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Abstract. Revert protection is a feature provided by some blockchain
platforms that prevents users from incurring fees for failed transactions.
This paper explores the economic implications and benefits of revert pro-
tection, in the context of priority auctions and maximal extractable value
(MEV). We develop an equilibrium game theoretic model that captures
the behavior of users (MEV searchers) bidding to have their transaction
included ahead of others, in an environment where only a single transac-
tion will succeed in realizing the common value of an opportunity, and
in settings both with and without revert protection. Our model applies
to a broad range of settings, including Layer 1 (L1) blockchains (e.g.,
Ethereum mainnet) and Layer 2 (L2) blockchains, and auctions such as
“bundle auctions” (on L1s) or priority ordering auctions (on L2s).
We establish that, in the absence of revert protection, users will employ
randomized strategies to mitigate the impact of paying for failed trans-
actions. This will ultimately result in less auction revenue, despite the
fact that failed transactions still pay fees. Our results quantify in closed
form how revert protection enhances auction revenue, and also improves
market efficiency and provides for more efficient use of blockspace, as a
function of the underlying parameters (the value of the MEV opportu-
nity, the base fee, the revert penalties, and the number of participating
agents).

Keywords: Blockchain · Priority gas auction · Revert protection · MEV

1 Introduction and Background

Revert protection is a feature for blockchains that block builders can provide
where they exclude transactions that would otherwise fail, protecting users from
paying fees for failed transactions. However, failed transactions would pay fees,
which often accrue to the block builder. So is it in the interest of those builders
to offer revert protection?

In this paper, we make the case that it is, and quantify by how much. We
study the implications of revert protection on blockchain platforms, and partic-
ularly on the auctions that many of those platforms use to capture and allocate
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maximal extractable value (MEV). We show that in many relevant settings, re-
vert protection is beneficial for auctioneer revenue, as well as for other relevant
outcomes like price discovery and blockspace efficiency.

The analysis is complicated by the wide variety of rules — across a diverse
variety of L2s, as well as in the complex Ethereum block builder market —
for how transactions are selected for inclusion and ordered, how fees are col-
lected, and who those fees go to, as well as how applications behave under those
rules. We propose a model that can be parameterized to cover a wide variety of
these settings, and use that model to solve for the equilibrium behavior of MEV
searchers as a function of those parameters.

1.1 Revert Protection

On Ethereum and similar blockchains, users interact with smart contracts us-
ing atomic transactions. During execution of a transaction, one of those smart
contracts may trigger a “revert,” which causes the entire transaction to fail. Nor-
mally, if the transaction is included, the user who sent the reverting transaction
is still charged some transaction fee, even though the transaction has no other
effect on the blockchain state.

The fee charged is typically the product of the transaction’s gas price and
the gas used by the transaction before it either completes or reverts. The gas
price, in turn, can be separated into the “base fee”—which can be thought of as
a flat fee that must be paid by any transaction in the block—and the “priority
fee”— an additional fee that is paid to the builder and often affects ordering as
well as inclusion (particularly when blocks are full).

The gas used in the transaction is a function of how much of the transaction
was executed—a transaction that reverts will usually use only a portion of the
gas that it would have used if it succeeded. For example, on an automated market
maker, typical reverting transactions may use only around 10—20% of the gas
that a succesful transaction would use.

Some block builders implement a feature where they exclude failed transac-
tions entirely, thus saving the user from having to pay a fee for it. This feature is
known as “revert protection.” This feature improves user experience, since users
only have to pay a fee if their transaction succeeds. However, it also has sig-
nificant effects on the behavior of the profit-seeking bots known as “searchers,”
which we now describe.

1.2 Searchers, Auctions, and Block Building

Public blockchains have abundant opportunities for MEV. For example, a major
type of MEV is the arbitraging of prices between decentralized and central-
ized exchanges, also called “CEX-DEX arbitrage,” as discussed in [2] and [8].
On these blockchains, independent actors known as “searchers” seek out MEV
opportunities and compete to fill them.

Some block builders use different types of auctions to allocate these oppor-
tunities to searchers. For a given MEV opportunity, each transaction trying to
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claim it can be thought of as a “bid.” Generally, only one transaction trying to
claim a given opportunity will succeed in extracting the value from it. Revert
protection is therefore very relevant for these auctions, because it protects bid-
ders on a given MEV opportunity from having to make a payment for failed bids.
Two examples of block building auctions include the “bundle auctions” run by
builders such as Flashbots on Ethereum mainnet, and “priority auctions” run
by sequencers on Ethereum L2s.

Bundle Auctions. On Ethereum mainnet, blocks are typically built by profit-
maximizing “builders.”4 Many of these builders run “bundle auctions” in which
they allow any searcher to submit transactions, and use those searchers’ bids as
a factor when deciding which transactions to include and how to order them.

There are two ways bids can be expressed in this auction. First, through the
priority fee on the transaction. Second, by making a payment directly as part of
the logic of the transaction (by calling coinbase.transfer(...)), as discussed
in [3]. The relevant difference between these methods of payment is that (some
portion of) priority fees are paid even if the transaction reverts, whereas if the
transfer is made as part of the transaction, then it will be conditional on whether
the transaction succeeds.

