1 = |τ∗| ≤ 2βtσ̂t.

We then complete the proof: σ̂t = ∥e1∥Ω−1
t

= ∥x∗t+1 − x̄t+1∥Ω−1
t

≤ ∥x∗t+1∥Ω−1
t

+ ∥x̄t+1∥Ω−1
t

Proof of Lemma 4 Suppose τ∗ ≥ 0. Then at+1 = a∗ whenever τ̃t ≥ 0. Note that P(τ̃t ≥ 0) ≥
P(τ̃t ≥ τ∗) ≥ P(τ̃t ≥ τ̂t + βtσ̂t/2) =

1
4 . When τ∗ < 0, the bound holds by symmetry.

4.3 A Novel Matrix Recovery Bound Independent of Condition Number

As alluded to earlier, our regret bound suprisingly has no dependence on the spectrum of Ȳt,

other than the rank. We achieve this via a novel matrix recovery bound, which guarantees recovery

of the latent factors at a rate independent of their conditioning:

Theorem 2 (Scaled Subspace Recovery). Let M, M̄,E ∈ Rn×m be arbitrary matrices such that

M = E + M̄ , and let Ū S̄V̄ ⊤, USV ⊤ be the SVDs of M̄,M respectively, truncated to r singular

values. Assume σr(M̄) > 0 and σr+1(M̄) = 0. Then, there exists an orthogonal matrix H ∈ Rr×r

such that

∥V̄ S̄H − V S∥ ≤ 3∥E∥.

For context, we can compare this bound to the Davis-Kahan Theorem, the classical guarantee

for subspace recovery under perturbation [34, 64, 51]. Under the same setup as Theorem 2, the

Davis-Kahan Theorem [51] implies the following bound: there exists an orthogonal matrix H such

that

max(∥ŪH − U∥, ∥V̄ H − V ∥) ≲ ∥E∥
σr(M̄)

. (5)

If we apply Eq. (5) directly to prove Theorem 2 (see details below), we would obtain

∥V̄ S̄H − V S∥ ≲
∥E∥

σr(M̄)
∥M̄∥ = κ∥E∥ (6)

which incurs an additional dependence on the conditional number κ := σ1(M̄)/σr(M̄). This

condition number is typically unknown in practice, and can be arbitrarily large: in the real-world

examples we consider in Section 6, we find that κ ≈ 103.

Given that the Davis-Kahan Theorem is central to low-rank matrix recovery, with broad

applications in image analysis, recommendation systems, bioinformatics, econometrics, and many

other fields [61, 53, 60, 13, 40], our mini-max optimal bound9 in Theorem 2 is of general interest;

for example in optimizing the condition number dependence in matrix completion [51, 7, 31, 29].

Proof. Next, we show the proof of Theorem 2 by constructing H explicitly and using a simple trick

(see Lemma 5 below). To begin, note that V̄ S̄ = M̄⊤Ū and V S = M⊤U simply because Ū⊤Ū = Ir

9The lower bound can be easily seen by taking E ∝ u1v
⊤
1 where u1 (v1) is the left (right) singular vector

corresponding to the largest singular value of M̄.
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and U⊤U = Ir. Then we can rewrite

∥V̄ S̄H − V S∥ = ∥M̄⊤ŪH −M⊤U∥.

By the triangle inequality,

∥M̄⊤ŪH −M⊤U∥ ≤ ∥(M̄ −M)⊤U∥+ ∥M̄⊤(ŪH − U)∥

≤ ∥E∥+ ∥M̄⊤(ŪH − U)∥

where the last inequality uses that M̄ − M = E and ∥U∥ ≤ 1. Then it is sufficient to bound

∥M̄⊤(ŪH − U)∥. Now, if we apply the Davis-Kahan Theorem directly (Eq. (5)), we would obtain

Eq. (6), a sub-optimal bound.

Instead, let us analyze ∥M̄⊤(ŪH − U)∥ more carefully. Note that

∥M̄⊤(ŪH − U)∥ = ∥V̄ S̄H − V̄ S̄Ū⊤U∥

≤ ∥V̄ ∥∥S̄(H − Ū⊤U)∥

≤ ∥S̄(H − Ū⊤U)∥.

It is sufficient to bound ∥S̄(H − Ū⊤U)∥. To do so, we construct H to be the optimal orthogonal

matrix for minimizing ∥ŪH−U∥F (i.e., aligning Ū and U in Frobenius distance), a common method

used in Davis-Kahan-type results. By Orthogonal Procrustes Theorem, we have

H ≜ Ũ Ṽ ⊤

where Ū⊤U = Ũ Σ̃Ṽ ⊤ is the SVD of Ū⊤U. Then

∥S̄(H − Ū⊤U)∥ = ∥S̄Ũ(Ir − Σ̃)Ṽ ⊤∥

= ∥S̄Ũ(Ir − Σ̃)∥

where we use that Ṽ ∈ Rr×r is an orthogonal matrix (so preserving the operator norm).

Next, we observe the following fact that turns out to be the key inequality of proving our result.

Lemma 5.

∥S̄Ũ(Ir − Σ̃)∥ ≤ ∥S̄Ũ(Ir − Σ̃2)∥ (7)

Proof. To see this, note that Σ̃ is a diagonal matrix. Further, 0 ≤ Σ̃ii ≤ 1 for i ∈ [n] since it

encodes the singular values of Ū⊤U (the largest singular value σ1(Ū
⊤U) = ∥Ū⊤U∥ ≤ ∥Ū∥∥U∥ = 1).

Therefore, Ir − Σ̃ is dominated by Ir − Σ̃2 (for each entry):

∀i ∈ [n], 0 ≤ (Ir − Σ̃)ii ≤ (Ir − Σ̃2)ii.
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Next, by the property of operator norm,

∥S̄Ũ(Ir − Σ̃)∥ = max
a∈Rr,∥a∥=1

∥a⊤S̄Ũ(Ir − Σ̃)∥

= max
b⊤=a⊤S̄Ũ ,a∈Rr,∥a∥=1

∥b⊤(Ir − Σ̃)∥

(i)

≤ max
b⊤=a⊤S̄Ũ ,a∈Rr,∥a∥=1

∥b⊤(Ir − Σ̃2)∥

= max
a∈Rr,∥a∥=1

∥a⊤S̄Ũ(Ir − Σ̃2)∥

= ∥S̄Ũ(Ir − Σ̃2)∥.

