A Reinforcement Learning Approach to Optimal Execution

Ciamac C. Moallemi Muye Wang
Graduate School of Business Graduate School of Business
Columbia University Columbia University
email: ciamac@gsb.columbia.edu email: mw31440@gsb.columbia.edu

Current Revision: February 1, 2022

Abstract

We consider the problem of execution timing in optimal execution. Specifically, we formulate
the optimal execution problem of an infinitesimal order as an optimal stopping problem. By
using a novel neural network architecture, we develop two versions of data-driven approaches for
this problem, one based on supervised learning, and the other based on reinforcement learning.
Temporal difference learning can be applied and extends these two methods to many variants.
Through numerical experiments on historical market data, we demonstrate significant cost re-
duction of these methods. Insights from numerical experiments reveals various tradeoffs in the
use of temporal difference learning, including convergence rates, data efficiency, and a tradeoff
between bias and variance.

1. Introduction

Optimal execution is a classic problem in finance that aims to optimize trading while balancing
various tradeoffs. When trading a large order of stock, one of the most common tradeoffs is
between market impact and price uncertainty. More specifically, if a large order is submitted as a
single execution, the market would typically move in the adverse direction, worsening the average
execution price. This phenomenon is commonly referred to as the “market impact”. In order to
minimize the market impact, the trader has an incentive to divide the large order into smaller
child orders and execute them gradually over time. However, this strategy inevitably prolongs the
execution horizon, exposing the trader to a greater degree of price uncertainty. Optimal execution
problems seek to obtain an optimal trading schedule while balancing a specific tradeoff such as this.

We will refer to the execution problem mentioned above as the parent order problem, where
an important issue is to divide a large parent order into smaller child orders to mitigate market
impact. In this paper, we focus on the optimal execution of the child orders, that is, after the parent
order is divided, the problem of executing each one of the child orders. The child orders are quite
different in nature compared to the parent order. The child orders are typically much smaller in
size, and the prescribed execution horizons are typically much shorter. In practice, a parent order
is typically completed within hours or days while a child orders are typically completed within

seconds or minutes. Because any further dividing of an order can be viewed as another parent


mailto:ciamac@gsb.columbia.edu
mailto:mw3144@gsb.columbia.edu

order problem, we will only consider the child order problem at the most atomic level. At this
level, the child orders will not be further divided. In other words, each child order will be fulfilled
in a single execution.

The execution of the child orders is an important problem and warrants its own consideration,
apart from the parent order problem. These two problems focus on different aspects of execution at
different time scales. In the parent order problem, the main tradeoff is between market impact and
price risk, and the solution to the problem aims to find the trading rate schedule that optimally
balances between the two on the time scale of hours to days. In the child order problem, as we
consider it, the main consideration is simply getting the best price on the time scale of seconds to
minutes. the price movement of the stock becomes the primary consideration. Therefore solution
to the child order problem focuses on predicting the price movement and finding the optimal time
for the execution.

More specifically, because the market impact is negligible for a child order and the order must
be fulfilled in a single execution, the solution seeks to execute the child order at an optimal time
within the prescribed execution horizon. In this paper, we will develop data-driven approach based
on price prediction to solve the execution timing problem.

The main contributions of this paper are as follows.

o Execution Timing Problem. We formulate the execution timing problem as an optimal

stopping problem, where prediction of the future prices is an important ingredient.

« Data-Driven Approach. Unlike the majority of work in this area, we make no model
assumptions on the price dynamics. Instead, we construct a novel neural network architecture
that forecasts future price dynamics based on current market conditions. Using the neural

network predictions, the trader can develop an execution policy.

In order to implement the data-driven approach, we develop two specific methods, one based
on supervised learning (SL), and the other based on reinforcement learning (RL). There are
also different ways to train the neural network for these two methods. Specifically, empirical
Monte Carlo (MC) and temporal difference (TD) learning can be applied and provide different
variants of the SL and RL methods.

o Backtested Numerical Experiments. The data-driven approach developed in this paper is
tested using historical market data, and is shown to generate significant cost saving. More
specifically, the data-driven approach can recover a price gain of 20% of the half-spread of a

stock for each execution in average, significantly reduce transaction costs.

The RL method is also shown to be superior than the SL method when the maximal achievable
performance is compared. There are a few other interesting insights that are revealed in
the numerical experiments. Specifically, the choice of TD learning and MC update method
presents various tradeoffs including convergence rates, data efficiency, and a tradeoff between

bias and variance.



Through numerical experiments, we also demonstrate a certain universality among stocks in
the limit order book market. Specifically, a model trained with experiences from trading one

stock can generate non-trivial performance on a different stock.

1.1. Literature Review

Earlier work in the area of optimal execution problem includes |Almgren and Chriss| [2000] and
Bertsimas and Lo [1998]. These two papers lay the theoretical foundations for many further studies,
including (Coggins et al.| [2003], Obizhaeva and Wang| [2013], and |El-Yaniv et al.| [2001].

The paper that is perhaps most closely related to our work is Nevmyvaka et al.| [2006]. They
also apply reinforcement learning to the problem of optimal execution, but there are also many
differences. They consider the dividing problem of the parent order and the goal is to obtain an
optimal trading schedule, whereas we apply RL to solve the child order problem using a single
execution. This allows us to simplify the child problem into an optimal stopping problem rather
than an optimal scheduling problem. On a more technical level, they use a tabular representation to
present the state variables, which force the state variables to be discretized. We allow continuous
state variables by utilizing neural networks. Other differences include the action space, feature
selections, and numerical experiment as well.

Another area in finance where optimal stopping is an important practical problem is pricing
American options. Motivated by this application, Longstaff and Schwartz [2001] and Tsitsiklis
and Van Roy| [2001] have proposed using regression to estimate the value of continuation and thus
to solve optimal stopping problems. Similarly to this work, at each time instance, the value of
continuation is compared to the value of stopping, and the optimal action is the action with the
higher value. The regression-based approach is also different in a number of ways. One difference is
the choice of model. They use regression with linear model to estimate continuation values where
as we use nonlinear neural networks. Another difference is that they fit a separate model for each
time horizon using a backward induction process, which increases the remaining horizon one step
at a time. By contrast, we fit a single neural network for all time horizons. Our approach can learn
and extrapolate features across time horizons. This also leads to a straightforward formulation of
temporal difference learning, which we will discuss in Section and Section

Deep learning has been applied to the study of optimal stopping problems. Notably, |Becker
et al.| [2019] and Becker et al.| [2020] use neural networks to learn an optimal stopping rule by
parameterizing the stopping policy directly. Becker et al.| [2021] employs a similar formulation
but extends the problem to higher dimensions. These approaches are typically referred to as
“policy-based approaches” as they characterize the stopping rule directly, typically as a sequence of
(possibly randomized) binary decisions. In contrast, our approach is an example of a “value-based
approach” as it learns the expected long-term future reward of taking each action and induces
a stopping policy accordingly. Other work in this area includes that of (Gaspar et al.| [2020] and
Herrera et al. |[2021]. |Gaspar et al.| [2020] combine neural networks with Least-Squares Monte

Carlo (LSMC) method to price American options. Herrera et al.|[2021] use randomized neural



networks, where the weights in hidden layers are randomly generated and only the last layer is
trained, to estimate continuation values. Our work is different in a few ways. First, we consider
optimal execution problem as the main application of our proposed methods, and the numerical
experiments reveal significant price gains. Second, we propose execution policies induced from
both supervised learning and reinforcement learning approaches, and we discuss various tradeoffs
between them when temporal difference learning is applied. Lastly, we design a specific neural
network architecture, which captures the monotonic nature of the continuation value.

This work also joins the growing community of studies applying machine learning to tackle
problems in financial markets. Sirignano| [2019] uses neural networks to predict the direction of the
next immediate price change and also reports the similar universality among stocks. [Kim et al.
[2002] utilize RL to learn profitable market-making strategies in a dynamic model. Park and Van
Roy| [2015] propose a method of simultaneous execution and learning for the purpose of optimal

execution.

1.2. Organization of the paper

The rest of the paper is organized as follows. Section [2] introduces the mechanics of limit order
book markets and outlines the optimal stopping formulation. Section [3] introduces the supervised
learning method and its induced execution policy. TD learning is also introduced in this section.
Section {] introduces the reinforcement learning method and its induced execution policy. Section
outlines data source and the setup for the numerical experiments. Section [6] presents the numerical
results and the various tradeoffs in training process introduced by TD learning. The aforementioned

universality are also discussed in Section [6]

2. Limit Order Book and Optimal Stopping Formulation

2.1. Limit Order Book Mechanics

In modern electronic stock exchanges, limit order books are responsible for keeping track of resting
limit orders at different price levels. Because investors’ preferences and positions change over time,
limit order books also need to be dynamics and changing over time. During trading hours, market
orders and limit orders are constantly being submitted and traded. These events alter the amount
of resting limit orders, consequently, the shape of the limit order book. There are other market

events that alter the shape of the limit order book, such as order cancellation.



buy limit order arrivals

¥ ¥ ¥ ¥ ¥ ¥

cancellations

! price

cancellations

0 0 0 0 0 0

sell limit order arrivals

Figure 1: Limit orders are submitted at different price levels. The ask prices are higher than the bid
prices. The difference between the lowest ask price and the highest bid price is the bid-ask spread.
Mid-price is the average of the best ask price and the best bid price.

Limit order books are also paired with matching engines that match incoming market orders
with resting limit orders to fulfill trades. The most common rule that the matching engine operates
under is “price-time priority”. When a new market order is submitted to buy, sell limit orders at
the lowest ask price will be executed; when a new market order is submitted to sell, buy limit
orders at the highest bid price will be executed. For limit orders at the same price, the matching

engines follow a time priority — whichever order was submitted first gets executed first.

2.2. Price Predictability

Some theoretical models in the classic optimal execution literature treat future prices as unpre-
dictable. However, this doesn’t always reconcile with the reality. There is empirical evidence that
stock prices can be predicted to a certain extent — |Sirignano [2019] predicts the direction of price
moves using a neural network and detects significant predictabilities.

Clearly, the ability to predict future prices would have major implications on stock executions.
If a trader seeks to sell and predicts that the future price will move up, then the trader would have
an incentive to wait. On the other hand, if the trader predicts that the future price will drop, then
the trader would have an incentive to sell immediately. In short, at least at a conceptual level, price
predictability improves execution quality. This motivates us to construct a data-driven solution

incorporating price predictability to optimal execution problems.