On Ethereum mainnet, the different components of gas price — base and
priority fees — are paid in ETH and accrue to different users. Base fees are
burned (meaning they ultimately accrue to all ETH holders, rather than the
builder). Priority fees accrue to the block builder.5

Many builders, such as Flashbots [5], provide revert protection for trans-
actions submitted to them, even though it is not required by the Ethereum
protocol and they might receive more in transaction fees by including it. Our
results in this paper help explain this choice by showing that it likely increases
their expected revenue in equilibrium.

Priority ordering auctions on L2. On Layer 2 blockchains today, blocks are typ-
ically built by a single sequencer, which often follows a deterministic algorithm
for transaction inclusion and ordering. One of the most popular algorithms for
this is priority ordering, in which transactions are ordered in descending order
of their gas price.

Priority ordering can be thought of as an auction in which transactions bid
with the discretionary part of their gas price (i.e., their priority fee) to be in-

4 Block builders also generally play the role of bidders themselves in the “MEV-Boost”
auction, in which they bid to have their block included by the current proposer, as
discussed in [4]. Since in that auction, “bids” are complete blocks, revert protection
is not as relevant for it, and we will mostly set it aside for purposes of this paper.
Its implications for the bundle auction are noted in footnotes below.

5 Note that these bids — whether paid through the priority fee or through a transfer
to the block’s coinbase address, technically go to the block proposer, not the block
builder who is assembling the block. However, since they reduce the amount that
the builder has to pay to the proposer to win the MEV-Boost auction, we can think
of these payments as a value transfer to the builder.
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cluded earlier in the chain. By default, this means that certain kinds of MEV
(such as top-of-block CEX-DEX arbitrage) will generally accrue to the sequencer
through priority fees. This means that when such transactions fail, they will still
pay some of their priority fee to the sequencer. However, as discussed in [10],
there is a technique called MEV taxes that applications can use to capture all
but a negligible portion of the value that would otherwise be paid through pri-
ority fees. Since MEV taxes are paid as part of the transaction and revert if the
transaction fails, these fees will only be paid if the transaction succeeds.

Considering All Cases. Even just within these two settings of L1 block builders
and L2 priority-ordered sequencers, we now need to consider at least seven cases
that differ in who fees go to and how much is paid when the transaction reverts.
Table 1 shows the differences between these cases.

Setting
Base fee
goes to:

Rest of bid
goes to:

Is base fee
paid when
TX fails?

Is rest of bid
paid when
TX fails?

L1 block builder
with bids paid
via priority fees

ETH holders Builder Partial Partial

L1 block builder
with bids paid

via Coinbase transfer
ETH holders Builder Partial No

L2 sequencer with
priority ordering

Sequencer Sequencer Partial Partial

L2 sequencer with
priority ordering for

apps using MEV taxes
Sequencer Application Partial No

L1 block builder
with revert protection

ETH holders Builder No No

L2 sequencer with
revert protection

Sequencer Sequencer No No

L2 sequencer with
revert protection for

apps using MEV taxes
Sequencer Application No No

Table 1. Transaction Fee Distribution and Revert Behavior

Our model is general enough to compute expected base fee and remaining
fee (meaning priority fee, transfer to the coinbase address, or MEV tax) for all
of these, by setting different parameters.

1.3 Execution Costs of Revert Protection

This paper is primarily concerned with the potential effects of revert protection,
not with its implementation. We should note that feasible revert protection is a
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difficult technical challenge. Knowing whether a transaction will revert usually
requires a builder to execute part of that transaction, which consumes some
computational resources. If the builder does not charge the sender anything for
that reverted transaction, it may be possible to denial-of-service (DOS) attack
the builder with an overwhelming number of reverting transactions.

There are some mitigations to this kind of attack. In some settings, the
builder may be able to use out-of-band spam prevention techniques (such as
IP blocking) to make this DOS attack unfeasible. For certain special cases—
including the auction-like use cases considered in this paper—it may also be
possible for the builder to determine statically whether a transaction will succeed
or fail.

For purposes of this paper, we leave those challenges out of scope, and assume
that—at least for the use cases discussed here—the builder is able to implement
revert protection with negligible cost.

1.4 Our Contributions

The contributions of this paper are as follows:

– We introduce a novel, unified game theoretic model that can be used to
analyze revert protection in a variety of settings such as L1 block builders,
L2 priority-ordered sequencers, MEV taxes, etc.

– We are able to solve for equilibria in our model in closed form in the model pa-
rameters: the value of the MEV opportunity, the base fee, the revert penalty
parameters, and the number of participating agents.

– Using our equilibrium model, we can quantify the benefits of revert protec-
tion versus not offering revert protection:
• Revert protection offers higher auction revenue. Both with and without
revert protection, in our setting, the auctioneer can extracts all value
when the auction clears. However, in the absence of revert protection,
agents randomize when they participate, and there is a non-zero prob-
ability that the auction does not clear and value is lost. This results in
reduced sequencer revenue.

• In the context of automated market making, revert protection offers
better market efficiency. Here, each auction represents a CEX-DEX ar-
bitrage opportunity. In the absense of revert protection, there is some
chance auctions do not clear, leaving arbitrage opportunities unexploited
and hence prices less accurate.

• Revert protection offers better block space efficiency. Indeed, when there
is revert protection, only a single, winning transaction consumes block
space. On the other hand, without revert protection, all submitted trans-
actions consume block space.