Here (i) uses that ∥b⊤(Ir − Σ̃)∥2 =
∑

i b
2
i (1 − Σii)

2 ≤
∑

i b
2
i (1 − Σ2

ii)
2 = ∥b⊤(Ir − Σ̃2)∥2. This

completes the proof. ■

By Eq. (7), we then have

∥S̄(H − Ū⊤U)∥ ≤ ∥S̄Ũ(Ir − Σ̃2)∥

= ∥S̄Ũ(Ir − Σ̃2)Ũ⊤∥

where the last inequality uses that Ũ ∈ Rr×r is an orthogonal matrix again. Note that Ũ Ũ⊤ = Ir

and Ũ Σ̃2Ũ⊤ = Ū⊤UU⊤Ū (this identity inspires us to replace Σ̃ by Σ̃2). Then,

∥S̄(H − Ū⊤U)∥ ≤ ∥S̄Ũ(Ir − Σ̃2)Ũ⊤∥

≤ ∥S̄ − S̄Ū⊤UU⊤Ū∥

= ∥S̄Ū⊤(In − UU⊤)Ū∥

where the last equality is due to Ū⊤Ū = Ir. Next, we use S̄Ū⊤ = V̄ ⊤M̄⊤, then

∥S̄(H − Ū⊤U)∥ ≤ ∥V̄ ⊤M̄⊤(In − UU⊤)Ū∥

≤ ∥M̄⊤(In − UU⊤)∥

= ∥(M − E)⊤(In − UU⊤)∥.

Finally note that ∥M(In − UU⊤)∥ = σr+1(M) ≤ ∥E∥ due to Weyl’s inequality. Then

∥S̄(H − Ū⊤U)∥ ≤ ∥E∥+ ∥E⊤(In − UU⊤)∥

≤ 2∥E∥.

This completes the proof. ■
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5 Inference

Having run our experiment up to time T , we now turn to the problem of recovering two key

estimands: the treatment effect τ∗, and the optimal action a∗. We will examine the inferential

guarantees possible under SCTS, as compared with fixed design synthetic control, in two settings:

(a) when the latent factor process {z̄t} is arbitrary, in which case fixed-design synthetic control

utterly fails to learn a∗, while SCTS recovers a∗ with probability approaching one; and (b) when

{z̄t} is favorable to fixed-design synthetic control, in which case both designs admit recovery of τ∗

at the same rate, when τ∗ is positive.

5.1 Recovery of the optimal treatment

We first consider the case where the latent factor process {z̄t} is arbitrary, other than being

non-anticipative and having bounded norm. As alluded to earlier, without further assumptions,

experiments using fixed treatment patterns can fail to yield any information about the optimal

treatment. This negative result in fact generalizes to any experiment design such that at is

deterministic conditional on Ft:

Proposition 5. Let {at} be any Ft-adapted treatment pattern, and let â be any estimator of the

optimal treatment. Then, there exists a problem instance {z̄t}t∈[T ], τ
∗, {λi}i∈[n], where {z̄t} satisfies

Assumption 1, such that P (â ̸= a∗) ≥ 1/2.

In contrast, we show that under the SCTS design (which, one should note, depends on algorithmic

noise in addition to Ft), one can always construct a simple hypothesis test, which identifies the

optimal treatment with high probability as T grows:

Proposition 6. Let â be the most frequently pulled arm under SCTS. Under Assumption 1, we have

P (â ̸= a∗) ≤ Cr log T
Tτ∗2

for some absolute constant C.

That is, taking τ∗ to be constant, the probability that SCTS fails to identify the optimal arm

is Õ( 1
T ). In practical terms, this guarantees that by running SCTS, one can estimate a∗ correctly

with probability approaching one; and furthermore, one can then perform a power analysis — prior

to the experiment, the analyst can choose an experimentation budget T to guarantee that SCTS

identifies the optimal arm with probability 1− δ. Clearly, no such analysis is possible a priori under

any experimental design for which Proposition 5 holds.

5.2 Estimation of the treatment effect

We now consider estimation of the treatment effect in settings favorable to fixed-design synthetic

control. Here, we will develop an estimator τSCTS for use with the SCTS design, which

• Enjoys identical confidence intervals to the vanilla SC estimator when τ∗ is non-negative;

• Is with high probability 0 when the treatment effect τ∗ is negative.
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As such we make precise our promise of precisely estimating the treatment effect when it

matters (i.e., when the treatment effect is non-negative, so as to permit a cost-benefit analysis of

implementation, say), while concluding that the treatment is ineffective when it is not.

Fixed-design synthetic control To make this setting precise, we first consider what can be

accomplished with synthetic control and a fixed design [2]. In particular, SC seeks to find a linear

combination of donor units to match the experimental unit based on the observations from the

pre-treatment period. SC assumes the existence of weights w1, w2, . . . , wn such that y0t =
∑n

i=1wiy
i
t

for all times t in the pre-treatment period {−T0 + 1, . . . , 0}. These weights are required to be

non-negative, and must sum to one.10 SC estimates the treatment effect τSC by averaging over the

differences between the synthetic control so constructed and the observed y0t over the treatment

period, i.e., τSC := 1
T

∑T
t=1

(
y0t −

∑n
i=1wiy

i
t

)
.

We restate a proposition which gives high-probability confidence intervals for synthetic controls

(see Appendix B in [2]):

Proposition 1. With probability 1−O(δ),

|τSC − τ∗| ≲ σ√
T

√
log(1/δ) +

c2σ√
c1T0

√
log(1/δ) + log(n).

where c1 = σr(1/T0
∑

t=−T0+1,...,0 z̄tz̄
⊤
t ) and c2 ≜ maxt ∥zt∥. The key term is c1, which measures

the conditioning of the subspace spanned by the latent factors over the pre-treatment period. In

full generality c1 can be arbitrarily small: at one extreme of non-stationarity, where some dimension

of {z̄t} is not observed during the pre-experiment period (but subsequently becomes significant

during the experiment period), c1 is then 0. The favorable case, then, is the regime where these

bounds are non-vacuous, i.e. c1 = Ω(1) and δ = 1/poly(n). In this setting, the result (optimal up to

logarithmic terms) is: |τSC − τ∗| = Õ
(
1/
√
T0 + 1/

√
T
)
.

Using the synthetic control estimator with an SCTS design We now describe one potential

estimator τSCTS for use with our dynamic SCTS design, built on top of the usual synthetic control

estimator [2].11

Let w1, w2, . . . , wn be the same weights used by the vanilla SC estimator; note that these are

computed using data available exclusively over the pre-treatment period. Now let M ≜ {t ≥ 1 : at =

1} be the epochs over which we experiment according to our dynamic SCTS design, and denote by

τ̃SC, the average difference between observed outcomes and the synthetic control over those epochs:

τ̃SC ≜ 1
|M |
∑

t∈M
(
y0t −

∑n
i=1wiy

i
t

)
.

We then propose an estimator, τSCTS for the treatment effect, where τSCTS = τSC if |M | ≥ T/2,

and τSCTS = 0 otherwise. This estimator then enjoys high-probability confidence intervals analogous

to the vanilla synthetic control setting:

10This requirement that the synthetic control be constructed as a convex (as opposed to affine) combination of
donor units serves effectively as a regularization mechanism.