2.3. Optimal Stopping Formulation

Our framework will be that of a discrete-time sequential decision problem over a finite execution

horizon T. The set of discrete time instances within the execution horizon is 7 = {0, 1, ..., T'}. For



a particular stock, its relevant market conditions are represented by a discrete-time Markov chain
with state {z;}ie7. We will assume that the transition kernel P for the states is time-invariant .
One of the state variables in the state that is of particular interest is the price of the stock, and we
will denote this price process by {p;}ier.

Consider the problem of selling one share of the stock, or equivalently, consider the order to be
infinitesimal, that is, the order can’t be further divided. This problem singles out the timing aspect
of the execution and assumes that any action of the trader has no impact on the price process, the
states, and the transitional kernel.

For a trader, the set of available actions at time ¢ is a; € A = {HOLD, SELL}. In other words,
at any time instance, the trader can either hold the stock or sell the stock. Because the trader is
endowed with only 1 share of the stock, once the trader sells, no further action can be taken. In
essence, this is an optimal stopping problem — the trader holds the stock and picks an optimal
time to sell. To generalize the notation, we will use { CONTINUE, STOP} to represent A for the
rest of this paper.

Let 7 be a stopping time. Then, the sequence of states and actions before stopping is as follows

{x07a'07x17a17"'7x77a7'}7 (1)

where a, = STOP by the definition of the stopping time. The trader’s goal is to maximize the
expected total price difference between the execution price p, and the initial price, namely,

max Elpr — po. (2)

T

We will refer to this value as the total price gain and denote it by AP, £ p, — pg. Maximizing
the total price gain is equivalent to minimizing the implementation shortfall in this problem. Total
price gain can be decomposed into the price gain between each time instance while the trader holds
the stock. Let Ap; £ p; — pr—1. Then, the total price gain can be decomposed into per-period
rewards .
AP- =Y Ap,. (3)
t=1
From a sequential decision problem standpoint, this is not the only way to decompose the
total price gain across time. One can also design a framework where the traders only receive a
terminal reward when they stops. This decomposition approach benefits a learning agent by giving
per-period rewards as immediate feedback.
Define a o-algebra F; = o (z0, ao, ..., , Tt_1, a;—1, ¥¢) for each time ¢, and a filtration F = {F; e
Let random variable m; be a choice of action that is F;-measurable and takes values in A, and let

a policy 7 be a sequence of such choices, i.e. m = {m}e7, and is F-adapted. As constrained by

!This assumption is justifiable in our setting as the execution horizon is typically quite short, and might be
measured in seconds to minutes. Over such short time horizons, non-stationarity can be ignored. Beyond this, note
that the time of the day is also included as a state variable so the price dynamics allow for time-of-day effects even
though they are stationary.



the execution horizon, the last action must be STOP, i.e. mp = STOP.

Let II be the set of all such policies, and an optimal policy 7* is given by

Tr
7 £ argmax B, Z Ap|, (4)
mell t=1

where 7, is the first stopping time associated with policy m, and the expectation is taken assuming
the policy 7 is used. Learning an optimal policy from data is the main machine-learning task that

will be discussed in the next two sections.

3. Supervised Learning Approach

Future stock prices are inherently stochastic, and this makes optimal execution a challenging prob-
lem. One way to simplify this problem is to replace the random distribution of future prices by a
deterministic point estimates and thus reduce the stochastic problem into a deterministic one. The
supervised learning approach, which will be introduced in this section, replaces the future price
distribution with its conditional expectation. Assuming that prices will deterministically follow
the prediction of the expected future price trajectory, an optimal execution policy can be readily
derived. This is what we call the supervised learning (SL) method.

However, the SL method doesn’t lead to an optimal execution policy because ignoring stochas-
ticity also ignores the possibility that trader can take different sequence of actions on different
trajectories. Section illustrates this insufficiency further. This prompts us to develop the re-
inforcement learning (RL) method, which is the focus of Section Section provides more

in-depth discussion regarding the differences and the similarities between the SL and RL methods.

3.1. Price Trajectory Prediction

Future prices have important implications on execution policies. If a selling trader can predict
that the future price is higher than the current price, the trader would wait and execute at a later
time. If the future price is predicted to be lower than the current price, the selling agent should sell
immediately. In this section, we will formulate this intuition more formally and construct a price
prediction approach to optimal execution via supervised learning.

Given a fixed execution horizon T, it’s insufficient to only predict the immediate price change in
the short term — even if the price goes down, it could still move back up and rise even higher before
the end of the execution horizon. Therefore, to obtain an optimal execution policy, it’s imperative
to obtain a price prediction for the entire execution horizon. This can be achieved by predicting

price changes at each time instances. More specifically, define a price change trajectory as follows,

Price Change Trajectory £ [Apy, Aps, ..., Apr). (5)



This gives rise to p; through
¢
pe=po+ Y Ap;
i=1
In the rest of the section, we will construct supervised learning models to predict the price change

trajectory.

3.2. Supervised Learning Method

Define an observation episode as a vector of states and price changes, ordered in time as @ This

is the data observation upon which we will construct supervised learning models.
Observation Episode = {xg, Ap1, 21, Apo, ..., Apr, 27} (6)

In order to take an action at time 0, the trader needs a price change trajectory prediction at
time 0 when the only observable state is xg. Given any current state x, in order to predict the
subsequent price change trajectory, we construct a neural network as follows. The neural network
takes a single state x as input and outputs a vector of T" elements, corresponding to the price change

at each of the subsequent time instance. This neural network is represented as follows in .

Neural Network: NN®(z) = [u‘f(w),u(g(m), ,ufi,{(a:)] (7)
The neural network parameter is denoted by ¢, and the output neuron u?(
the price change Ap; for all 1 <7 < T.

Given an observation episode such as @, the mean squared error (MSE) between predicted

x) corresponds to

price changes and actual price changes can be used as a loss function. That is

Mﬂ

L(¢; o) [Apz — u; !EO)F- (8)

z:l
The neural network can be trained by minimizing averaged over many observation episodes.
After the neural network is trained, it can be applied to all states, giving a price change trajectory

prediction at each time instance.

3.3. Execution Policy

Given a state x, the output of the neural network is a prediction of the subsequent price change
trajectory. Summing up the price changes provides an estimate of the cumulative price change.
Let Wy.r(z) be the estimated maximum cumulative price change over all remaining time when the
current time is ¢. For all t € T \ {T'}, Wy.r(x) can be expressed as

h

Wir(e) & g 3l (@) &
===



Notice, because the transitional kernel P is assumed to be time-invariant (see Section , only the
difference in indices T — ¢ matters in the value of Wy.p(z), not the index ¢ or T itself. At any time
before T', if the future price trajectory rises higher than the current price, a selling trader would
have an incentive to wait. Otherwise the trader should sell right away. This execution policy can

be formally written as follows.

Supervised Learning Policy:

When the current time is ¢ and the current state is x, define a choice of action " as below.
L) 2 CONTINUE if Wer(z) >0
! STOP otherwise.

The execution policy induced by the SL method is the sequence of all such choices, given by

wo () &t (et (10)

Note that this policy is a Markovian policy in that this decision at time ¢ is a function of the
current state x;. This policy is dependent on the neural network through the value of Wy.p(-). To
apply this policy, a trader would apply each action function sequentially at each state until STOP

is taken. More specifically, given a sequence of states, the stopping time is given by

7.su 2 min{t| 7% (x;) = STOP}. (11)

The total price gain induced by this policy on the specific observation episode is APTEL =

Prst — Po- Once the trader stops, no further action can be taken.

3.4. Temporal Difference Learning

The method discussed in Section [3.2] is a straightforward supervised learning method. However it
has a few drawbacks. From a practical perspective, given any observation episode such as @, only
{0, Ap1, Apa, ..., Apr} is being used to train the neural network and {xi,z9,...,x7} isn’t being
utilized at all during the training process. This prompts us to turn to TD learning.

TD learning is one of the central ideas in RL (see Sutton and Barto| [1998]) and it can be
applied to supervised learning as well. Supervised learning uses empirical observations to train a
prediction model, in this case, the price changes Ap;. The price changes Ap; are used as target
values in the loss function . TD learning uses a different way to construct the loss function. In
a neural network as in , offsetting outputs and state inputs correspondingly would result in the
same prediction, at least in expectations. In other words, if the neural network is trained properly,
the following is true for 0 < k <t —1,

uf(20) = B [uf_ (ax)|xo] (12)



In , the output uf (zp) estimates the price change ¢ time instances subsequent to the obser-
vation of the state xg, namely, Ap;. On the right side, the output uf_ (1) estimates of the price
change t — k time instances subsequent to the observation of the state x, and this also estimates
Ap,, coinciding with the left side.

This equivalence of shifting in time allows us to use current model estimates as target values
to construct a loss function. This leads to a major advantage of TD learning, that is, TD learning
updates a prediction model based in part on current model estimates, without needing an entire
observation episode. To apply this more concretely in this case, the loss function for SL method

can be reformulated as below for a specific observation episode.

1 2 L 2
L(¢iw0) = [(Apl —uf(w0)) + Y (ufs (1) — ' (20)) ] : (13)

=2

Notice that u(f(xg) is still matched to the price change Ap;. For i > 2, uff(:co) is matched to the
current model estimate with a time shift uf_l(xl). In effect, instead of using the entire episode of
price changes as the target values, TD uses [Apq, u‘f(a:l), ug(acl), e u?fl(xl)] as the target values,
substituting all but the first element by current model estimates with x; as input. The loss function
in effectively reaffirms the equivalence in using squared loss.

For every 1 <t < T, defines a martingale

{uf (o), uf_y (21), ooy uf_p (@), o uf (1)} (14)

That is, conditioned on the current state, the expected value of future prediction k£ time instances
ahead is equal to the current prediction of the same time instance. If the predictions exhibits
predictable variability, in principle, the prediction model could be improved. TD learning with loss
function in can be viewed as a way of regularizing the prediction model to satisfy the martingale
property in . This form of regularization also has the benefit of preventing overfitting, which
will be discuss in Section

The data required to compute is (zo, Ap1, 21), which is a subset of the observation episode.
Any other consecutive 3-tuple of the form (z¢, Apit+1,2¢+1) can be used to compute as well.
Because TD learning requires only partial observations to compute the loss function, it allows us
to update the neural network on the go.