– Our model allows different reversion penalty rates for the base fee and for
priority fees. While the reversion penalty for priority fees influences bidder
behavior, we establish that it does not influence aggregate system outcomes
such as revenue, the probability that the auction clears, or the number of
submitted transactions.
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1.5 Literature Review

The dynamics of onchain MEV auctions were first explored in seminal work
by Daian et al. [2]. Rasheed et al. mention the congestion effects of reverting
transcations in [9]. Fox, Pai, and Resnick wrote about the feasibility of onchain
auctions in [6], as did Robinson and White in [10]. The whitepaper for Unichain,
an L2 that plans to offer revert protection, referred briefly to its efficiency benefits
for decentralized exchanges [1].

Relative the economics literature on auctions, the model we consider is a
common value, all pay auction, with a minimum allowable bid, and differential
partial refunds for failed bids on the minimum bid and amounts above the min-
imum bid. Closest to our work in the paper of Hillman and Samet [7]. They
consider a common value, all pay auction, with a minimum allowable bid, but
do not allow for partial refunds of failed bids.

2 Model

2.1 Auction Description

We present a stylized model of a priority ordering auction for an MEV oppor-
tunity. There are N ≥ 2 agents, indexed by i ∈ [N ], bidding for a single MEV
opportunity in a block with common value V > 0, and the base gas fee for the
block is g > 0.

Each agent i may choose to abstain or submit a bid (“priority gas fee”)
bi ≥ 0; we denote the action of abstaining by bi = ∅. The winner, denoted by
w, extracts value V from the MEV opportunity and pays g + bw. In the event
of a tie, the winner is randomly selected among the highest bids. Any losing
agent j does not receive any value and incurs a revert cost of r1g + r2bj , where
r1, r2 ∈ [0, 1] are the revert penalty rates on the base gas and priority gas fees,
respectively.6

This model provides a unified setting that captures a variety of proposed and
currently in-use block building protocols among popular blockchains, including
those discussed in Section 1.2 and listed in Table 1. Table 2 illustrates how the
revert penalty parameters may be set in various settings. For example, with an
L1 block builder and bids paid via priority fee, we would expect r1 = r2 > 0,
and these parameters might take a value of 10–20% for automated market maker
swap transactions.

In the cases involving MEV taxes in Table 2, observe that r2 = 0. This is
because with MEV taxes, applications can decide what fraction of the priority
fees to capture themselves versus giving to the sequencer. Priority fees that are
captured by the application are fully refunded on revert. As we will see later on
(cf. Theorem 4.1), the total priority fee revenue does not depend on the choice

6 This model corresponds to a common value, all-pay auction with a minimum bid
g and differential refunds (1 − r1)g and (1 − r2)bj for the base bid amount g and
additional bid amount bj , respectively.
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Setting
Revert penalty

on base fee
Revert penalty
on rest of bid

L1 block builder with bids
paid via priority fees

r1 = r2 ∈ (0, 1]

L1 block builder with bids
paid via Coinbase transfer

r1 ∈ (0, 1] r2 = 0

L2 sequencer with
priority ordering

r1 = r2 ∈ (0, 1]

L2 sequencer with priority
ordering for apps using MEV taxes

r1 ∈ (0, 1] r2 = 0

L1 block builder
with revert protection

r1 = r2 = 0

L2 sequencer with
revert protection

r1 = r2 = 0

L2 sequencer with revert
protection for apps using MEV taxes

r1 = r2 = 0

Table 2. Revert Penalty Parameters for Various Settings

of r2. Hence, applications are incentivized to capture all but a negligible portion
of the priority fee, and thus r2 = 0.

We make the following assumption to avoid trivialities:7

Assumption 2.1 Assume that the value exceeds the base fee, i.e., V > g.

2.2 Strategy Spaces and Payoffs

Payoffs Under Pure Strategies. Under pure strategies, agent i has strategy space
B = ∅ ∪ [0,∞) and chooses an action bi ∈ B. Given a strategy profile b =
(bi)i∈[N ], the payoff of agent i, denoted ui, is

ui(bi|b−i) =


(V − g − bi)P(w = i|b)

−(r1g + r2bi)
(
1− P(w = i|b)

)
if bi ≥ 0,

0 if bi = ∅,

where P(w = i|b) denotes the probability of agent i winning under the strategy
profile b, i.e.,

P(w = i|b) = 1{bi = bM}∑
j ̸=i 1{bj = bi}

.

where bM ≜ max{bi : bi ≥ 0}, i.e., the highest participating bidder wins, with
ties broken at random. The first term in the payoff for participating bidders

7 This is because, if V ≤ g, then the utility an agent receives when winning the action
cannot be positive, even if the priority fee is zero, since the value does not exceed
the base fee. Thus, all agents abstaining is a dominant strategy equilibrium.
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captures the case when agent i has the highest bid; their payoff is the net value
gained, (V − g − bi), scaled by the probability of winning. The second term
captures the payment in the case when agent i does not win the auction.