11An alternative would be to use the ridge regression estimator τ̂T ; we instead introduce τSCTS to enable a better
comparison with the “vanilla” synthetic control estimator from [2].
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Proposition 7. 12 Let τ∗ be fixed. Then, when τ∗ ≥ 0, with probability 1−O(δ)− Õ(1/
√
T ),

|τSCTS − τ∗| ≲ σ√
T

√
log(1/δ) +

c2σ

c1
√
T0

√
log(1/δ) + log(n).

and when τ∗ < 0, with probability at least 1− Õ(1/
√
T ), τSCTS = 0.

As outlined at the outset, the result above shows high probability confidence intervals analogous

to the vanilla synthetic control setting on the event that the treatment effect is non-negative. On

the event where the treatment effect is negative, we see that we only learn that this is the case but

do not recover a precise estimate of the effect. As argued earlier, in the practical settings we care

about, a precise estimate of the treatment effect is typically not as important when the effect is

negative. As a result the regret gains made possible via the use of SCTS likely constitute a beneficial

tradeoff relative to the inference possible under τSCTS.

As discussed earlier, the high-probability confidence intervals described in this section are typically

quite conservative in practice. As such, in our experiments, we will explore a re-randomization

approach to hypothesis testing, and derive confidence intervals by inverting these tests.

6 Experiments

This section undertakes an experimental evaluation of SCTS using both synthetic and real-world

datasets. In the latter datasets, it is unclear that the synthetic control model holds (i.e., it is unclear

that the observed data can be explained by a low rank factor model), and the latent factor process

exhibits substantial nonstationarity. We compare SCTS against both the standard fixed design

(where at = 1 over the entire treatment period), as well as a switchback design (where at is set to

1 with probability 1/2 independently for each epoch in the treatment period) [26]. In the case of

these incumbent designs, we estimate the treatment effect using state-of-the-art estimators gleaned

from recent advances in ‘robust’ synthetic control and panel data regression. Our experiments will

illustrate the following salient features of SCTS:

1. The fraction of time SCTS chooses a sub-optimal action is small, both in synthetic and

real-world environments. In contrast, by definition, the switchback design picks a sub-optimal

action half of the time, while the fixed design picks the sub-optimal action all of the time

when the treatment effect is negative.

2. In a regime favorable to fixed design synthetic control, where we generate a stationary

latent factor process, our estimator of the treatment effect under SCTS achieves relative

error comparable to the competing designs when the treatment effect is positive. This same

estimator correctly identified that the treatment effect was negative in all experiments where

this was the case.

3. In the case of real world data where the latent factor process is non-stationary, and where the

fit of the latent factor model is not exact, we observe the same relative merits alluded to above,

12We can also show a stronger version of this result that makes precise the dependence of the rate on τ∗, and allows
for meaningful confidence intervals provided |τ∗| = ω(1/

√
T ).
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and in addition SCTS estimates the treatment effect much more accurately than the fixed

design. This exemplifies the insight that estimation under SCTS is robust to non-stationarity,

while in practice fixed designs may not admit accurate estimation of the treatment effect.

4. Re-randomization tests [41] provide a means to construct well-powered hypothesis tests

and confidence intervals for SCTS, despite the inferential challenges introduced by adaptive

treatment assignment.

6.1 Low Regret and Estimation Error on Synthetic Data

Our first set of experiments seeks to establish that SCTS incurs low regret while recovering the

treatment effect accurately. We first consider this on a synthetic set of problems that we describe next,

where the latent factor process is stationary and therefore favorable to fixed experimental designs.

Experimental setup: We experiment with a synthetically generated dataset. We generate the latent

factors and loadings Λ, Z̄T with entries distributed i.i.d. as N (0, 1), with n = 1000, T0 = 500, T = 500

and r = 50. Similarly, we generate λ∗ with i.i.d. N (0, 1) entries. We experiment with a signal-

to-noise ratio of 1; i.e., |τ∗|/σ = 1, and vary the sign of τ∗. Estimation: There are a variety of

treatment effect estimators we could use for any given experimental design. For SC, we report the

best performance over several estimators from the literature; the best performing estimator on our

synthetic examples is the robust synthetic control estimator proposed in [12]. For the switchback

design, we use our ridge regression estimator τ̂T . For SCTS, we estimate the treatment effect as

τ̂T when M ≥ N
2 , and 0 otherwise. Results: Table 1 shows mean regret and estimation error for

each algorithm averaged over 50 problem instances. The results comport favorably with the salient

features we outlined for SCTS at the outset. Specifically:

1. SCTS picks a sub-optimal action over at most 2% of the available testing epochs, thereby

mitigating any cost of experimentation. By construction this number is 50% for the switchback

design and 100% for the fixed design when the treatment effective is negative.

2. Despite the above gain, we continue to recover the treatment effect accurately with the

SCTS design. The relative RMSE was comparable to switchback and fixed designs when

the treatment effect is positive, and SCTS correctly identified that the treatment effect was

negative in all instances where this was the case.

3. From the plots in Figure 1, we see that the relative merits of SCTS alluded to above are

robust to the choice of experimentation horizon T .

6.2 Real-world data

Our second set of experiments serves the same purpose as the earlier set, except that this time

we consider real world data. As such, the latent factor process is non-stationary, and there is no

true low-rank factor model describing the data; at best we may hope that such a model provides a

good approximation to the observed data. As before, our goal will be to measure regret for SCTS

as well as estimation error.
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SCTS Switchback SC

τ∗ < 0 Regret 0.02 0.50 1.00
τ∗ > 0 Regret 0.01 0.50 0.00
τ∗ > 0 RMSE 0.06 0.08 0.06

Table 1: Regret and relative RMSE, averaged over 50 random synthetic instances. Regret is
normalized between 0 and 1. RMSE is normalized by |τ∗|. SCTS virtually eliminates the cost of
experimentation, while providing estimates of τ∗ of the same quality as more costly alternatives
when τ∗ > 0.
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Figure 1: Regret (normalized by t|τ∗|) and RMSE (normalized by |τ∗|) over time, for the synthetic
dataset. Unlike SC and switchback, SCTS exhibits regret vanishing over time in addition to a small
RMSE. These qualities are robust to the experimentation horizon T .

Experimental Setup: We adapt the Rossman Store Sales dataset13, which contains daily sales data

for n = 1115 drug stores over 942 days. We take T0 = T = 471. Letting O ∈ Rn×(T+T0) be the

matrix of observations in the dataset, we generate an ensemble of 50 instances as follows. For each

instance, we select a random store j to be the experimental unit, with outcomes y0t = Oj,t + τ∗at.

The remaining stores constitute the control units, with observations yit = Oi,t. Viewing the rank r

now as an algorithmic hyper-parameter, we use r = 70 in our experiments. This choice was made

via cross-validation on the pre-treatment period, as in [56]. As before, we experiment with two

values of τ∗: τ∗ = σ and τ∗ = −σ, where σ2 is estimated as mean squared error of O relative to its

best rank 70 approximation. Estimation: We use the same set of estimators here as in the previous

set of experiments with synthetic data. Results: At the outset, we note that the model equations

(1)–(2) on which any of our designs or estimation approaches are predicated do not hold exactly in

this setup. In particular, approximation error essentially precludes the ‘noise’ in our rank 70 model

from being Gaussian or i.i.d. Referring to Table 2, we observe:

1. SCTS picks a sub-optimal action over at most 13% of the available testing epochs, mitigating

the cost of experimentation.