Compared to the conventional SL method in Section TD learning uses data more efficiently.
Given the same amount of data, it updates the neural network many more times without using
repeated data. In fact, given any observation episode such as @, the loss function in can be
computed T times using all 3-tuples within the observation episode, updating the neural network
T times. On the other hand, the conventional SL uses the loss function in and can update
the neural network only once. This advantage in data efficiency resolves the aforementioned data-
wasting issue — TD utilizes all the state variables and price changes in an observation episode

during training.

10



TD(m-step) Prediction:

We will refer to the updating method used in the conventional SL method outlined in Section [3.2] as
the “empirical Monte Carlo (MC)” 2 update method. The MC update method trains a prediction
model exclusively using samples from historical data observations. It turns out that there is a full
spectrum of algorithms between TD and MC.

In , TD substitutes all but the first target value by current model estimates. This can
be generalized to a family of TD methods by substituting fewer target values and keeping more
observations. Specifically, we can construct a TD(m-step) method that uses m price changes and

T —m model estimates as target values. The loss function of TD(m-step) for a specific observation

episode is
m 9 T . ) )
¢a $0 Z (Apz — U, 130)) + Z (Uifl(ﬂjm) — U, (560)) ; m=1,..T. (15)
=1 i=m+1

The data required to compute the above loss function is a (m + 2)-tuple, given by

(l‘OuAplaAp?)’")Apmaxm)? (16)

and this can also be generalized to any (m + 2)-tuple within the observation episode. TD(m-step)
updates the neural network T+ 1 — m times using one observation episode.

Notice, when m =T, becomes the same as . In other words, TD(T-step) is the same as
the MC update method. When m = 1, TD(1-step) has the loss function in . The TD step size
m is a hyper-parameter that controls the degree of TD when training the neural network. We will

discuss the effect of the TD step size m in greater detail in Section

Target Network:

Neural networks are typically trained using stochastic gradient descent (SGD). However, when
SGD is applied to and , the changes in the parameter ¢ would causes changes in both
the prediction model and the target values. This links the model prediction and the target values,
introducing instabilities into the training process. A popular way of this issues is by using a
second “target” network that provides the target values during the training and is only updated
periodically. This idea of using “double Q-learning” was first introduced by ? and the usage of a
target network is introduced by [van Hasselt et al. [2016]. Adopting this idea, instead of a single

neural network, we maintain two neural networks. These two neural networks need to have identical

2In this paper, our Monte Carlo updates utilize empirical samples, and do not require a generative model as in
typical Monte Carlo simulations.

11



architectures and we denote their parameters by ¢ and ¢', respectively,

Train-Net: NN?(z) = [u(f(x),ug(x) ,u?(:v)]
Target-Net: NN?(z) = [u(f/(x) ugl( ),,ug(aﬁ)]

The train-net’s parameter ¢ is the model that SGD changes during each iteration and the

target-net is used exclusively for producing target values. The loss function can be written as

T
/

L(¢p;x0) = i (ApZ - u 0))2 + Z (uf’_l(xm) — uf(mo))2 : m=1,..1T. (17)

i=m+1

The target-net also needs to be updated during the training so that it always provides accurate
target values. Therefore, the train-net needs to be copied to the target-net periodically throughout

the training procedure. The entire algorithm is outlined below in Section

3.5. Algorithm

To summarize, the complete algorithm using supervised learning with TD(m-step) is displayed

below. This algorithm will be referred to as the SL-TD(m-step) algorithm in the rest of this paper.

Algorithm 1: SL-TD(m-step)

Initialize ¢ and ¢’ randomly and identically;

while not converged do
1. From a random episode, select a random starting time ¢, sample a sub-episode

(4, Apty1, ooy APy, Tpm) for 0 <t < T —my
2. Repeat step 1 to collect a mini-batch of sub-episodes;
3. Compute the average loss value over the mini-batch using ;

4. Take a gradient step on ¢ to minimize the average loss value;

5. Copy target-net with train-net (¢’ +— ¢) periodically;

end

To monitor the training progression, in-sample and out-of-sample MSE can be computed and
monitored. Each iteration of neural network parameter ¢ induces a corresponding execution policy.
Applying this execution policy to observation episodes either in sample or out of sample gives the
price gains on these episodes. This measure of average price gains on observation episodes can also

be used to monitor the training progression.

3.6. Insufficiency

We will use a hypothetical example to illustrate the insufficiency of the SL method outlined above.

Let there be two possible future scenarios A and B for the price of a particular stock. Under these

12



two scenarios, price change trajectories over the next two time instances are
APy = [Api, Apy] = [+1,—4];  APp = [Ap?, Apy] = [-2,+3].
Assume that these two scenarios occur with equal probability given all current information, namely,
P(A|xo) = P(Blzg) = 0.5.

Given this information, the ex-post optimal execution would be to sell at ¢ = 1 under scenario
A and sell at t = 2 under scenario B. This execution plan would yield an execution price of +1
under either scenario.

Now consider applying the SL method when only the state z( is observable. The neural network
is trained using MSE and it’s well known that the mean minimizes MSE. In other words, the optimal

prediction would be
NN(b(.f()) = [Uf{(ﬂl‘o), u;(.%'o)] = P(A’[B()) . APA + P(B’l‘o) . APB = [—0.5, —05]

This prediction indicates that future price changes will always be negative and therefore the trader
should sell at ¢ = 0 and induce an execution price of 0.

It’s not a surprise that the ex-ante execution is inferior compared to the ex-post execution.
However, this example also reveals a rather unsatisfactory aspect of the SL method — even with
“optimal prediction”, the SL method fails to capture the optimal execution. The trader stops too

early and misses out on future opportunities.

4. Reinforcement Learning Approach

The SL method outlined above predicts the future price change trajectory for each state using
neural networks. The predicted price change trajectory induces an execution policy, which can be
applied sequentially to solve the optimal execution problem. However, the SL method doesn’t lead
to an optimal policy, which prompts us to turn to reinforcement learning (RL).

The insufficiency of the SL method discussed in Section is mainly caused by the way SL
averages predictions. SL produces an average prediction by simply averaging the price change
trajectories under all possible scenarios, disregarding the fact that a trader might take different
sequence of actions under each scenario. If the trader predicts a future price downturn, then the
trader would stop and sell early. However, this price downturn, even though it can be predicted
and avoided by the trader, is still accounted for in the SL prediction. In the example outlined in
Section Ap‘24 is one such price downturn. Including price downturns that can be predicted and
avoided in the model predictions lead to a suboptimal policy.

RL averages trajectories from future scenarios differently. Instead of averaging the trajectories

directly, RL allows the trader to take different sequence of actions under each scenario, and averages

13



the resulting rewards. This way, if a price downturn can be predicted and avoided by the trader, it
won’t be accounted for in the RL prediction. This leads to an improved execution policy compared
to the SL method.

However, RL adds more complexity to the algorithms, especially during the training process.
SL predicts price change trajectories, which are exogenous to the trader’s policy. During training,
as SL prediction becomes more accurate, the induced policy improves. On the other hand, because
RL predicts future rewards, which are dependent on the execution policy, the target values of
the prediction are no longer exogenous. While the RL model is being trained, the induced policy
changes accordingly, which in turns also affects the future rewards. We will discuss how this
difference complicates the training procedure in the rest of this section.

The procedure of applying RL to the sequential decision problem isn’t all that different compared
to the SL method. RL also uses neural networks to evaluate the “value” or “quality” of each state,
which leads to an execution policy that can be applied sequentially. The main difference is that

instead of predicting price change trajectories, RL predicts what’s called continuation value.

4.1. Continuation Value

Continuation value is defined as the expected maximum reward over all remaining time instances
when the immediate action is CONTINUE. Specifically, we write Cy.7(x) to denote the continuation

value when the current time is ¢ and the current state is . For all ¢t € T \ {T'}, this is defined as

Cyr(r) = sup B, [Z Ap;
i=t

TreH(t):T

Ty = x] . (18)

The set H?:T contains all policies starting from time ¢ that don’t immediately stop at time £, i.e.
Y. = {(7, T41, .-, 77) | 7 = CONTINUE}. (19)

The stopping time 7 is the stopping time associated with policy m and the expectation is taken
assuming the policy 7 is used. Notice that for any fixed x, the value of Cy.7(z) depends on the pair

(t,T) only through T — t. By convention, Cy(z) = 0 for all states = and times .

Optimal Policy:

Because the future price gain of STOP is always 0, the definition of the continuation value leads to
a very simple execution policy — the trader should continue if and only if the continuation value

is strictly larger than 0. At time ¢, if the current state is x, define an action function as

7rtRL(x) » | CONTINUE if Cpr(z) >0
STOP otherwise.

14



The execution policy induced by the RL method is the sequence of such action functions defined

at all time instances,
RL RL
() ={m (O her (20)
When applying this policy sequentially to a sequence of states, the associated stopping time and

the total price gain is given by

THRL = min{¢ ‘ 7TtRL(xt) = STOP}; APTEL = PrRL — PO- (21)

Bellman Equation:

The above definition of the continuation value leads to the following properties.

1. If the current time is T'— 1, there is only one time instance left and the continuation value is

the expectation of the next price change,

CT_l;T(w) = ]E[ApT\xT_l = :L'] (22)

2. If there is more than one time instance left, the continuation value is the sum of the next
price change and the maximum rewards achievable over all remaining time. This leads to a

Bellman equation given by
Cyr(z) = E[Apiy1 + max{0, Cyp1.7(2e41) Hae = 2] . (23)

If the trader follows the optimal policy starting at time ¢ + 1, the total reward accumulated
after ¢ + 1 is precisely max{0, Cy11(z¢+1)}. This is how implicitly incorporated the

execution policy.

Monotonicity:

At any time, the continuation value can be decomposed into a sum of increments of continuation
values of stopping problems of increasing horizon. Because increasing time horizon allows more
flexibility in trader’s actions and can only increase the value of a stopping problem, these increments
are non-negative. In other words, continuation values have a certain monotonicity.

At any time ¢, for any ¢ > 1, define the continuation value increment as
6i(x) £ Crpri(x) — Crppioa (). (24)

This is the difference in continuation values when the time horizon is i — 1 time steps away and one
time step is added. Then, for i > 1,
0i(x) > 0. (25)

When i = 1, the continuation value increment 0;(z) = Cy.i41(x) — Cri(r) = E[Apit1|x = x] can

15



be negative. Summing up these increments recovers the continuation value, namely,

T—t

Crr(z) = 3 6i(a). (26)

1

=

4.2. Learning Task

Unlike the price trajectory, the continuation value isn’t directly observable from the data. Further-
more, the continuation value is dependent on the induced policy and the induced policy evolves
as the continuation value changes. For these reasons, learning the continuation value is not a
conventional supervised learning task.