Payoffs Under Mixed Strategies. We now allow agents to probabilistically ran-
domize between the actions of abstaining from the auction and bidding a con-
tinuum of possible values. Specifically, agent i now chooses βi ≡ (pi, Fi) where
pi ∈ [0, 1] is the probability of abstaining (bi = ∅), and Fi is a continuous cdf
supported on bi ≥ 0 specifying the distribution that agent i bids according to,
conditional on agent i choosing to participate in the auction. Given a strategy
profile β = (βi)i∈[N ], the expected payoff ūi of agent i conditional on realizing
bi and assuming that agents’ actions are chosen independently, is

ui(bi|β−i) =


(V − g − bi)P(w = i|bi, β−i)

−(r1g + r2bi)(1− P(w = i|bi, β−i)) if bi ≥ 0,

0 if bi = ∅,

(1)

where P(w = i|bi, β−i) is the probability that agent i wins conditional on realizing
bi and the other agent’s strategies. For the assumptions above, we have

P(w = i|bi, β−i) =
∏
j ̸=i

(pj + (1− pj)Fj(bi)), (2)

noting that ties occur with probability zero under continuous distributions. The
expected utility ūi for agent i over their random choice of action bi is then

ūi(βi, β−i) ≜ E [ui(bi|β−i)] = (1− pi)

∫ ∞

0

ui(b|β−i) dFi(b). (3)

3 Equilibrium Analysis

3.1 Pure Strategies

A pure strategy profile b∗ as defined in the previous section is a Nash equilibrium
in pure strategies if no agent can unilaterally deviate to increase their payoff, i.e
for all i ∈ [N ], we have ui(b

∗
i |b∗−i) ≥ ui(bi|b∗−i) for any bi ∈ B.

Theorem 3.1. If r1 = r2 = 0, and consider a pure strategy profile b. Assume
the bids are ordered, so that b1 ≤ b2 ≤ · · · ≤ bN , with the possibility of abstaining
represented by bids less than zero. Then b is a Nash equilibrium if and only if
bN−1 = bN = V − g.

Intuitively, when there is no cost incurred upon losing the auction, the agents
have no disincentive associated with large bids, resulting in an equilibrium when
at least two agents bid the breakeven bid, i.e., the highest possible amount
yielding a nonnegative utility, which is the value of the arbitrage opportunity
less the base gas fee.
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Theorem 3.2. If at least one of r1 and r2 is nonzero, then there does not exist
a Nash equilibrium in pure strategies.

Conversely, when agents incur any cost upon losing the auction, whether on
the base or priority gas fee, there is no Nash equilibrium in pure strategies. The
revert cost penalty results in a situation where at least one agent can benefit from
unilaterally deviating given any pure strategy profile. Having characterized the
pure-strategy Nash equilibrium and lack thereof, we now look at mixed-strategy
equilibria.

3.2 Mixed Strategies

A mixed strategy profile β∗ as defined in the previous section is a Nash equi-
librium if ūi(β

∗
i , β

∗
−i) ≥ ūi(βi, β

∗
−i) for all agents i and for any other mixed

strategy β∗
i . For tractability, we focus on solving for symmetric equilibria, i.e.,

mixed-strategy Nash equilibria where all agents’ strategies βi are identical.

Theorem 3.3. If at least one of r1 and r2 is nonzero, then the unique symmetric
mixed-strategy equilibrium is given by

p∗i = p∗ ≜

(
r1g

V − g + r1g

) 1
N−1

,

F ∗
i = F ∗(b) ≜

1

1− p∗

((
r1g + r2b

V − g − b+ r1g + r2b

) 1
N−1

− p∗

)
,

for bids b ∈ [0, V − g] and for each i ∈ [N ], and the expected payoff of every
agent is zero.
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Fig. 1. Equilibrium CDF for Priority Fee Bids. We set V = 10, g = 1, N = 20,
r2 = 0.1 for the left plot, and r1 = 0.1 for the right plot.
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We remark that this equilibrium is unique among symmetric mixed-strategy
Nash equilibria, but there may exist non-symmetric equilibria. A complete char-
acterization of all possible equilibria of the auction is outside the scope of this
paper, and we focus on the symmetric equilibrium for the rest of the paper.

In order for a mixed-strategy Nash equilibrium to arise, arbitrageurs must
be indifferent over all possible actions supported by the mixed strategy. Thus,
when the equilibrium assigns a positive probability mass to abstaining from the
auction, an action which yields zero payoff, it follows that the equilibrium ex-
pected payoff of each arbitrageur is zero. It turns out that under the equilibrium
in Theorem 3.3, equilibrium expected payoff for arbitrageurs is zero even in cases
where they always choose to participate.

When r1 > 0, the symmetric equilibrium strategy is characterized by a non-
zero probability of abstention and a non-degenerate continuous CDF specifying
the distribution from which to draw the priority gas fee bid. In the special case
of r1 = 0, all arbitrageurs participate with probability one. Figures 1 and 2 plot
the equilibrium CDF and abstention probability for various configurations of pa-
rameters. In Appendix B, we discuss comparative statics for the the equilibrium
CDF and the abstention probability.
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Fig. 2. Equilibrium CDF for Priority Fee Bids (left) and Abstention Probability
(right). We set V = 10, g = 1, and r1 = r2 = 0.1 for the left plot.

We note that Theorem 3.3 is consistent with Theorem 3.1. When r1 = r2 = 0,
plugging these values into the formula in Theorem 3.3 yield p∗ = 0 and F ∗(b) = 0
for all b ∈ [0, V − g), assuming that g < V , with F ∗(V − g) being undefined.
Compare this with the pure strategy equilibrium given in Theorem 3.1, which
corresponds to a symmetric mixed-strategy Nash equilibrium given by p∗ = 0,
F ∗(b) = 0 for all b ∈ [0, V − g), and F ∗(V − g) = 1. Indeed, one can show that
F ∗(b) converges pointwise to the function 1{b = V − g} as (r1, r2) → (0, 0).
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4 Implications for Sequencer Design

4.1 Auction Revenue and Market Efficiency

In this section, we examine the comparative statistics of equilibrium quantities
that are relevant to sequencer design, starting with auction revenue.