2. Despite the above gain, we continue to recover the treatment effect accurately with the SCTS

13https://www.kaggle.com/c/rossmann-store-sales/

24



design, with relative RMSE is comparable to the switchback design. SCTS correctly identified

that the treatment effect was negative in all instances where this was the case.

3. Especially interesting is that relative RMSE is substantially lower than that for the fixed

design, exemplifying the robustness of SCTS over fixed designs. This setting is precisely

one where, due to non-stationarity, the synthetic controls are poorly estimated during the

pre-treatment period. In fact, the constant c1 of Proposition 1 is roughly 10−3. Here, SCTS

estimates the treatment effect well, while the fixed design fails to improve its estimate of the

treatment effect over time.

SCTS Switchback SC

τ∗ < 0 Regret 0.13 0.50 1.00
τ∗ > 0 Regret 0.09 0.50 0.00
τ∗ > 0 RMSE 0.12 0.07,0.91* 0.57

Table 2: Regret and relative estimation error, averaged over random instances generated from the
Rossman dataset. Regret is normalized between 0 and 1. RMSE is normalized by |τ∗|. In addition
to low regret, SCTS even produces better quality estimates of τ∗ in this setting, compared to SC.
For Switchback, we report RMSE for two estimators: τ̂T (RMSE=0.07), and a simple difference in
means with no synthetic controls (RMSE=0.91), highlighting the importance of synthetic controls
even with switchback designs.

Regret (τ* < 0) Regret (τ* > 0) RMSE (τ* > 0)
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Figure 2: Regret (normalized by t|τ∗|) and RMSE (normalized by |τ∗|) over time, averaged over
instances from the Rossman dataset. Unlike SC and Switchback, SCTS exhibits regret vanishing
over time in addition to a small RMSE. In particular SCTS and Switchback estimators both display
much lower RMSE than SC. These qualities hold essentially for all t in the horizon.

6.3 A Non-Parametric Approach to Inference

Finally, we explore a re-randomization approach to inference for SCTS. In particular, while the

high-probability concentration bounds of Lemma 3 can be used to provide confidence intervals for τ̂ ,

they assume that the structural model (1) is realizable, and tend to be conservative in practice. On

the other hand, post-bandit inference techniques such as those in [36, 24] could possibly be adapted
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SNR = 0.01 0.02 0.1 0.2 1

Coverage 0.89 0.87 0.87 0.90 0.89
Power 0.14 0.17 0.51 0.81 0.98

Table 3: Performance of the re-randomization test and confidence intervals on Rossman problem
instances, as a function of the effect size (normalized as SNR). As expected, coverage attains roughly
the nominal level 1− α where α = 0.1, while power increases quickly as we increase the effect size.

to our setting, but do not apply immediately (see Section 1.2 for discussion). This latter direction

remains an exciting direction for future work.

Here we propose a re-randomization test similar to that of [25] to construct a hypothesis test for

a sharp null that the treatment effect is some specific value. We then obtain confidence intervals by

inverting this hypothesis test, as described in [45]. The overall conclusion in this section is that (a)

our hypothesis test is highly powered for relatively low values of SNR where the treatment effect is

dominated by the noise and (b) our confidence intervals attain nearly ideal coverage even for very

low SNR. All of these experiments are run on the real data setup described in the preceding section.

A Re-Randomized Hypothesis Test and Confidence Intervals: We test the sharp null hypothesis Hτ

that the treatment effect is some constant τ , for all t. To implement such a test, suppose that we

have run SCTS for T time steps, obtaining an estimator τ̂T . We take this estimator to be our test

statistic. We can then construct an approximate hypothesis test, at significance level α, as follows:

1. We are given an observed trajectory of interventions under SCTS, {ahistt } and the corresponding

observations on the experimental unit {y0,histt }.

2. We next draw k samples τ (1) . . . τ (k) of the test statistic under the null hypothesis. We do so by

re-running SCTS, but assuming that we observe the sequence of outcomes y0,histt + τat− τahistt

3. We can then approximate the p-value of the test statistic as one minus the proportion of the

samples τ (1) . . . τ (k) which are less than τ̂T .

4. We reject Hτ if the p-value is less than the significance level α.

We may now construct confidence intervals by ‘inverting’ the above re-randomized hypothesis test, as

described in [45]. Precisely, for every null Hτ for some τ ∈ R, we can implement a re-randomization

test and decide whether to reject Hτ . The confidence set is then the set of τ values for which we do

not reject the corresponding null Hτ . Results: We assess our re-randomization test on 100 problem

instances generated from the Rossman sales dataset, as above. We draw k = 100 samples of the test

statistic for each instance and choose the the significance level to be α = 0.1. The results in Table 3

show that this test is highly powered even when the treatment effect is dominated by the noise (i.e.,

at an SNR of 0.2). Power is already nearly 1 at an SNR of 1. Further, we see that the coverage of

the test is close to ideal (given the significance level of 0.1, ideal here is 0.9) over a broad range of

SNRs from 0.01 to 1. In summary, we conclude that the re-randomization tests and corresponding

confidence intervals reported here are adequate for inference even when SNR is low.
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7 Discussion

We motivated our dynamic design by the real-world setting where, to mitigate interference,

we must select ‘coarse’ treatment units. By nature, coarse units require synthetic controls for

high-quality inference, and also suffer a cost of experimentation (as characterized by regret) that

may not be trivially ignored. At the same time, the non-stationarity embodied by the synthetic

controls has the potential to confound inference, so as to render any fixed experimental design

uninformative.

The SCTS approach is a new dynamic design that addresses these issues. A number of real-world

concerns, however, are not yet captured by the present model. Here, we provide extensions that

address some of these issues, and outline several more that represent promising directions for future

work.

7.1 Extensions

Instance-dependent bounds The bound of Theorem 1 quantifies an instance-independent, worst

case regret for SCTS; in particular this entails a worst-case choice of treatment effect. A more

refined analysis reveals that regret may indeed be smaller – logarithmic in T – depending on the

scaling of the treatment effect:

Theorem 3. Let n = Ω(T ). Under Assumption 1, SCTS achieves expected regret R(T ) = O
(
r2 log(T )

|τ∗|

)
.

As a corollary of this result, we see that the frequency with which SCTS applies a suboptimal

treatment – and by extension, the frequency with which SCTS switches treatments – decreases with

T when the treatment effect is sufficiently large. This is a major advantage relative to non-adaptive

randomized designs (such as “switchbacks”, see e.g. [25]) in settings where switching treatments

has associated friction.