In order for the induced policy to apply to each time instance in the sequential decision problem,
the continuation value Cp.p(x) needs to be estimated for each t = 0,...,7 — 1. We design a neural
network to learn the continuation value from data. Because the parameter ¢ is discrete and have
a fixed range, we incorporate this parameter directly into the neural network architecture. More
specifically, the neural network takes a state x as an input and outputs a vector of T elements,
representing each of the continuation value increment §;. The neural network can be represented
as

Neural Network: NN®(z) = [uf(:v), ug(a}), s u?(l‘)] (27)

This neural network contains 7' neurons on the output layer, and each neuron uf’(x) is meant
to approximate J;(x). As a result of this construction, the estimated continuation value is the

summation of the neuron outputs, given by

T-t
Chirlw) = 3 uf @) (28)

There are two benefits of this neural network construction. One is that by incorporating time ¢
as part of the architecture, it captures the commonality among continuation values for the entire
time horizon. Training neural networks with auxiliary tasks, such as continuation values with
different horizons, has shown benefits in other applications. This idea is referred to as “multi-
task learning.” Secondly, due to the monotonicity of the continuation values, the increments d;(x)
should always be non-negative for ¢ > 1. This implies that the true value of u?(x) is non-negative
for ¢ > 1. Using this architecture, we can also easily enforce this positivity on the output layer by
applying the softplus activation function. This way the neural network output is consistent with
the monotonicity property.

In order to train the neural network, we need to construct target values from observation
episodes as in @ We can compute the “empirical continuation value” at time ¢t when the current

state is x4, given by

T—t
Crr(zt) = Apryr + Z Apryi - H;;ll]l{cf:-j:T(xt-‘rj) > 0}, (29)
i=2

16



where C is the continuation value estimated from the current neural network using . The
right side of includes the immediate price change Apy;1 and other price changes condition-
ally. The price change Ap;1; is only accounted for if the trader reaches time t + i. Because the
trader follows the execution policy induced by the current model, this condition is expressed as
2 1{CE (i) > O

The difference in the empirical continuation values is the empirical increments, given by

0i(2) = Crpti(z) — Crarior (). (30)

This is the target value for u?(:c) Now that the target values for the neural network outputs are
in place, we can compute the mean squared error (MSE) loss function according to and apply

SGD to train the network parameters.

[l (@)~ di(2))]”. (31)

1

L(p;z) =

T

M=

(2

4.3. TD Learning

The empirical continuation values can be obtained through TD learning as well. Instead of using
empirical observations of price changes as in , the current model estimates of continuation
values can be used to compute the empirical continuation values.

As described in Section[3.4], two neural networks are used, one for training and one for evaluating

target values, given as follow,

Train-Net:  NN®(z) = [uf(z), u§(2), ..., u(z)]
Target-Net: NN? (z) = [u(f/ (x),ug/ (x), ...,ug (x)].

According to TD(1-step), the empirical continuation value Cy.7(x;) is the sum of the immediate
price change Ap;+1 and the estimated continuation value at evaluated at state x;41, conditional on

the trader reaching time ¢ + 1. This is given by

Cor(z) = Apyr + éﬁlzT(th) LGP p(wen) >0 VE<T 1. (32)

Notice that on the right side of , the policy is induced using the train-net and the contin-
uation value accumulated is evaluated from the target-net. This idea is commonly referred to as
“Double Q-Learning” which was introduced by ? and applied in DQN by [van Hasselt et al. [2016].
The use of separate policies for control and continuation value estimation mitigates “error maxi-
mization”, or bias that is introduced by the optimization over statistically estimated quantities. In
this context, estimating the continuation value by maximizing over estimates of future continuation
values under the same policy results in estimates that are systematically overestimated. This effect
is mitigated by using different policies for the estimation of furture continuation values and the
decision to stop in (32). The data used in is {x¢, Apty1, 441}, which naturally extends to any

17



3-tuple of the same form. As discussed in Section in the SL setting, TD learning can be viewed
as a form of regularization to enforce that future price predictions satisfy the martingale property.
In the RL setting here, TD learning enforces the Bellman equation, which can also be viewed as a
form of regularization to enforce the time consistency of continuation value estimates.

The TD(m-step) can be applied as well, which expresses the empirical continuation value as

m
Cor(ze) = Apryr+) Apt-i-i'ﬂz;llﬂ{cf)—i—j:T(xt-ﬁ-j) > O}+Cf+m:T(xt+m)H§n:1ﬂ{ctd)-i-j:T(xt-i-j) >0} VE<T-m.

i=2
(33)
The data used in is a (2m + 1)—tuple

{xtv Apt—i—h Tt41y -0y Apt—i-mv xt+m}, (34)

which can be generalized to any (2m + 1)—tuple of the same form.

For TD(m-step), if the current time ¢ is larger than 7" — m, then the current model estimates
are no longer used as an additive terms in the computation of the target value. The target value
of the continuation value is simply given by .

These TD methods computes the empirical continuation values, which leads to empirical incre-

ments. These increments help train the network networks as target values through the loss function

in .

4.4. Algorithm

To summarize, the complete algorithm using reinforcement learning with TD(m-step) is displayed

below. This algorithm will be referred to as the RL-TD(m-step) algorithm in the rest of this paper.

Algorithm 2: RL-TD(m-step)

Initialize ¢ and ¢’ randomly and identically;

while not converged do
1. From a random episode, select a random starting time ¢, and sample a sub-episode

(24, Apty1, To41.ADt12, Ti12, oy ADt4m, Toym) for 0 <t < T —m;
2. Repeat step 1 to collect a mini-batch of sub-episodes;
3. Compute empirical continuation value increments and the average loss values using

B1);

3. Take a gradient step on ¢ to minimize the average loss value;

3. Copy target-net with train-net (¢’ < ¢) periodically;

end

When compared to the SL method, one critical difference in the RL method is that the target
values for training the neural network is dependent on the induced policy. Therefore, the target
value also changes during the training process. As a result, it’s more difficult and perhaps less

meaningful to monitor the MSE loss value during training. In order to monitor the training progress,

18



the induced policy can be applied to observation episodes either in sample or out of sample to

produce price gains.

4.5. Discussion

The optimal stopping problem is challenging because the future prices are stochastic. A simplifi-
cation would be to make the problem deterministic. The simplest deterministic model consistent
with the stochastic dynamics is to replace random quantities with their expectations. In particular,
at each time ¢, we replace the stochastic future price trajectory with its mean. The general idea
of resolving a new, deterministic control problem at each instance of time falls under the rubric of
Model Predictive Control (MPC). See |Akesson and Toivonen| [2006], for example, an application of
neural networks in MPC.

In this context, the continuation value becomes

h
MPC _ ,
Cir ~(z) = 1§%1§%<7tE Lg; Apgyi

This motivates the SL method and the execution policy based upon @D Notice that CM PC(x)
is an underestimate of the true continuation value defined in , because it only optimizes over
deterministic stopping times, while the true continuation value allows random stopping times. In

other words,

G (2) < Crr ().

Another simplification of the stochastic dynamics of the future price would be to use information
relaxation, i.e., giving the trader the perfect knowledge of future price changes. There is a literature
of information relaxation applied to stopping problems, which was pioneered by Rogers [2003] and
Haugh and Kogan| [2004]. In our context, one information relaxation would be to reveal all future

prices to the decision maker. This would make the problem deterministic, and result in

CIE(x max A 36
r(@) = e tZ Di+i|T (36)
as the value of continuation. This is clearly an overestimation of the true continuation because it
optimizes with access to future information, while the true continuation value expressed in ([18))

only optimizes with access to information that is currently available.
Cur(z) < Cli(x).

A regression approach can formulated to estimate this maximum value, and this is in the spirit of
Desai et al.| [2012]. We don’t pursue this idea in this paper.

We can compare our method with the earlier work on optimal stopping problems in [Longstaff
and Schwartz| [2001] and |Tsitsiklis and Van Roy| [2001]. In these regression-based methods, by

19



using a backward induction process that increases horizon one step at a time, a separate regression
model is fitted for each time horizon. In our method, we fit a nonlinear neural network that
predicts the continuation value for all time horizons. By this neural network architecture, the
model is able to capture common features across time horizons. Additionally, in the RL method,
due to the monotonicity, we know the incremental values d; are positive, as in . We apply
softplus activation function on the output layer to enforce the positivity of the neural network
outputs. This way, the estimated continuation values produced by the neural network also possess
the desired monotonicity.

The idea of TD learning also manifest in the regression-based methods as well. [Longstaff and
Schwartz [2001] approximates the continuation value when the horizon is ¢ using continuation
values when the horizon is ¢ — 1. This is similar to the idea of RL-TD(1-step). Tsitsiklis and Van
Roy| [2001] approximates the continuation value when the horizon is ¢ using future rewards under
policies determined when the horizon was ¢ — 1. This is similar to the spirit of Monte Carlo update
or RL-TD(T-step).

5. Numerical Experiment: Setup

The following two sections discuss the numerical experiments that test the SL and RL methods
discussed above. The data source from NASDAQ used in the experiments is outlined in detail in
Appendix [A] This section will outline the setup of these experiments including the features, and

neural network architectures.

5.1. Experiment Setup
Stock Selection:

The dataset we use is over the entire year of 2013, which contains 252 trading days. A set of 50
high-liquidity stocks are selected for this study. The summary statistics for these 50 stocks can be
seen in the Appendix [B] (see Table [6)).

For each stock, 100 observation episodes are sampled within each trading day, with the starting
time uniformly sampled between 10am and 3:30pm New York time. Each episode consists of 60

one-second intervals. In other words, the time horizon is one minute and T = 60.

Train-Test Split:

Due to the complexity of the neural network and the ease of overfitting, it’s imperative to separate
the data for training and testing so that the reported results aren’t overly optimistic. Specifically,
the dataset of observation episodes is randomized into three categories, a training dataset (60%),
a validation dataset (20%), and a testing dataset (20%). The randomization occurs at the level of

a trading day. In other words, no two episodes sampled from the same day would belong to two

20



different categories. This is to avoid using future episodes to predict past episodes within the same
day, as it introduces look-ahead bias and violates causality.

This randomization setup allows the possibility of using future days’ episodes to predict past
days’ price trajectories. However, because the execution horizon is as short as a minute and
the features selected mostly capture market microstructure, we deem the predictabilities between

different days as negligible.