Auction Revenue. Conditional on a realization of the mixed strategy, the auc-
tioneer takes the base gas and priority fee bid of the winner (if one exists), and
r1 times the base gas fee plus r2 times the priority fee bid by the remaining
participating arbitrageurs. Note that the revenue can be split into two terms:
one capturing the revenue from the base gas fee, and the other capturing revenue
from the priority gas fee bids. The expected revenue over all possible realizations
along with its decomposition into base and priority components is characterized
by the following theorem.

Theorem 4.1. If at least one of r1 and r2 is nonzero, under the symmetric
mixed-strategy Nash equilibrium:

– The expected revenue from the auction is

E[Revenue] =
(
1− (p∗)N

)
V =

(
1−

(
r1g

V − g + r1g

) N
N−1

)
V.

– Expected revenue decreases in r1, does not depend on N when r1 = 0, de-
creases in N when r1 ̸= 0, and does not depend on r2.

– Expected revenue can be decomposed into components representing revenue
from base gas fees and priority gas fees given by

E[BaseRevenue] =
(
1− (p∗)N

)
g +

(
(1− p∗)N −

(
1− (p∗)N

))
r1g,

E[PriorityRevenue] =
(
1− (p∗)N

)
(V − g)−

(
(1− p∗)N −

(
1− (p∗)N

))
r1g.

– If r1 ̸= 0, then as the number of arbitrageurs N tends to infinity, the expected
revenues converges to a finite limit, with

lim
N→∞

E[Revenue] =
V (V − g)

V − g + r1g
,

lim
N→∞

E[BaseRevenue] =
(V − g)(g − r1g)

V − g + r1g
− r1g log

(
1 +

V − g

r1g

)
,

lim
N→∞

E[PriorityRevenue] = (V − g) + r1g log

(
1 +

V − g

r1g

)
.

The intuition behind the expression for total revenue is straightforward. Since
the arbitrageurs earn a combined expected payoff of zero in equilibrium and
the winning arbitrageur extracts a value of V , the total payments made to the
sequencer should also equal V , as long as least one arbitrageur participates. We
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then take a simple expectation over the events “a value extraction of V occurs”
and “no value extraction occurs” which have probabilities 1− (p∗)N and (p∗)N ,
respectively, for the result. This phenomena is known as “rent dissipation” [7]:
any value that is realized entirely goes to the sequencer.

Theorem 4.1 shows that expected revenue decreases in r1, the revert penalty
rate on the base gas fee. This implies that holding all other auction parameters
equal, the revenue-maximizing choice of r1 in expectation is zero, corresponding
to a sequencer with full RP the base gas fee. Furthermore, expected revenue is
constant in N under full RP while it decreases in N for nonzero r1, highlighting
additional losses when full RP is not implemented.

Interestingly, expected revenue does not depend on r2, the revert penalty
rate for priority gas fees. The intuition behind this is that value extraction only
depends on participation, which is independent of r2. Another interpretation is
that r2 does not matter for the “marginal bidder” who participates but bids
a priority fee of zero. Consequently, sequencers and applications can adjust r2
without affecting the expected total payments collected from participants.

This is relevant to considering MEV taxes imposed by applications, which
not only change the distribution of the non-base portion of the fee (causing a
share of it to go to the application, rather than the sequencer), but also affect r2
(since MEV taxes are only paid when the transaction succeeds, while a portion
of priority fees are paid even on revert). Since r2 does not affect total revenue,
this helps justify the assumption we made in Section 2.1 that an application will
parameterize its MEV taxes as high as possible in order to maximize the revenue
that it earns.

The expression for expected auction revenue coming from base gas fees is
obtained by first conditioning on the number of participating arbitrageurs k.
Given k participants, the sequencer will earn r1g from k − 1 of them and g
from the remaining one. Subtracting this from the total revenue thus gives the
component coming from priority gas fee bids. Notably, these components also
do not depend on r2.

As previously mentioned, the probability of a value extraction occurring low-
ers as N increases, stemming from the disincentive to participate brought on by
a more competitive environment, but this probability converges to a finite limit
as N tends to infinity. This provides a minimum guarantee on expected revenue
for any number of arbitrageurs.

Market Efficiency. Revenue is deeply connected with market efficiency. Recall
that the probability that value from the arbitrage opportunity is extracted is
1− (p∗)N . When this quantity is high, on-chain arbitrages are frequent, thereby
improving market efficiency. On the other hand, when this quantity is low, on-
chain arbitrages are less likely to occur, leaving arbitrage opportunities unex-
ploited and generating zero value for the auction. It is straightforward to see
that r1 has the same directional impact on market efficiency (when measured
by the probability that a value extraction occurs) as expected auction revenue
described in Theorem 4.1, so more revert protection (lower r1) implies a higher
market efficiency.
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4.2 Blockspace and Mempool Usage

We proceed to analyze blockspace and memory pool usage. If an arbitrageur
decides to participate, they submit a transaction to the mempool. When trans-
actions are not fully revert-protected, they will still appear on-chain, which is
prevented by full revert protection. The following theorem characterizes these
quantities in equilibrium.