Early-stopping Another related experimentation objective may be to identify the optimal treatment

with high probability, as quickly as possible. To this end, we can define an early-stopping variant of

SCTS, which simply stops the experiment when either the confidence set excludes τ∗ = 0 (i.e., the

sign of τ∗ has been identified with high probability), or the horizon T ends. This early-stopping

approach has the following guarantee:

Theorem 4. Let s be the early stopping time, and assume n = Ω(T ). Then, the expected time to

stop is E[s] = O(r2 log(T )/|τ∗|2), and the probability SCTS fails to identify the optimal treatment is

bounded by O(r2 log(T )/(T |τ∗|2)).

Therefore, taking the treatment effect and rank to be constants, one can expect to identify the

optimal treatment with probability 1− Õ(1/T ), with an expected experiment duration of O(log(T )).

7.2 Limitations and Open Directions

Spill-over Effects In dynamic designs — the switchback design is a simple example, SCTS is

another — one often cares about ‘spill-over’ effects wherein a treatment applied in one epoch might
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influence outcomes in subsequent epochs. The fix to this issue is to typically allow a ‘burn-in’ period

that ignores epochs impacted by such spill-overs. These burn-in periods typically precede and follow

a switch from one type of treatment to another. Whereas we have not posited a formal model, it is

reasonable to conjecture that in our setting, one could employ a similar strategy. Since the number

of switches in SCTS is small (i.e. O(log(T )/|τ∗|2)), the added regret from such burn-in periods will

scale sub-linearly with the horizon.

Interventions over Consecutive Epochs For some interventions, it may be practically necessary

(for instance, from a consumer experience standpoint) that any intervention be maintained over a

certain minimum number of consecutive epochs. We believe this to be an important area for future

work, closely related to notions of switching costs and batching in the bandit literature. A number

of flavors of this problem have been considered in recent years, including incorporating switching

costs [35], and batching that makes the decision to stop using a potential intervention irrevocable

[57]. Very recently, [39, 43] have extended the batched bandit formalism to linear contextual bandits.

Whereas none of these models precisely address the modeling need above, they provide a very

reasonable foundation for a potential extension to SCTS that incorporates the constraint that any

intervention must be pursued for a certain minimal number of consecutive epochs.

Post-Bandit Inference As discussed earlier, while we can establish high-probability confidence

intervals (that are conservative) and re-randomization tests (that appear to work well practically), we

would ideally like to construct estimators with limiting distributions that permit powerful inference.

The growing post-bandit inference literature [24, 42, 36] provides an approach to accomplishing this

goal. The primary roadblock here is that existing proposals ask for a lower bound on the rate of

decay of exploration, and it is not clear that such a lower bound is met by the current proposal.
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A Canonical Decomposition

Consider the structural model given by parameters λ∗′,Λ′, Z̄ ′
T

E[y0t ] =
〈
λ∗′, z̄′t

〉
+ τ∗at E[YT ] = Λ′(Z̄ ′

T )
⊤

It is easy to see that the selections of λ∗, Z̄ ′
T ,Λ

′ are not unique due to the free rotations.
Let E[YT ] = ŪT Σ̄T V̄

⊤
T be an SVD of E[YT ] and let Z̄T = 1√

n
V̄T Σ̄T . We aim to show that Z̄T can

constitute a canonical representation. In particular, it is sufficient to show that there exist unique
λ∗ and Λ such that

E[y0t ] = ⟨λ∗, z̄t⟩+ τ∗at E[YT ] = Λ(Z̄T )
⊤

Since E
[
Y ⊤
T

]
is exactly rank r, the column spaces of Z̄T and Z̄ ′

T must be the same. Therefore
there must exist an invertible matrix H such that Z̄T = Z̄ ′

TH, which induces unique choices of λ∗

and Λ:

λ∗ = Hλ∗′

Λ = Λ′H.

B Full Version of Theorem 1

B.1 Statement of Theorem

Here we state the full version of our main theorem, Theorem 1, which includes explicit depen-
dencies on all problem parameters.

Theorem 5. Under Assumption 1, the regret of SCTS is

R(T ) ≤ 4|τ∗|+ 10βt

(
1 +

1
√
ρ
α

)
(|τ∗| ∨ 1)

√
T log

(
1 +

TB2

r + 1

)
where we define

α = 20σ

√
n ∨ T

n

βt = 2σ(r + 1)
√
2 log t (r + 1 + t(B + 1 + α)) + (∥λ∗∥+ |τ∗|)(√ρ+ α)

C Proof of Proposition 3

We proceed with the proof by showing that P(C latent
t ) and P(Cest

t ) are well controlled, separately.

C.1 Controlling P(C latent
t )

Recall the definition of C latent
t :

C latent
t =

{
inf

Φ∈Or

∥Z̄t − ẐtΦ∥ ≤ α

}
.

The following lemma, based on a generalization of the Davis-Kahan bound, provides the desired
bounds for P(C latent

t ).
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Lemma 6. Let α ≜ 20σ
√

n∨T
n . Then, for all t, with probability 1−O(1/t8),

inf
Φ∈Or

∥Z̄t − ẐtΦ∥ ≤ α (8)

Proof. We are interested in three SVDs at time t, each of rank r:

• ȲT = ŪT S̄T V̄
⊤
T =

√
nŪT Z̄T , where Z̄T is the “canonical” representation of the latent covariates.

• ÛtŜtV̂
⊤
t =

√
nÛtẐt, which is the SVD of Yt truncated to r singular values.

• Ȳt = ŪtS̄tV̄
⊤
t , i.e. the SVD of the mean control outcomes up to time t.

First, observe that Ȳt = ŪtS̄tV̄
⊤
t = ŪT S̄T (V̄

⊤
T,:t) (where V̄T,:t denotes the first t rows of V̄T ), and

therefore 1√
n
V̄tS̄tŪ

⊤
t ŪT = 1√

n
V̄T,:tS̄ = Z̄t. This will allow us to relate Ẑt to Z̄t:

inf
Φ∈Or

∥ẐtΦ− Z̄t∥ =
1√
n

inf
Φ∈Or

∥V̂tŜtΦ− V̄tS̄tŪ
⊤
t ŪT ∥

(i)
=

1√
n

inf
Φ∈Or

∥V̂tŜtΦ− V̄tS̄t∥

(ii)

≤ 4
∥Et∥√

n

where (i) uses that Ū⊤
t ŪT is a rotation (see below) and (ii) uses Theorem 2.14 Then, using Theorem 6,

we have ∥Et∥ ≤ 5σ
√
n ∨ t with probability 1− 1

(n∨t)8 .

It remains to show that Ū⊤
t ŪT is a rotation. First, we note that colspan(Ūt) = colspan(ŪT ): if

rank(Ȳt) = r this must hold since Ȳt ∈ colspan(Ūt) and Ȳt ∈ colspan(ŪT ); if rank(Ȳt) < r we can
always choose Ūt such that this holds. As a result, projecting the columns of ŪT onto colspan(Ūt)
does not change them – i.e. ŪtŪ

⊤
t ŪT = ŪT – and therefore Ū⊤

T ŪtŪ
⊤
t ŪT = I. A symmetric argument

gives that Ū⊤
t ŪT Ū

⊤
T Ūt = I, from which it follows that Ū⊤

t ŪT is a rotation.