Testing Regimes:

We consider two regimes under which the models can be trained and tested. One is the “stock-
specific” regime where a model is trained on a stock and tested on the same stock. The other is the
“universal” regime where all the data of 50 stocks is aggregated before training and testing. This
regime presumes that there is certain universality in terms of the price formation process across
stocks. Specifically, the experiences learned from trading one stock can be generalized to another

stock.

5.2. State Variables and Rewards
State Variables:

In a limit order book market, the current condition of the market represents the collective prefer-
ences of all the investors, and therefore can have predictive power for the immediate future. In order
to capture this predictability, we have extracted a set of features from the order book to capture
market conditions. This set of features can be sampled at any given time during the trading hours.
The complete set of features and their descriptions can be found in the Appendix (see Table[7)).
In addition to the current market condition, the past dynamics of the market can have strong
indictions of the future evolution as well. To better capture this temporal predictability, the same
set of features is collected not only at the current time, but also at each second for the past 9
seconds. This entire collection of 10 sets of features collectively represent the market state variable.
More specifically, let s; be the set of features collected at time ¢. Then the state variable defined

by z; = (St—9, St—s, -.., S¢) is a time series of recent values of 1these features, available at time ¢.

Normalized Price Changes/Rewards:

We selected a diverse range of stocks with an average spread ranging from 1 tick to more than
54 ticks. The magnitudes of the price changes of these stocks also varied widely. As a result, it’s
inappropriate to use price changes directly as rewards when comparing different stocks. Instead,
we normalized the price changes by the average half-spread, and use these quantities as rewards.
In effect, the price gains are computed in units of percentage of the half-spread. If the price gain is
exactly the half-spread, then the trade is executed at the mid-price. Thus, if the normalized price
gain achieves 100%, then the trader is effectively trading frictionlessly. In the implementation, the

average half-spread is taken to be the time-averaged half-spread in the previous 5 trading days.

21



Recurrent Neural Network (RNN):

RNN is specifically designed to process time series of inputs (see Figure [2). Sets of features are
ordered temporally and RNN units connect them them horizontally. The output layer is of dimen-
sion 60, matching the time horizon 7. For the RL method, the monotonicity of the continuation
value implies that the output neurons are non-negative except the uf(a:) To enforce this positivity,
the softplus activation function is applied to the output layer in the RL settings. A more detailed
description of the neural network architecture can be found in the Appendix

[ Output Network ]

Init RNN RNN RNN RNN RNN
—> e —P >
Unit Unit Unit Unit Unit Unit
A A A *
|
St—9 St-8 St—2 St—1 St

Figure 2: Recurrent Neural Network (RNN) Architecture

6. Numerical Experiment: Results

This section presents the results of the numerical experiments and discusses the interpretation of

these results.

6.1. Best Performances

TD learning is applied to both the SL and RL method, with various update step m (see Section.
These algorithms, SL-TD(m-step) and RL-TD(m-step), are trained using the training data, tuned
with the validation data, and performances are reported using the testing data. Neural network
architecture, learning rate, update step m, and other hyper-parameters are tuned to maximize the
performance. The best performances using SL and RL are reported in Table [I} These figures are
price gains per episode averaged over all 50 stocks. The price gain is reported in percentage of
half-spread. The detailed performance for each stock can be found in Appendix (see Table @
Given sufficient data and time, the RL method outperforms the SL method. This is true under
both the stock-specific regime and the universal regime. The models trained under the universal

regime generally outperform the models trained under the stock-specific regime as well.

22



Price Gain (% Half-Spread)  SL (s.e.) RL (s.e.)

Stock-Specific 21.40 (0.15) 24.82 (0.16)
Universal 92.34 (0.15)  25.47 (0.16)

Table 1: The universal model outperforms the stock-specific models with both SL and RL by 4.4%
and 2.6%, respectively. RL outperforms SL under the stock-specific and universal regime, by 16% and
14%, respectively. The figures reported are in units of percentage of half-spread (% half-spread), and
are computed out of sample on the testing dataset.

6.2. Comparative Results

Both SL and RL method are specified by TD learning with various update step m (see Section .
These TD specifications extend SL and RL method to two families of algorithms, SL-TD(m-step)
and RL-TD(m-step). The update step m controls the target values of the neuron network during
training. Specifically, among 7" neurons in the output layer, m of them are matched to the empirical
observations and T' — m are matched to the current model estimates. Different values of m and the
difference between SL and RL presents various tradeoff in algorithm performance, which we will
discuss shortly.

We will evaluate these algorithms using a few metrics, including their rate of convergence with

respect to gradient steps, running time, their data efficiencies, and bias-variance tradeoff.

Rate of Convergence (Gradient Steps):

Figure [3] plots the price gain progression with respect to the number of gradient steps taken. As
we can see from this figure, after controlling for the learning rate, batch size, neural network
architecture, and other contributing factors, the RL method requires more gradient steps in SGD
to converge compared to the SL method. It’s also apparent that the convergence is slow when the

update step m is small.

23



30 SL - Price Gain vs. Gradient Step 30 RL - Price Gain vs. Gradient Step

251 251

Rt
20 S 20

1514 1514

10 A 10 A

Price Gain (% Half-Spread)
Price Gain (% Half-Spread)

SL-TD(1-step)

SL-TD(15-step)
SL-TD(30-step)
SL-TD(45-step) =51
SL-TD(60-step)/MC

RL-TD(1-step)
RL-TD(15-step)
RL-TD(30-step)
RL-TD(45-step)
RL-TD(60-step)/MC

FHH
-

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Gradient Steps Gradient Steps

Figure 3: Price Gain vs. Gradient Steps. The trajectories are averaged over 10 random starts, the
shaded regions correspond to the standard error of each trajectory.

Running Time:

Training neural networks can be time-consuming. Perhaps the most time-consuming part is iter-
atively taking gradient steps as part of the SGD procedure. Because a neural network typically
takes thousands of steps to train, the time it takes to perform a single gradient step is an impor-
tant measurement to evaluate the running time of an algorithm. We will refer to this time as the
gradient step time.

We have measured the average gradient step time over 50,000 gradient steps in SL-TD(m-step)
and RL-TD(m-step). The result is plotted in Figure El

Average Time for a Gradient Step

6.0 1 sL

~o— RL

Millisecond (Log Scale)
» >
o w

w
n
L

w
o
L

*— ——

1 15 30 45 60
TD Step Size

Figure 4: Average gradient step time (in log scale) over 50k gradients steps. The standard errors are
negligible and thus not shown.

24



There are many factors that contributes to the gradient step time, such as the power of the CPU,
the implementation choices and others. We have controlled all these factors so that the differences
displayed in Figure {4 is solely due to the differences in TD step size m 2 The actual values of the
gradient step time are not important, but it is clear that the gradient step time increases as the
step size m increases in RL method, but stays flat in SL method.

This difference between SL and RL method comes down to the difference in the loss functions. In
the SL method, in order to compute the the loss function for a specific data observation, it requires
two neural network evaluations, namely u®(xo) and u® (z,,). This is true for all SL-TD(m-step),
except for SL-TD(60-step). In SL-TD(60-step), only evaluates the train-net once. This explains
why gradient step time is relatively constant for different values of m in SL-TD(m-step).

On the other hand, in RL-TD(m-step), computing the loss function requires m neural network
evaluations, which scales linearly with m. This can be seen in . This explains why gradient
step time roughly scales proportionally with the m in RL-TD(m-step).

Figure [5] plots the price gains progression with respect to elapsed running time. Among RL-
TD(m-step), RL-TD(1-step) converges slowest with respect to gradient steps (see right figure in
Figure |3). However, because each gradient step takes much less time, RL-TD(1-step) actually
converges fastest in term of running time among all RL methods. In other words, given a fixed

limited amount of time, RL-TD(1-step) achieves the best performance within all RL methods.

30 SL - Price Gain vs. Running Time 30 RL - Price Gain vs. Running Time
RL-TD(1-step)
25 25 RL-TD(15-step)

RL-TD(30-step)
RL-TD(45-step)
RL-TD(60-step)/MC

20 A 20 A

154 154

104 104

Price Gain (% Half-Spread)
Price Gain (% Half-Spread)

SL-TD(1-step)
SL-TD(15-step)
SL-TD(30-step)
SL-TD(45-step) =51
SL-TD(60-step)/MC

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Running Time (sec) Elapsed Time (Sec)

Figure 5: Price Gain vs. Running Time. The trajectories are averaged over 10 random starts, the
shaded regions correspond to the standard error of each trajectory.

Data Efficiency:

The central idea of TD learning is to use current model estimates instead of actual data observations

to train models. Naturally, with different step sizes, TD method uses data differently. In the

3The results in Figure use the aforementioned RNN neural network architecture described in Appendixlﬂ But
qualitatively, the results hold for general neural network architectures as well, as the differences in running time is
caused by the complexity in the loss function evaluation.

25



SL method, TD(m) uses (x¢, Apiy1, Apryo..., ADitm, Ti+m) to update the neural network once.
This is counted as m time instances worth of data. Similarly, in the RL method, TD(m) uses
(T4, ADt41, Tt41-APt42, Tt42y oy ADttm, Te+m) to update the neural network once. We also regard
this as m time instances worth of data. Notice, however, for each intermediate time instance ¢t + k,
RL method uses both the state variable ;. and the price change Ap;,k, whereas the SL. method
only uses the price change Ap; .

For SL-TD(m-step) and RL-TD(m-step), it takes m time instances worth of data observations
to perform a gradient step. In other words, for a larger m, each gradient step in TD(m-step) is
more informed as the data length is larger. However, given the same amount of data, TD(m-step)
with a larger m can not perform as many gradient steps than TD(m-step) of a smaller m without
reusing data.

This has important implication to the choice of algorithms, especially in finance. Because (over
longer time horizons such as months or years) financial market is time-varying and non-stationary,
only the recent historical data can be used to train models to predict the future. In situations
like this where the duration of the usable historical data is relatively limited, a more data-efficient
algorithm can potentially produce a more complex model with the same duration of historical data.

One way to evaluate the data efficiency of an algorithm is to evaluate its performance based
on how much data it has accessed, measured in time instances. In our implementations, at any
given time, the price p; and the state variable x; can be used to train the models. Using either the
price, the state variable, or both all count as accessing one time instance of data. Figure [6] plots
the price gain progression with respect to quantity of data accessed. It shows that TD(1-step) is
the most data-efficient, in either SL or RL method. In other words, when data is limited, TD(1),
the method that uses the least information to perform a gradient step, performs the best because

it can take more gradient steps with the same amount of data.