Theorem 4.2. Under the symmetric mixed-strategy Nash equilibrium:

– The expected number of submitted transactions is

E[SubmittedTXs] = (1− p∗)N =

(
1−

(
r1g

V − g + r1g

) 1
N−1

)
N.

– Expected transactions submitted decreases in r1 and does not depend on r2.

– If r1 ̸= 0, then as the number of arbitrageurs N tends to infinity, expected
transactions submitted converge to a finite limit, with

lim
N→∞

E[SubmittedTXs] = log

(
1 +

V − g

r1g

)
.

Theorem 4.2 implies that a higher revert penalty rate r1 on the base gas fee
has a dampening effect on arbitrageur participation, with the expected number of
submitted transactions decreasing in r1. Similarly to expected revenue, expected
transactions submitted is constant in r2 since submission only depends on the
participation probability.

Under full revert protection, all arbitrageurs will participate, so as N tends to
infinity, so does the number of submitted transactions. When transactions are not
fully protected, expected transactions submitted are bounded irrespective of the
number of arbitrageurs. In terms of blockspace efficiency, full revert protection is
more efficient, particularly as V grows large, since only the winning arbitrageur’s
transaction will appear on the block as opposed to all participating arbitrageur’s
transactions when full RP is not in place. However, under full RP, there may
be arbitrarily many transactions submitted to the mempool as N grows large,
compared to a bounded number of submitted transactions otherwise.
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4.3 Discussion: Full Revert Protection
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Fig. 3. Expected Auction Revenue (left) and Transactions Submitted (right). We set
V = 10 and g = 1.

We summarize the impact of full revert protection on arbitrage dynamics within
a blockchain by analyzing and contrasting the expected number of participants
and auction revenue in equilibrium under two conditions: one where r1 ̸= 0,
and the other where r1 = 0, i.e., full revert protection (for the base gas fee
component). Figure 3 shows these quantities for various values of r1 and N .

With full revert protection, the sequencer is always able to capture the full
value of an arbitrage opportunity, resulting in an expected auction revenue of V .
In this scenario, since there is no deterrent to submitting bids, all arbitrageurs
are incentivized to bid up to the breakeven point. As the number of arbitrageurs
increases, this can present a spam risk to the sequencer. However, because re-
verts do not occur on-chain, at most one transaction appears on-chain when an
arbitrage opportunity arises, or none otherwise. Thus, the primary challenge for
the sequencer under a full revert protection is managing spam effectively.

When revert protection is not in place, the number of participants in an
auction asymptotically approaches a finite number as the number of arbitrageurs
grows indefinitely. Conversely, auction revenue is reduced by a factor of at most(
1− (p∗)N

)
compared to the case of full revert protection. While full revert

protection can enhance auction revenue and improve blockspace efficiency, it
introduces the risk of increased spamming as the number of arbitrageurs grows.
The central trade-off, therefore, lies between these benefits and the elevated risk
of spam due to potentially unlimited bids as more arbitrageurs enter the system.
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A Proofs

A.1 Proof of Theorem 3.1.

Define b∗ ≜ V −g to be the breakeven bid, and let b be an ordered pure strategy
equilibrium.

Consider the following cases:

– bN > b∗: In this case, the highest bidder bN will incur a loss, as they are
bidding more than the break-even bid b∗. This bidder would be better off
abstaining, contradicting the fact that b is an equilibrium.

– bN < b∗: Here, the highest bidder bN bids less than the break-even bid,
allowing them to make a profit if they win. However, another bidder can
deviate by bidding slightly above bN but below b∗, ensuring they win with
certainty and still make a profit. Thus, the original set of bids cannot be in
equilibrium, as there is an incentive to deviate.

– bN = b∗ and bN−1 < b∗: In this case, the top bidder is bidding exactly at
the break-even level. However, the top bidder can increase their profit by
reducing their bid to slightly above bN−1, as they would still win but at a
lower bid cost. Hence, this setup also cannot be in equilibrium.

Conversely, suppose that bN = bN−1 = b∗. Then, no matter the bids of other
players, all players have zero utility, and cannot increase their utility through
any deviation. Hence, this is an equilibrium.

A.2 Proof of Theorem 3.2.

Suppose that b is an pure strategy equilibrium, and assume the bids are ordered,
so that b1 ≤ b2 ≤ · · · ≤ bN , with the possibility of abstaining represented by
bids less than zero. Define the breakeven bid as b∗ ≜ V − g.

Consider the following cases:

– bN > b∗: In this case, the highest bidder bN will incur a loss, as they are
bidding more than the break-even bid b∗. This bidder would be better off
abstaining, contradicting the fact that b is an equilibrium.

– bN < b∗: Here, the highest bidder bN bids less than the break-even bid,
allowing them to make a profit if they win. However, another bidder can
deviate by bidding slightly above bN but below b∗, ensuring they win with
certainty and still make a profit. Thus, the original set of bids cannot be in
equilibrium, as there is an incentive to deviate.

– bN = b∗ and bN−1 < b∗: In this case, the top bidder is bidding exactly at
the break-even level. However, the top bidder can increase their profit by
reducing their bid to slightly above bN−1, as they would still win but at a
lower bid cost. Hence, this setup also cannot be in equilibrium.