C.2 Controlling P(Cest
t )

Next, we bound the probability P(Cest
t ). Recall that Cest

t = {|τ∗ − τ̂t| ≤ βtσ̂t/2}, where we
define βt explicitly below.

Lemma 7. With probability 1− 2
t2
, it holds that |τ∗ − τ̂t| ≤ βtσ̂t/2, where

βt = 2σ

√
2(r + 1) log t

(
r + 1 + t(B + 1 + 20σ

√
(n ∨ T )/n)

)
+ (∥λ∗∥+ |τ∗|)(20σ

√
(n ∨ T )/n+ 1)

Note that θ̂⊤t ≜ [τ̂t λ̂
⊤
t ] is the solution of the following quadratic program:

min
τ∈R,λ∈Rr

∑
s≤t

(
y0s − τas − ⟨λ, ẑs⟩

)2
+ ρ(τ2 + ∥λ∥22) (9)

with y0s = τ∗as + ⟨λ∗, z̄s⟩ + ϵ0s. Denote x⊤s ≜ [as ẑ⊤s ], let Ωt = ρI +
∑

s≤t xsx
⊤
s be the ‘precision’

matrix of θ̂t. The ‘variance’ estimator is

14A direct application of the Davis-Kahan theorem would have resulted in a dependence on the condition number
of Ȳt, σ1(Ȳt)/σr(Ȳt). Theorem 2 represents an improved bound (detailed in Section 4.3) which allows us to avoid
dependence on the condition number.
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σ̂2
t = (Ωt)

−1
1,1.

We address the following two issues to complete the proof.

1. Due to the rotation ambiguity, there is no direct connection between ẑs and z̄s. That is to say,
we can only bound ∥Φẑs − z̄s∥ for some unknown rotation Φ. For addressing this, we show
that τ̂t, σ̂t are invariant to the rotation Φ, hence one can rewrite Φẑs as ẑs without loss, for
the purpose of analysis. See Appendix C.2.1.

2. Given the bound ∥ẑs − z̄s∥, the problem reduces to an analysis of ridge regression with
errors-in-variables, with an adapted design matrix. We adapt a typical bound from LinUCB
[6] for ridge regression without errors-in-variables to our setting. See Appendix C.2.2.

C.2.1 Invariance to Rotation

To begin, we show that under our SCTS algorithm, τ̂t, σ̂t are invariant to any rotation of the
estimated contexts Ẑt. This then enables us to assume that Ẑt aligns with Z̄t by the best rotation,
given by Eq. (8), without loss.

Specifically, suppose the observed context were Φẑs instead ẑs for some rotation Φ ∈ Or×r, and
we wanted to solve the optimization problem:

min
τ∈R,λ∈Rr

∑
s≤t

(
y0s − τas − ⟨λ,Φẑs⟩

)2
+ ρ(τ2 + ∥λ∥22) (10)

Let τ̆t, λ̆t be the corresponding optimal solution. One can easily see that

τ̆t = τ̂t

λ̆t = Φλ̂t

by the equivalence between Eq. (9) and Eq. (10) through the corresponding transformation.
This implies that τ̂t is invariant to the rotation Φ. Further, let x̆⊤s ≜ [as (Φẑs)

⊤] and

Ω̆t = ρI +
∑
s≤t

x̆sx̆
⊤
s

= ρI +
∑
s≤t

[
as
Φẑs

] [
as
Φẑs

]⊤
= I1,ΦΩ̂tI

⊤
1,Φ

where

I1,Φ ≜

(
1 01×r

0r×1 Φ

)
.

This implies that
Ω̆−1
t = (I1,ΦΩ̂tI

⊤
1,Φ)

−1 = I1,ΦΩ̂
−1
t I⊤1,Φ.

Therefore,
(Ω̆−1

t )11 = e⊤1 I1,ΦΩ̂
−1
t I⊤1,Φe1 = e⊤1 Ω̂

−1
t e1 = (Ω̂−1

t )11
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due to I⊤1,Φe1 = e1. This is to say, σ̂t is also invariant to the rotation Φ.

Hence, since the action chosen by SCTS only depends on Ẑt via τ̂t and σ̂t, and these two
quantities are invariant to the rotation of Ẑt, then the regret of SCTS is also invariant to the rotation
of Ẑt. Without loss, we will rewrite ẐtΦ as Ẑt for the simplification of the analysis, if there is no
ambiguity. Then under C latent

t , we have

∥Z̄t − Ẑt∥ ≤ α

C.2.2 Confidence Intervals for Ridge Regression.

First, we show a generic confidence interval for ridge regression with errors-in-variables, which
adapts the bounds used in LinUCB [6]. For a matrix A, let ∥A∥2,∞ = max∥u∥2=1 ∥Au∥∞ denote the
maximum norm of its rows.

Proposition 8. Let {Ft}t∈N be a filtration. Let {xt, x̄t}t∈N be a Ft -measurable, Rd -valued stochastic
process. Let {εt}t∈N be an Ft+1 -measurable, R -valued stochastic process. Let εt further be σ-
subgaussian conditional on Ft. Define X̄ = [x̄1 x̄2 . . . x̄t]

⊤, X = [x1 x2 . . . xt]
⊤, ε = [ε1 ε2 . . . εt]

⊤ and
let y = X̄θ∗ + ε.

Define for some ρ > 0 the quantities:

Ω = ρI +X⊤X

θ̂ = Ω−1X⊤Y

β(δ) = σ

√
d log

(
dρ+ t(∥X̄∥2,∞ + ∥X − X̄∥)

δ

)
+ ∥θ∗∥2 (

∥∥X − X̄
∥∥+√

ρ)

Then, with probability 1− δ, it holds that∥∥∥θ̂ − θ∗
∥∥∥
Ω
≤ β(δ)

Proof.

1. We begin by decomposing the error into the the usual ridge regression error, plus a term that
depends on the errors in variables.