30 SL - Price Gain vs. Data Accessed 30 QL - Price Gain vs. Data Accessed
—+— SL-TD(1-step) —+— RL-TD(1-step)
—— SL-TD(15-step) —— RL-TD(15-step)
254 —— SL-TD(30-step) 254 —— RL-TD(30-step)
—— SL-TD(45-step) —— RL-TD(45-step)
—+— SL-TD(60-step)/MC —+— RL-TD(60-step)/MC

204 204

A
| WMHH WHWHMH

Price Gain (% Half-Spread)
Price Gain (% Half-Spread)

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Data Accessed Data Accessed

Figure 6: Price Gain vs. Data Points Accessed. The trajectories are averaged over 10 random starts,
the shaded regions correspond to the standard error of each trajectory.

26



Bias—Variance Tradeoff:

The bias—variance tradeoff has been a recurring theme in machine learning, and it’s especially
relevant in a discussion of TD learning. Previous studies have reported that TD update generally
leads to higher bias and lower variance compared to Monte Carlo update when applied to the same
prediction model (see Kearns and Singh| [2000] and [Francois-Lavet et al. [2019]). We observe a
similar pattern in our experiment.

As part of the SL method, the neural network is used to predict price change trajectories
given an observable state variable. Consider a particular state xo, and let f;(z¢) be the true price
change at the ¢th time instances ahead. Then the price change trajectory can be represented as a
vector of price changes f(zo) = [f1(z0), fo(x0), ..., feo(x0)]. Let y; be the observable price change
at the ith time instance. Then y; = fi(xo) + €;, and the observable price change trajectory is
Y = [Y1, Y2, -, Y60)-

Consider a set of training datasets, D = {D1, Da, ..., D, }. A neural network can be trained on
each training dataset and produce a predicted trajectory in the SL method, denoted by f (xo; D) =
[U1(z0; D), t2(x0; D), ..., tgo(xo; D)]. Averaging all these predictions from each dataset give the av-

1
erage ith price change prediction u;(zg) = — > 4;(xo; D;) and the average price change trajectory
=1
n

_ 1 .
prediction f(xzo) = — > f(zo; D;). We now arrive at the following bias variance decomposition
n

for the prediction of the ith interval:

MSE;(z0) = Epep [(yz‘ — Gi(zo; D))Q] (37)
= & + [fi(wo) — Wi(20)) + Bpep [ (@(0) — tilo; D))*] (38)
= [y — (20))” + Epep | (#s(a0) — @u(0; D))’ - (39)

Equation is the common bias—variance decomposition, where e? is the irreducible noise
variance, [f(xo) — @(zo)]? is the squared bias term, and Epep {(ﬂ(mo) — U(xo; D))z} is the predic-
tion variance. This decomposition can be reformulated as . Each term in (39)) is observable
and thus can be measured empirically. We will refer to [y; — u;(z0)]* as noise variance squared bias
(NVSB).

A set of 100 training datasets are used, each producing a unique neural network. Testing these
neural networks on the same testing dataset produces MSE, prediction variances, and NVSB for
each time instance. A square root is taken of these values to obtain root mean squared error
(RMSE), the prediction standard deviations (pred. std.), and the noise standard deviation bias
(NSDB). These values are averaged across all time instances and plotted in Figure

27



It’s clear that there is a bias-variance tradeoff — TD with a smaller step size reduces variance
and increases bias, and TD with a larger step size increases variance and reduces bias. A large
prediction variance typically leads to overfitting. Indeed, this can also be observed empirically.
When training the SL method using a small training dataset, the in-sample RMSE of TD(60-step)

Bias-Variance Tradeoff

45
—— RMSE
~&— Pred. std.
40 1 —@— NSDB
35
30
25
20 A
15 L T T T T T
1 15 30 45 60
TD Step Size

Figure 7: Bias—Variance Tradeoff vs. Step Size. Standard errors bars are plotted.

decreases quickly while its out-of-sample RMSE increases (see Figure . This is because TD(60-

step) fits to the noisy patterns in the training data that don’t generalize out of sample. Using

the same training and testing data, TD(1-step) and TD(30-step) don’t overfit nearly as much as

TD(60-step).

29.68

29.66

29.64

RMSE

29.62 1

29.60 1

29.58 1

Out-of-Sample RMSE

—— SL-TD(1-step)
—— SL-TD(30-step)
—— SL-TD(60-step)

1000 1500 2000 2500

Training Steps

0 500

36.86

36.84 1

36.82 1

36.80 1

RMSE

36.76 1

36.74 1

36.72 1

36.70 1

Out-of-Sample RMSE

36.78

—— SL-TD(1-step)
—— SL-TD(30-step)
—— SL-TD(60-step)

1000 1500 2000 2500

Training Steps

0 500

Figure 8: Left: In-sample RMSE; Right: Out-of-sample RMSE.

28




6.3. Universality

In Section the universal models outperforms the stock-specific models. This reveals certain
universality across stocks, that is, the experience learned from one stock can be generalized to a
different stock. To further reinforce the evidence of this universality, we conduct another experiment
under the “take-one-out” regime. Under the “take-one-out” regime, a model is trained on 49 stocks
and tested on the stock that has been left out of the training. This way, the reported testing
performance is out of sample in the conventional machine-learning sense and also on a stock that
isn’t part of the training data.

Table [2| displays the average performance of models trained under all three regimes. The
detailed performance for each model can be found in Appendix (see Table @ The take-one-out
models performance comparable to the stock-specific models, indicating evidence of universality
across stocks. However, the best performing model is still the universal model. This implies that

there are still values in specific stocks.

Price Gain (% Half-Spread)  SL (s.e.) L (s.e.)
Stock-Specific 21.40 (0.15) 24.82 (0.16)
Take-one-out 21.55 (0.15) 24.85 (0.16)

Universal 22.34 (0.15) 25.47 (0.16)

Table 2: Performance comparison among models trained under all three regimes.

6.4. Result Summary

There isn’t a single algorithm that is the most superior in all aspects. Rather, different algorithms
might be preferable under different situations. The following lists some of these insights determined

through the numerical results:

e Max Performance:

— The RL method outperforms the SL method.

— Universal model outperforms stock-specific model.

If data and time aren’t binding constraints and the goal is to maximize the performance, the

universal RL model performs the best and is recommended for this situation.
e Time Limitation:

— SL Method: Monte Carlo update method converges fastest.
— RL Method: TD(1-step) update method converges fastest.

If time is the binding constraint, then a fast algorithm is preferable. For the SL method,
Monte Carlo update method (SL-TD(T-step)) is fastest with respect to running time. For

the RL method, TD(1-step) provides the fastest convergence with respect to running time.

29



e Data Limitation:

— SL Method: TD(1-step) update method is most data-efficient.
— RL Method: TD(1-step) update method is most data-efficient.

If the amount of data is the binding constraint, then a data-efficient algorithm is preferable.
TD(1-step) provides the most data-efficient algorithms, for both SL method and the RL
method.

e Prevent Overfitting:
Monte Carlo update method leads to a high-variance and low-bias prediction model, which
is prone to overfitting. TD learning leads to a low-variance and high-bias prediction, which

provides the benefit of preventing overfitting.

References

B. M. Akesson and H. T. Toivonen. A neural network model predictive controller. Journal of
Process Control, 16:937-946, 2006.

R. Almgren and N. Chriss. Optimal execution of portfolio transactions. Journal of Risk, 3(2):5-39,
2000.

S. Becker, P. Cheridito, and A. Jentzen. Deep optimal stopping. Journal of Machine Learning
Research, 20, 2019.

S. Becker, P. Cheridito, and A. Jentzen. Pricing and hedging american-style options with deep
learning. Journal of Risk and Financial Management, 13(7), 2020.

S. Becker, P. Cheridito, A. Jentzen, and T. Welti. Solving high-dimensional optimal stopping
problems using deep learning. Furopean Journal of Applied Mathematics, 32(3):470-514, 2021.

D. Bertsimas and A. W. Lo. Optimal control of execution costs. Journal of Financial Markets, 1:
1-50, 1998.

R. Coggins, A. Blazejewski, and M. Aitken. Optimal trade execution of equities in a limit order mar-
ket. IEEE International Conference on Computational Intelligence for Financial Engineering,
10(1109), 2003.

V. Desai, V. Farias, and C. Moallemi. Pathwise optimization for optimal stopping problems.
Management Science, 58(12):2292-2308, 2012.

R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin. Optimal search and one-way trading online
algorithms. Algorithmica, pages 101-139, 2001.

V. Francois-Lavet, G. Rabusseau, J. Pineau, D. Ernst, and R. Fonteneau. On overfitting and
asymptotic bias in batch reinforcement learning with partial observability. Journal of Artificial
Intelligence Research, 65, 2019.

R. Gaspar, S. Lopes, and B. Sequeira. Neural network pricing of american put options. Risks, 8
(3), 2020.

30



M. Haugh and L. Kogan. Pricing american options: A duality approach. Operations Research, 52
(2), 2004.

C. Herrera, F. Krach, P. Ruyssen, and J. Teichmann. Optimal stopping via randomized neural
networks. 2021.

M. Kearns and S. Singh. Bias-variance error bounds for temporal difference updates. COLT:
Proceedings of the Thirteenth Annual Conference on Computational Learning Theory, pages 142—
147, 2000.

A. Kim, C. Shelton, and T. Poggio. Modeling stock order flows and learning market-making from
data. AI Memo, 2002.

F. Longstaff and E. Schwartz. Valuing american options by simulation: A simple least-squares
approach. The Review of Financial Studies, 14(1):113-147, 2001.

NASDAQ TotalView-ITCH 4.1. NASDAQ Stock Exchange, 2010. URL http://www.nasdaqtrader
.com/content/technicalsupport/specifications/dataproducts/nqtv-itch-v4_1.pdf.

Y. Nevmyvaka, Y. Feng, and M. Kearns. Reinforcement learning for optimazed trade execution.
International Conference on Machine Learning, pages 673-680, 2006.

A. Obizhaeva and J. Wang. Optimal trading strategy and supply/demand dynamics. Journal of
Financial Markets, 16(1):1-32, 2013.

B. Park and B. Van Roy. Adaptive execution: Exploration and learning of price impact. Operations
Research, 63(5):1058-1076, 2015.

L.C.G. Rogers. Monte carlo valuation of american options. Mathematical Finance, 2003.