– bN = bN−1 = b∗: If the top two bidders both bid the breakeven value b∗ > 0,
then they will make no profit when they win, and, because at least one of
r1, r2 is positive, they will have strictly negative utility if they lose. Then, at
least one player bidding b∗ will have strictly negative expected utility and
would be better off abstaining. Therefore, this is not a sustainable equilib-
rium either.
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A.3 Proof of Theorem 3.3

We analyze a symmetric mixed strategy Nash equilibrium where arbitrageurs
randomize their bids over a range of possible values. Let p represent the proba-
bility that an arbitrageur abstains from bidding, and for those who bid, let F (b)
be the cumulative distribution function (CDF) representing the probability that
the bid is strictly less than b.

Suppose an agent bids b ≥ 0. From (1)–(3), the expected probability of
winning the auction is given by

(p+ (1− p)F (b))
N−1

,

and thus the expected payoff is

(p+ (1− p)F (b))
N−1

(V − g − b)−
(
1− (p+ (1− p)F (b))

N−1
)
(r1g + r2b).

In a mixed strategy equilibrium, an arbitrageur must be indifferent between
bidding and not bidding. That is, the expected payoff from bidding any b must
be zero, the same as the expected payoff from abstaining. This leads to the
following indifference condition

(p+ (1− p)F (b))
N−1

(V − g − b) =
(
1− (p+ (1− p)F (b))

N−1
)
(g · r1 + b · r2).

Solving for F (b), we have

F (b) =
1

1− p

((
r1g + r2b

V − g − b+ r1g + r2b

) 1
N−1

− p

)
.

The boundary condition F (0) = 0 yields

F (0) =
1

1− p

((
r1g

V − g − r1g

) 1
N−1

− p

)
= 0.

Solving for p, we have that

p =

(
r1g

V − g + r1g

) 1
N−1

.

Note that F (V − g) = 1, so that agents only bid in the range b ∈ [0, V − g].
Now, assume that the agents all adopt the strategy (p, F ). We have estab-

lished that any individual agent is indifferent between abstaining, and any bid
b ∈ [0, V − g] — all of these actions result in zero expected payoff. Since bidding
b > V −g leads to a negative expected payoff, such bids can be excluded. There-
fore, the agents have no incentive to deviate, and we have established a Nash
equilibrium.
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A.4 Proof of Theorem 4.1

Expected Revenue. Each arbitrageur’s expected utility can be decomposed into
a “value extracted” and “payment” component:

ūi(β
∗
i , β

∗
−i) = E[ValueExtractedi]− E[Paymenti].

As each arbitrageur’s expected utility is zero in equilibrium, summing all of them
up yields

0 = E

[∑
i

ValueExtractedi

]
− E

[∑
i

Paymenti

]
= E[TotalValueExtracted]− E[Revenue],

so it follows that

E[Revenue] = E[TotalValueExtracted].

With probability (p∗)N , no arbitrageurs participate, so no value is extracted.
With probability 1 − (p∗)N , at least one arbitrageur participates. In this case,
only the winning arbitrageur will receive a value of V , with the others receiving
zero value. Thus

E[Revenue] = (p∗)N · 0 + (1− (p∗)N )V = (1− (p∗)N )V.

Comparative Statics of Expected Revenue. Note that

E[Revenue] = 1− (p∗)N = 1−
(

r1g

V − g + r1g

) N
N−1

.

– To show that E[Revenue] decreases in r1, note that

r1g

V − g + r1g

increases in r1.
– To show that E[Revenue] decreases in N , note that

∂

∂N

(
r1g

V − g + r1g

) N
N−1

= − 1

(N − 1)2

(
r1g

V − g + r1g

) N
N−1

log
r1g

V − g + r1g

which is nonnegative since

r1g

V − g + r1g
< 1.

– It is straightforward to see that E[Revenue] does not depend on r2, and when
r1 = 0, we have E[Revenue] = V which is constant in r2.
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Decomposition of Expected Revenue. To derive the base gas fee revenue, let NP

be a random variable for the number of agents that participate. Conditional on
NP = k for k ≥ 1, note that the winner pays the full base fee g while the (k− 1)
losers pay the revert cost of r1g. Then

E[BaseRevenue] =
N∑

k=1

P(NP = k) · (g + (k − 1)r1g)

= r1g

N∑
k=1

k · P(NP = k) + (1− r1)g

K∑
k=1

P(NP = k)

= N(1− p∗)r1g + (1− (p∗)N )(1− r1)g.

The revenue from priority fees is then given by

E[PriorityRevenue] = E[Revenue]− E[BaseRevenue]

= (1− (p∗)N )V −
(
N(1− p∗)r1g + (1− (p∗)N )(1− r1)g

)
.

Limiting Values of Revenue Components. Note that

1− (p∗)N = 1−
(

r1g

V − g + r1g

) N
N−1

.

As N → ∞, note that N/(N − 1) → 1, so

lim
N→∞

1−
(

r1g

V − g + r1g

) N
N−1

= 1− r1g

V − g + r1g
=

V − g

V − g + r1g
.

Similarly, note that

(1− p∗)N =

(
1−

(
r1g

V − g + r1g

) 1
N−1

)
N.

As N → ∞, the exponent 1/(N − 1) tends to zero, so we have

lim
N→∞

(
1−

(
r1g

V − g + r1g

) 1
N−1

)
N = lim

N→∞

(
− 1

N − 1
log

r1g

V − g + r1g

)
N

= log
V − g + r1g

r1g
.