θ̂ = Ω−1X⊤y

= Ω−1X⊤(X̄θ∗ + ε)

= Ω−1X⊤((X + X̄ −X)θ∗ + ε)

= Ω−1X⊤Xθ∗ +Ω−1X⊤(X̄ −X)θ∗ +Ω−1X⊤ε

= Ω−1(ρI +X⊤X)θ∗ − ρΩ−1θ∗ +Ω−1X⊤(X̄ −X)θ∗ +Ω−1X⊤ε

= θ∗ − ρΩ−1θ∗ +Ω−1X⊤(X̄ −X)θ∗ +Ω−1X⊤ε

=⇒ x⊤θ̂ − x⊤θ∗ =
〈
x,X⊤ε

〉
Ω−1

+
〈
x, (X⊤(X̄ −X)− ρI)θ∗

〉
Ω−1

≤ ∥x∥Ω−1

(
∥X⊤ε∥Ω−1 + ∥θ∗∥2

∥∥X̄ −X
∥∥+ ρ∥θ∗∥Ω−1

)
≤ ∥x∥Ω−1

(
∥X⊤ε∥Ω−1 + ∥θ∗∥2

∥∥X̄ −X
∥∥+√

ρ∥θ∗∥2
)
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The second inequality uses λmax(Ω
−1) ≥ 1/ρ, and the first inequality uses Cauchy-Schwarz

and the following bound:

x⊤Ω−1X⊤(X̄ −X)θ∗ ≤
∥∥XΩ−1x

∥∥
2

∥∥(X̄ −X)θ∗
∥∥
2

=

√
∥XΩ−1x∥22

∥∥(X̄ −X)θ∗
∥∥
2

≤
√
∥XΩ−1x∥22 + ρx⊤Ω−1Ω−1x

∥∥(X̄ −X)θ∗
∥∥
2

=
√
x⊤Ω−1(X⊤X + ρI)Ω−1x

∥∥(X̄ −X)θ∗
∥∥
2

=
√
x⊤Ω−1x

∥∥(X̄ −X)θ∗
∥∥
2

= ∥x∥Ω−1

∥∥(X̄ −X)θ∗
∥∥
2

= ∥x∥Ω−1

∥∥X̄ −X
∥∥ ∥θ∗∥2

2. Choosing x = Ω(θ̂ − θ∗), we have:

∥∥∥θ̂ − θ∗
∥∥∥2
Ω
≤
∥∥∥θ̂ − θ∗

∥∥∥
Ω

(
∥X⊤ε∥Ω−1 + ∥θ∗∥2

∥∥X − X̄
∥∥+√

ρ∥θ∗∥2
)

3. Theorem 1 of [6] gives that with probability 1− δ/2,

∥∥∥X⊤ε
∥∥∥
Ω−1

≤ σ

√
d log

(
dρ+ t∥X∥2,∞

δ

)
4. Finally, we need only bound ∥X∥2,∞ in terms of ∥X̄∥2,∞:

∥X∥2,∞ ≤ ∥X̄∥2,∞ + ∥X − X̄∥2,∞ ≤ ∥X̄∥2,∞ + ∥X − X̄∥

where the first inequality uses the triangle inequality, and the second uses the generic norm
inequality ∥A∥2,∞ = max∥u∥2=1 ∥Au∥∞ ≤ max∥u∥2=1 ∥Au∥2 = ∥X∥

C.2.3 Completing the proof of Lemma 7

Applying Proposition 8, with δ = 1/t2, d = r+1, ρ = 1, and using that ∥X̄∥2,∞ ≤ ∥Z̄∥2,∞+1 ≤ B+1,
we immediately have that

∥θ̂t − θ∗∥Ωt ≤ σ

√
2(r + 1) log

(
t
(
r + 1 + t(B + 1 + ∥Ẑt − Z̄t∥)

))
+ ∥θ∗∥2 (∥Ẑt − Z̄t∥+ 1)

On C latent
t , which occurs with probability 1− 1

t8
, we have the bound ∥Ẑt−Z̄t∥ ≤ 20σ

√
max(n, T )/n.

Then via a union bound, with probability 1− 1
t2
− 1

t8
≥ 1− 2

t2
it holds that
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∥θ̂t − θ∗∥Ωt ≤ σ

√
2(r + 1) log

(
t
(
r + 1 + t(B + 1 + 20σ

√
max(n, T )/n)

))
+ (∥λ∗∥+ |τ∗|)(20σ

√
max(n, T )/n+ 1)

= βt/2 = O(
√
r log(rt))

Further,

|τ̂t − τ∗| = |⟨θ̂t − θ∗, e1⟩| ≤ ∥θ̂t − θ∗∥Ωt∥e1∥Ω−1
t

= βtσ̂t/2.

This completes the proof.

C.3 Proof of Lemma 3

To begin, we have the following lemma to connect the ∥ · ∥Ω̄ and ∥ · ∥Ω norms.

Lemma 8. For some X̄,X ∈ Rt×r, ρ > 0, let Ω̄ = ρI + X̄⊤X̄,Ω = ρI +X⊤X, and Ξ = X − X̄.
Then for any vector a ∈ Rr, it holds that

∥a∥Ω̄ ≤ ∥a∥Ω (1 + ρ−
1
2 ∥Ξ∥)

Proof. Expanding the definition of Ω, we have:

∥a∥2Ω̄−Ω = a⊤(Ω̄− Ω)a

= a⊤
(
Ξ⊤X +X⊤Ξ + Ξ⊤Ξ

)
a

≤ 2 ∥a∥2 ∥Ξ∥ ∥Xa∥2 + ∥a∥22
∥∥∥Ξ⊤Ξ

∥∥∥
≤ 2

√
ρ
∥a∥2Ω∥Ξ∥+

1

ρ
∥a∥2Ω∥Ξ∥2

where the first inequality follows from Cauchy-Schwarz and the triangle inequality, and the
second inequality uses the following inequalities:

• ∥Xa∥22 = a⊤X⊤Xa = a⊤(X⊤X + ρI)a− ρ∥a∥22 = ∥a∥2Ω − ρ ∥a∥22 ≤ ∥a∥2Ω

• ∥a∥2Ω ≥ σr(Ω) ∥a∥22 ≥ ρ ∥a∥22

We then use this to bound the difference between ∥a∥Ω̄ and ∥a∥Ω:
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∥a∥2Ω̄ = ∥a∥2Ω + ∥a∥2Ω̄−Ω

≤ ∥a∥2Ω +
2

ρ
1
2

∥a∥2Ω ∥Ξ∥+ 1

ρ
∥a∥2Ω ∥Ξ∥2

= ∥a∥2Ω

(
1 +

2

ρ
1
2

∥Ξ∥+ 1

ρ
∥Ξ∥2

)

= ∥a∥2Ω

(
1 +

1

ρ
1
2

∥Ξ∥

)2

Lemma 8 also implies the same bound on difference between the inverse norms ∥·∥Ω−1 and ∥·∥Ω̄−1 ;
i.e.

∥a∥Ω̄−1 = max
∥u∥Ω̄≤1

⟨a, u⟩ ≤ max
∥u∥Ω≤1+ρ−1/2∥Ξ∥

⟨a, u⟩ ≤ (1 + ρ−1/2∥Ξ∥)∥a∥Ω−1 .

Then, applying Lemma 8 and the rotation invariance discussed in Appendix C.2.1, under C latent,
we have

∥a∥Ω̄−1
t

≤ (1 + ρ−1/2∥Ξ∥)∥a∥Ω−1
t

≤ (1 + ∥Ẑt − Z̄t∥)∥a∥Ω−1
t

≤ (1 + α)∥a∥Ω−1
t
.

with ρ ≜ 1. This completes the proof.