J. A. Sirignano. Deep learning for limit order books. Quantitative Finance, 19(4):549-570, 2019.
URL https://doi.org/10.1080/14697688.2018.1546053.

R. Sutton and A. Barto. Reinforcement Learning. ISBN 978-0-585-0244-5. MIT Press, 1998.

J. Tsitsiklis and B. Van Roy. Regression methods for pricing complex american-style options. IEEE
Transactions on Neural Networks, 12(4), 2001.

H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double g-learning.
AAATI’16: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pages 2094—
2100, 2016.

31


http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/nqtv-itch-v4_1.pdf
http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/nqtv-itch-v4_1.pdf
https://doi.org/10.1080/14697688.2018.1546053

A. NASDAQ Data Source

The NASDAQ ITCH dataset provides level IIT market data from the NASDAQ stock exchange
[NAS, 2010]. This dataset contains event messages for every event that has transpired at the
exchange. Common market events include “add order”, “order executed”, and “order cancelled”.
These market events occur throughout the trading hours and constantly change the limit order

book (LOB). An example of an “add order” event message is shown below in Table

time ticker side shares price event

9:30:00.4704337 BAC B 2000  12.02  “A”

Table 3: The event reads: A bid limit order of 2000 shares of BAC stock is added to the LOB at price
level $12.02 at 9:30:00.4704337.

From these event messages, a limit order book can be constructed to display the prices and
numbers of resting shares (depth) at each price level. This system is dynamic and it changes every

time a new event occurs in the market.

time b.prc 5 b.prc4 b.prc3 b.prc2 b.prcl a.prcl a.prc2 a.prc3 a.prc4 a.prch

9:30:00.4704337 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10
9:30:00.8582938 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10

Table 4: The above table is a snapshot of the LOB displaying the prices of the top 5 price levels on
both sides of the market before and after the event from Table[3] The event from Table[3|doesn’t change
the prices at each level.

time b.prc 5 b.prc4 b.prc3 b.prc2 b.prc1l a.prcl a.prc2 a.prc3 a.prc4 a.prch

9:30:00.4704337 10000 43700 13100 12100 7500 5200 15300 15900 17000 22200
9:30:00.8582938 10000 41700 13100 12100 7500 5200 15300 15900 17000 22200

Table 5: The above table is a snapshot of the LOB displaying the number of shares on the top 5 price
levels on both sides of the market before and after the event from Table Bl The event from Table [3]
reduces 2000 shares at price $12.02.

The limit order book reflects the market condition at any given moment and this provides the

environment of the optimal execution problem.

B. Summary Statistics of Selected Stocks

Stock  Volume ($M) Avg. Prices ($) Price Vol.(§) Return Vol. One Tick (%) Spread

AAPL 94768.13 472.28 44.56 29% 0% 13.60
ADBE 3999.91 46.73 5.98 25% 81% 1.39
ADI 2441.46 46.57 2.16 20% 2% 3.26
ADP 3572.48 69.66 6.01 14% 59% 4.53

32



ADSK
AMAT
AMD
AMGN
AMZN
ATVI
AVGO
BAC
BRK.B
CHTR
CMCSA
COST
CSCO
CSX
DIS
EBAY

FB
FISV
GE
GILD
GS
ILMN
INTC
INTU
ISRG
JNJ
JPM
LRCX
MDLZ
MELI
MRK
MSFT
MU
NFLX
NVDA
PEP
QCOM
SBUX

TXN
UPS

VRTX
\%/
WFC

2754.37
3664.65
535.55
9096.26
17102.94
2298.19
2155.93
11935.64
3578.57
1985.65
10030.18
4996.78
14958.94
2049.05
5904.70
11696.10
4821.01
32453.19
1481.28
7809.10
11996.61
7129.39
1790.24
13742.28
3664.81
4161.03
10063.27
15719.47
2413.90
6152.37
1224.31
7717.00
27291.37
9123.92
15554.60
2325.16
6836.76
15814.58
7015.92
8735.23
5857.73
4350.56
7143.93
2983.46
7297.25
10620.15

39.11
15.25
3.38
103.89
297.89
15.39
38.50
13.44
110.20
113.96
43.23
111.86
22.69
24.78
62.83
53.45
15.34
34.59
91.68
23.99
58.60
156.51
72.74
23.05
65.12
450.20
85.73
51.85
47.00
30.67
109.33
46.40
32.47
13.36
246.42
14.18
80.35
66.36
67.38
35.43
37.61
88.62
180.35
68.01
48.66
40.17

3.53
1.76
0.60
10.12
41.59
1.90
5.02
1.31
7.20
19.16
3.40
7.00
1.83
1.84
5.71
1.88
1.72
10.56
11.36
1.62
10.77
9.46
16.52
1.34
4.79
69.49
6.67
3.35
4.62
2.14
16.36
2.31
3.44
4.43
73.44
1.25
4.14
3.38
9.18
1.25
3.27
6.75
16.65
13.45
2.66
3.27

27%
28%
52%
27%
26%
38%
31%
23%
15%
28%
20%
14%
34%
19%
18%
25%
24%
48%
53%
17%
58%
21%
33%
20%
20%
35%
13%
19%
25%
20%
37%
17%
25%
38%
65%
21%
14%
18%
19%
15%
18%
14%
21%
70%
17%
16%

70%
99%
98%
18%
0%
98%
61%
99%
11%
3%
95%
14%
99%
96%
76%
84%
98%
93%
%
98%
66%
2%
%
98%
47%
0%
75%
93%
48%
97%
1%
93%
98%
98%
0%
98%
73%
88%
62%
97%
95%
42%
3%
9%
92%
97%

3.00
1.14
1.02
4.61
16.40
2.01
4.50
1.01
6.71
17.75
1.27
4.58
1.02
1.47
1.81
1.46
1.02
0.99
8.31
1.04
2.20
8.48
10.72
0.99
5.28
54.36
3.15
1.71
3.19
1.89
27.96
2.09
1.08
1.07
21.53
1.27
3.14
2.37
1.46
1.25
1.42
3.35
15.47
10.04
1.92
1.11

33



Table 6: Descriptive statistics for the selected 50 stocks over 2013. Average price and (annualized)
volatility are calculated using daily closing price. Volume ($M) is the average daily trading volume in
million dollars. One tick (%) is the percentage of time during trading hours that the spread is one tick.
Spread is the time-averaged difference between best bid price and best ask price, in ticks.

C. Features Used in State Variables

The set of features that make up the state s; at any given time ¢ is listed in Table[7] These features
are designed to be symmetric between buying and selling. In order words, the side of the market
(bid or ask) is only distinguishable relative to the intended trade direction as near-side and far-side.
Near-side is the side at which the execution seeks to fulfill an order, and the far-side is the opposite
side. Namely, for a buying order, the near-side is the bid-side and the far-side is the ask-side. For

a selling order, the near-side is the ask-side and the far-side is the bid-side.

Category Features
General Information Time of day, Price normalized by average spread
Spread Spread, Spread normalized by return volatility, Spread nor-

malized by price volatility

Depth (top 5 price levels) Queue imbalances, Near depths normalized by average daily
volume, Far depths normalized by average daily volume

Trading Flow Number of trades in near-side and in far-side within the last
second, Number of price changes towards near-side and far-
side within the last second

Intensity Measures Intensity measure for trades at near-side and far-side, price
changes at near-side and far-side

Table 7: State variable features.

e For a sell order, the price p; of the stock is taken to be the best bid price; for a buy order,
the price p; of the stock is taken to be the best ask price. The price is normalized by average

spread, which is taken to be the trailing 5 day time-averaged spread.

e Return volatility and price volatility are computed using the adjusted closing daily price for

the previous 21 days.

e Near depths and far depths refer to the number of outstanding shares at each of the top 5
price levels at respective sides. These values are normalized by the trailing 21-day average

daily trading volumes in shares.
¢ Queue imbalance is defined as

near depth — far depth

1= .
@ near depth + far depth

34



This is a value between —1 and 1 and represents the imbalance of the supply and demand
of the stock at the current price level. This can be calculated using depths at the top price
levels and aggregated depth at the top 5 price levels. We compute the QI for the each of the

top 5 price levels to be used as features.

o Intensity measure of any event is modeled as an exponentially decaying function with incre-
ments only at occurrences of such an event. Let S; be the magnitude of the event at any
given time ¢, Sy = 0 if there is no occurrence of such event at time ¢. The intensity measure
X (t) can be modeled as

X(t+ At) = X (t) - exp(—At/T) + Sy ar.

At any time t and for any duration At, if there is no event occurrence between t and ¢ + At,
then the intensity measure decays exponentially. The time constat T controls the rate of the

decay.

In our implementation, we measure the intensity measure for trades and price changes on the
near-side and far-side. The magnitude of a trade is the size of the trade in dollars, normalized
by average daily volume. The magnitude of a price change is normalized by the average

spread.

D. Neural Network Architecture

The RNN architecture is designed to process the state variables described in Section [5.2] and
Appendix [C] The state variable consists of 10 sets of features, thus, the neural network has 10
RNN units, each takes a set of feature as input, as illustrated by Figure The RNN Units are
implemented as LSTM units with dimension 64. The output of the LSTM units go through another
5 layers of fully-connected network, which is denoted as “Output Network” in Figure [2]

In our implementation, because the execution horizon is made of 60 time intervals, the output
of the neural network also has dimension of 60. In the SL method, the last layer of the output
network is a linear layer with dimension 60. In the RL method, due to the monotonicity of the
continuation value, all the continuation value increments are non-negative with the exception of
the first one. This is described by equation . To enforce this, in the RL method, softplus
activation function is applied to all units in the last layer except the first one. This is the enforce
the positivity of the neural network output. The Python Tensorflow implementation of the neural
network in the RL method is provided in Table

35



NONN NN
g A W N

import tensorflow as tf
import tensorflow.contrib.layers as layers

def rnn_model(inpt, rnn_states, rnn_seq, output_-dim, scope, phase):
inpt.shape = [batch_size, rnn_seq, rnn_state]

rnn_states: the number of features in the state variables
rnn_seq: the length of the sequence in the input.