Plugging these expressions into the formulas for expected revenue, expected base
revenue, and expected priority revenue yields the result.
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A.5 Proof of Theorem 4.2

Expected Transactions Submitted. For i ∈ [N ], let Zi be an indicator random
variable for arbitrageur i participating in the auction. Then

E[SubmittedTXs] = E

∑
i∈[N ]

Zi

 =
∑
i∈[N ]

P(Zi = 1) = N(1− p∗).

Comparative Statics of Expected Transactions Submitted. Note that

E[SubmittedTXs] = (1− p∗)N =

(
1− r1g

V − g + r1g

) 1
N−1

N

– To show that E[SubmittedTXs] decreases in r1, note that

r1g

V − g + r1g

increases in r1.
– It is straightforward to see that E[SubmittedTXs] does not depend on r2.

Limiting Number of Expected Transactions Submitted. The expression follows
from the proof of Theorem 4.1.
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B Comparative Statics of the Equilibrium

We examine how the equilibrium strategy changes with respect to the auction
parameters N , V , g, r1 and r2. Specifically, we analyze the parameters’ effect
on the equilibrium abstention probability p∗ and the equilibrium priority gas fee
bidding distribution F ∗ via the expected bid EB∗

i where B∗
i ∼ F ∗ as a summary

statistic.

Theorem B.1. The equilibrium probability of abstention from the auction, p∗,

– increases in N , g and r1;
– decreases in V .

The expected priority gas fee bid of an arbitrageur conditional on participation
in the auction, EB∗

i where B∗
i ∼ F ∗,

– increases in V ;
– decreases in N , r1, and r2.

These results are fairly intuitive. As the number of arbitrageurs increases,
each arbitrageur has more competitors, reducing incentives to participate and
bid higher in expectation due to the penalty associated with not winning. When
the value of the arbitrage opportunity increases, the additional value incentivizes
arbitrageurs to participate and submit higher expected bids. The effect of the
base gas fee, g, on participation probability follows a similar intuition, but that
on the expected priority fee bid is not characterizable in general without further
specification of parameters.

As the revert penalty rate on the base gas fee increases, arbitrageurs are less
inclined to participate and bid higher on average due tot he increase in revert
costs. The revert penalty rate on the priority fee has a similar effect on the
bidding distribution, but notably does not affect the participation probability
at all. This is because a marginal arbitrageur who participates but bids zero
priority fee is indifferent about the revert cost on priority fees.

Proof of Theorem B.1. Note that

∂p∗

∂N
= − 1

(N − 1)2

(
r1g

V − g + r1g

) 1
N−1

log
r1g

V − g + r1g
≥ 0

∂p∗

∂g
=

1

N − 1

(
r1g

V − g + r1g

) 1
N−1 V

g(V − g + r1g)
≥ 0

∂p∗

∂r1
=

1

N − 1

(
r1g

V − g + r1g

) 1
N−1 V − g

r1(V − g + r1g)
≥ 0

∂p∗

∂V
= − 1

N − 1

(
r1g

V − g + r1g

) 1
N−1 1

V − g + r1g
≤ 0
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where p∗ is the equilibrium abstention probability given by

p∗ =

(
r1g

V − g + r1g

) 1
N−1

.

Note that

∂F ∗

∂N
= −

(
r1g+r2b

V−g−b+r1g+r2b

) 1
N−1

(1− p)(N − 1)2
log

(
r1g + r2b

V − g − b+ r1g + r2b

)
≥ 0

∂F ∗

∂V
= −

(
r1g+r2b

V−g−b+r1g+r2b

) 1
N−1

(1− p)(N − 1)(V − g − b+ r1g + r2b)
≤ 0

∂F ∗

∂r1
=

g(V − g − b)
(

r1g+r2b
V−g−b+r1g+r2b

) 1
N−1

(1− p)(N − 1)(r1g + r2b)(V − g − b+ r1g + r2b)
≥ 0

∂F ∗

∂r2
=

b(V − g − b)
(

r1g+r2b
V−g−b+r1g+r2b

) 1
N−1

(1− p)(N − 1)(r1g + r2b)(V − g − b+ r1g + r2b)
≥ 0

where F ∗ is the equilibrium CDF given by

1

1− p∗

((
r1g + r2b

V − g − b+ r1g + r2b

) 1
N−1

− p∗

)
.

If ∂F ∗/∂θ ≥ 0 where θ is some parameter of interest, then the CDF increases
pointwise for all b ∈ [0, V − g]. Then for any θ1, θ2 such that θ1 < θ2, letting
B∗

θ1
∼ F ∗

θ1
and B∗

θ2
∼ F ∗

θ2
, it follows that B∗

θ1
stochastically dominates B∗

θ2
in

the first order, so EB∗
θ1

> EB∗
θ2
.

If ∂F ∗/∂θ ≤ 0 where θ is some parameter of interest, then the CDF decreases
pointwise for all b ∈ [0, V − g]. Then for any θ1, θ2 such that θ1 < θ2, letting
B∗

θ1
∼ F ∗

θ1
and B∗

θ2
∼ F ∗

θ2
, it follows that B∗

θ2
stochastically dominates B∗

θ1
in

the first order, so EB∗
θ1

< EB∗
θ2
.
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