D Proofs of Inferential Results

D.1 Proof of proposition 5

Let z̄t = at/B, and note that this z̄t is Ft -adapted and satisfies Assumption 1. Suppose that
P (â ̸= a) ≤ 1/2 for some instance with parameters τ∗0 , {λi

0}i∈[n]. Now consider another instance,
with parameters τ∗ = −τ∗0 and λi = λi

0 + 2τ0. For any realization of the exogenous noise {ϵit}it, the
rewards will be the same under both instances. By a coupling argument it must then hold that
P (â ̸= a∗) ≥ 1

2 .

D.2 Proof of Proposition 1

Proof. By definition, the estimator τSC is

τSC :=
1

T

T∑
t=1

(
y0t −

n∑
i=1

wiy
i
t

)

= τ∗ +
1

T

T∑
t=1

(
λ∗⊤z̄t −

n∑
i=1

wiλ
i⊤z̄t

)
+

1

T

T∑
t=1

(
ϵ0t −

n∑
i=1

wiϵ
i
t

)
︸ ︷︷ ︸

R1

= τ∗ +

(
λ∗⊤ −

n∑
i=1

wiλ
i⊤

)(
1

T

T∑
t=1

z̄t

)
+R1. (11)
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Let Z = [z̄⊤1 ; z̄
⊤
2 ; ·; z̄⊤T0

] ∈ RT0×r. Let E ∈ R(n+1)×T0 be noise matrix with entries Eij = ϵij−T0
for

i = 0, 1, . . . , n, j = 1, 2, . . . , T0. Let Ei be the i-th row of E.
Then, from y0t =

∑n
i=1wiy

i
t, t = −T0 + 1, . . . ,−1, 0, we have

Zλ∗ + E0 = Z

(
n∑

i=1

wiλ
i

)
+

n∑
i=1

wiEi

Let Z−1 be the pseudo-inverse of Z. We then have Z−1Z = Ir and

λ∗ −

(
n∑

i=1

wiλ
i

)
= Z−1

(
n∑

i=1

wiEi − E0

)
. (12)

Plugging Eq. (12) back into Eq. (11), we have

τSC − τ∗ =

(
Z−1

(
n∑

i=1

wiEi − E0

))⊤(
1

T

T∑
t=1

z̄t

)
+R1 (13)

= E0Z
−1⊤

(
1

T

T∑
t=1

z̄t

)
︸ ︷︷ ︸

R2

+w⊤E1:nZ
−1⊤

(
1

T

T∑
t=1

z̄t

)
︸ ︷︷ ︸

R3

+R1 (14)

where E1:n is the sub-matrix of E consisting of rows indexed by 1, 2, . . . , n.
For R1, note that w and ϵit for t > T0 are independent, then

R1
dist
= N

(
0, σ2

(
1 +

n∑
i=1

w2
i

)
1

T

)
(15)

Note that
∑n

i=1w
2
i ≤ 1 since wi ≥ 0 and

∑
iwi ≤ 1. Then with probability 1− δ,

|R1| ≲
σ√
T

√
log(1/δ).

For R2, let a := Z−1⊤
(

1
T

∑T
t=1 z̄t

)
. Note that

∥a∥ ≤

∥∥∥ 1
T

∑T
t=1 z̄t

∥∥∥
σr(Z)

≤ c2√
c1T0

.

Since E0 are i.i.d Gaussian and independent from a, with probability 1− δ, we have

|R2| ≲
c2σ

c1
√
T0

√
log(1/δ).

For R3, the difficulty is that E and w are not independent. Note that

|R3| = |w⊤E1:na| ≤ ∥E1:na∥∞ = max
i∈[1:n]

|E⊤
i a|.
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By the union bound and E⊤
i a being Gaussian, with probability 1− δ, we have

|R3| ≲
c2σ√
c1T0

√
log(1/δ) + log(n).

This completes the proof. ■

D.3 Proof of Proposition 7

We will prove a generalized result of Proposition 7 below.

Proposition 9. The followings hold.

(a) With probability 1−O(δ), if M > T/2, then

|τSCTS − τ∗| ≲ σ√
T

√
log(1/δ) +

c2σ

c1
√
T0

√
log(1/δ) + log(n).

Furthermore,

(b) When τ∗ ≥ 0, with probability at most 2R(T )
Tτ∗ , M ≤ T/2 (i.e., τSCTS = 0).

(c) When τ∗ < 0, with probability at least 1− 2R(T )
T |τ∗| , M ≤ T/2 (i.e., τSCTS = 0).

Proof. In order to show (a), we follow the same analysis as the proof of Proposition 1, where the
only term that needs to be re-analyzed is

R1 :=
1

M

T∑
t=1

1{at = 1}

(
ϵ0t −

n∑
i=1

wiϵ
i
t

)

Let zt := 1{at = 1}. Then

R1 =
1

M

T∑
i=1

ϵ0t zt −
1

M

T∑
t=1

n∑
i=1

wiϵ
i
tzt (16)

Note that zt is independent from the future ϵjk for k ≥ t. Hence we can use Azuma’s inequality (a
sub-Gaussian variant [59]) to obtain, with probability 1− δ,∣∣∣∣∣

T∑
t=1

ϵ0t zt

∣∣∣∣∣ ≲ √
T log(1/δ)σ. (17)

Similar bounds can be obtained for
∑T

t=1

(∑n
i=1wiϵ

i
t

)
zt. This provides, with probability 1−O(δ),

R1 ≲

√
T

M
log(1/δ)σ.

Using M > T
2 , we finish the proof for (a).

Next, consider the case τ∗ ≥ 0. The regret incurred for each instance is R = (T −M)τ∗. By
Markov inequality, we then have

Pr

(
(T −M)τ∗ ≥ Tτ∗

2

)
≤ R(T )

Tτ∗/2
.
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Equivalently,

Pr

(
M ≤ T

2

)
≤ 2R(T )

Tτ∗
.

Hence, with probability at most 2R(T )
Tτ∗ , we have M ≤ T/2, i.e., (b) holds.

Finally, consider the case τ∗ < 0. The regret incurred is R = M |τ∗|. Then, by Markov inequality,

Pr

(
M |τ∗| > T

2
|τ∗|
)

≤ R(T )

|τ∗|T/2
.

This proves (c). ■

E Technical Lemmas

Theorem 6 (Matrix concentration). Suppose that Eij
iid∼ N (0, σ2), and let E ∈ Rn×t. Then, there

exists some universal constant c3 such that, with probability 1− 1
(n∨t)8 , we have ∥E∥ ≤ 4σ

√
n ∨ t+

c3σ log(n ∨ t)

For sufficiently large n∨ t this can be further bounded as ∥E∥ ≤ 5σ
√
n ∨ t. See e.g. [30] Theorem

3.1.4 for reference.

Lemma 9. Consider a sequence {xt} where xt ∈ Rr and ∥xt∥2 ≤ B ∀t, and define Ωt = ρI +∑T
t=1 xtx

⊤
t . Then, it holds that

T∑
t=1

(
1 ∧ ∥xt∥2Ω−1

t−1

)
≤

√
rT log

(
rρ+ TB

r

)
See e.g. [48] for proof.
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