FFH I

def dense_linear(x, size):
return layers.fully_connected (x, size, activation_fn=None)

def dense_batch_relu(x, size):

hl = layers.fully_connected (x, num_outputs = size, activation_fn=None)
h2 = layers.batch_norm(hl, center=True, scale=True, is_training=phase)
return tf.nn.relu(h2)

inpt.rnn = tf.reshape(inpt, [tf.shape(inpt)[0], rnn_seq, rnn_states])

with tf.variable_scope (scope):

inputs_series = tf.split(inpt_-rnn, rnn_seq, 1)

inputs_series = [tf.squeeze(ts,axis = 1) for ts in inputs_series]
cell = tf.contrib.rnn.LSTMCell(64)

states_series , current_state = tf.contrib.rnn \

.static_.rnn (cell , inputs_series, dtype =tf.float32 )

out = current_state
for i in range(5):

out = dense_batch_relu(out, 64)
out = dense_linear (out, output_-dim)

# apply softplus to all units except the first one
out = tf.concat ([tf.expand_-dims(out[:, 0], axis = 1),
tf.nn.softplus (out[:, 1:])], axis = 1)
return out

Table 8: The Python Tensorflow implementation of the RNN architecture.

Hyperparameter Tuning:

inpt: an array that contains the data within each batch in the SGD algorithm

A few neural network architectures were been tried and the reported architecture had the best
performance on the validation datasets. Hyperparameters are also tuned on the validation datasets.
For each of the following hyperparameters, a few values were tried and the best values are reported

below:
« Learning rate: 3 x 1075
e Batch size: 1024
e Target network copy frequency: every 1000 gradient steps

o TD step size m: 15 (both SL and RL)

36



E. Algorithm Performance

Stock SL (Specific) RL (Specific) SL (Out) RL (Out)  SL (Universal) RL (Universal)
AAPL  37.36 (1.21)  44.8 (1.24) 3857 (1.21) 43.23 (1.23)  38.9 (1.22) 44.4 (1.23)
ADBE  27.6 (0.80)  30.4 (0.81)  27.27 (0.81) 30.15 (0.81)  27.36 (0.80) 30.4 (0.81)
ADI  17.68 (1.09)  20.2 (1.10)  17.34 (1.08) 19.88 (1.09)  18.2 (1.08) 20 (1.09)
ADP 1138 (1.07) 124 (1.08)  11.40 (1.07) 12.41 (1.09)  11.74 (1.08) 12.40 (1.10)
ADSK 3058 (1.10)  34.20 (1.12)  29.57 (1.10) 33.67 (1.12)  29.48 (1.11) 33.40 (1.13)
AMAT 1352 (0.71)  14.60 (0.72)  13.94 (0.71) 15.13 (0.72)  13.62 (0.72) 15.00 (0.73)
AMD  22.36 (0.72)  24.20 (0.73)  21.15 (0.72)  22.95 (0.73)  22.32 (0.73) 25.20 (0.74)
AMGN 37.98 (1.21) 44.60 (1.23)  38.89 (1.21) 45.67 (1.23) 41.96 (1.22) 46.80 (1.24)
AMZN  25.80 (1.32)  29.40 (1.35)  23.96 (1.32) 25.75 (1.35)  25.54 (1.33) 28.40 (1.35)
ATVI 18.58 (0.89) 20.60 (0.91)  21.35 (0.89) 22.68 (0.91) 22.58 (0.90) 22.60 (0.91)
AVGO  17.38 (1.05)  18.40 (1.07)  17.58 (1.05) 18.92 (1.07)  18.82 (1.06) 19.02 (1.08)
BAC  22.94 (0.71)  27.40 (0.72)  23.63 (0.71) 27.67 (0.72)  23.76 (0.72) 27.80 (0.73)
BRK.B  32.90 (1.25)  36.60 (1.28)  33.28 (1.25) 37.23 (1.28)  35.08 (1.26) 37.80 (1.28)
CHTR  12.74 (1.23)  16.20 (1.25) 1272 (1.23) 16.16 (1.25)  13.82 (1.24) 17.40 (1.26)
CMCSA  17.16 (1.09)  21.00 (1.11)  16.64 (1.09) 20.17 (1.11)  17.70 (1.10) 21.00 (1.12)
COST 3282 (1.31)  38.20 (1.34)  34.13 (1.31) 39.17 (1.34)  36.48 (1.32) 41.60 (1.34)
CSCO  15.16 (0.68)  17.60 (0.69)  14.99 (0.68) 16.93 (0.69)  15.60 (0.69) 17.40 (0.70)
CSX 1474 (1.03)  16.20 (1.05)  15.09 (1.03) 16.49 (1.05)  15.22 (1.04) 17.40 (1.06)
DIS 18.44 (1.21)  21.40 (1.23)  19.54 (1.21) 22.89 (1.23)  20.62 (1.22) 23.40 (1.24)
EBAY  14.86 (1.19)  18.20 (1.22)  14.93 (1.19) 18.30 (1.22)  15.04 (1.20) 18.80 (1.22)
F 92.56 (0.89)  27.40 (0.91)  24.00 (0.89) 28.36 (0.91)  24.66 (0.90) 28.20 (0.91)
FB 15.68 (1.43)  16.20 (1.46)  15.91 (1.43) 16.46 (1.46)  16.04 (1.44) 16.60 (1.47)
FISV  21.36 (1.20)  24.20 (1.22)  21.76 (1.20) 24.65 (1.22)  22.96 (1.21) 24.40 (1.23)
GE 22.26 (0.68)  26.40 (0.69)  22.02 (0.68) 26.49 (0.69)  22.40 (0.69) 26.60 (0.70)
GILD  24.44 (0.90)  32.40 (0.92)  23.38 (0.90) 28.84 (0.92)  23.66 (0.91) 29.80 (0.92)
GS 98.38 (1.19)  34.40 (1.21)  26.80 (1.19) 31.82 (1.21)  27.24 (1.20) 32.20 (1.22)
ILMN 1944 (1.22)  24.80 (1.24)  19.62 (1.22) 25.13 (1.24)  21.12 (1.23) 25.60 (1.25)
INTC  27.42 (0.75)  29.80 (0.77)  26.69 (0.75) 29.26 (0.77)  26.96 (0.76) 29.90 (0.77)
INTU 1504 (1.11)  18.60 (1.13)  15.85 (1.11) 19.78 (1.13)  16.98 (1.12) 20.00 (1.14)
ISRG  15.92 (1.50)  19.00 (1.53)  17.39 (1.50) 21.05 (1.53)  19.50 (1.52) 21.80 (1.54)
JNJ 1500 (1.09)  18.20 (1.11)  14.76 (1.09) 17.97 (1.11)  14.98 (1.10) 19.00 (1.12)
JPM  24.96 (0.80)  30.60 (0.82)  25.32 (0.80) 30.71 (0.82)  26.50 (0.81) 31.40 (0.82)
LRCX  17.04 (1.12)  20.20 (1.14)  16.81 (1.12) 21.08 (1.14)  17.36 (1.13) 21.80 (1.15)
MDLZ  11.92 (1.02)  14.20 (1.04)  12.66 (1.02) 14.97 (1.04)  12.74 (1.03) 14.40 (1.05)
MELI  13.90 (1.25)  15.20 (1.28)  14.42 (1.25) 15.72 (1.28)  15.14 (1.26) 17.00 (1.28)
MRK  27.74 (0.98)  34.20 (1.00)  28.33 (0.98) 34.96 (1.00)  29.38 (0.99) 36.40 (1.00)
MSFT  28.04 (0.81)  32.80 (0.83)  28.20 (0.81) 32.95 (0.83)  29.04 (0.82) 33.60 (0.83)
MU  36.30 (0.98)  36.60 (1.00)  34.86 (0.98) 35.87 (1.00)  35.06 (0.99) 36.40 (1.00)
NFLX  18.06 (1.39)  20.80 (1.42) 18.75 (1.39) 21.63 (1.42)  19.98 (1.40) 23.60 (1.42)
NVDA  16.64 (0.69)  18.00 (0.70)  16.96 (0.69) 18.48 (0.70)  16.82 (0.70) 19.00 (0.71)
PEP 1378 (1.10)  18.40 (1.12) 13.52 (1.10) 18.12 (1.12)  14.42 (1.11) 18.80 (1.13)
QCOM  27.52 (0.77)  35.80 (0.78)  28.47 (0.77) 37.09 (0.78)  29.24 (0.77) 36.80 (0.79)
SBUX 3826 (1.09)  41.40 (1.11)  37.05 (1.09) 39.84 (1.11)  37.94 (1.10) 39.60 (1.12)
T 18.06 (1.01)  20.40 (1.03)  17.10 (1.01) 19.65 (1.03)  17.92 (1.02) 20.60 (1.04)
TXN 1122 (1.05) 1240 (1.07)  11.66 (1.05) 12.72 (1.07)  12.16 (1.06) 13.40 (1.08)

37



UPS 15.54 (1.08)  16.20 (1.10)  16.38 (1.08) 17.37 (1.10)  18.84 (1.09) 19.20 (1.11)
\% 24.46 (1.31)  29.60 (1.34)  25.15 (1.31) 29.47 (1.34)  25.90 (1.32) 29.80 (1.34)
VRTX 2632 (1.19)  27.80 (1.21)  26.67 (1.19) 27.64 (1.21)  26.66 (1.20) 27.60 (1.22)
VZ 14.78 (0.93)  18.00 (0.95)  14.19 (0.93) 17.60 (0.95)  14.48 (0.94) 18.60 (0.96)
WFC  16.06 (1.05)  20.00 (1.07)  16.68 (1.05) 20.20 (1.07)  16.96 (1.06) 21.00 (1.08)
Avg. 21.40 (0.15)  24.82 (0.16)  21.55 (0.15) 24.85 (0.16)  22.34 (0.15) 25.47 (0.16)

Table 9: These price gains are out-of-sample performances reported on the testing dataset. The
numbers displayed are in percentage of the half-spread (% Half-Spread). The numbers in parenthesis
are standard errors.

38



	Introduction
	Literature Review
	Organization of the paper

	Limit Order Book and Optimal Stopping Formulation
	Limit Order Book Mechanics
	Price Predictability
	Optimal Stopping Formulation

	Supervised Learning Approach
	Price Trajectory Prediction
	Supervised Learning Method
	Execution Policy
	Temporal Difference Learning
	Algorithm
	Insufficiency

	Reinforcement Learning Approach
	Continuation Value
	Learning Task
	TD Learning
	Algorithm
	Discussion

	Numerical Experiment: Setup
	Experiment Setup
	State Variables and Rewards

	Numerical Experiment: Results
	Best Performances
	Comparative Results
	Universality
	Result Summary

	NASDAQ Data Source
	Summary Statistics of Selected Stocks
	Features Used in State Variables
	Neural Network Architecture
	Algorithm Performance

