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Abstract

Many financial markets operate as electronic limit order books under a price-time priority
rule. In this setting, among all resting orders awaiting trade at a given price, earlier orders
are prioritized for matching with contra-side liquidity takers. This creates a technological arms
race among high-frequency traders and other automated market participants to establish early
(and hence advantageous) positions in the resulting first-in-first-out (FIFO) queue. We develop
a model for valuing orders based on their relative queue position that incorporates both eco-
nomic (informational) and stochastic modeling (queueing) aspects. Our model identifies two
important components of positional value: (i) a static component that relates to the trade-off
at an instant of trade execution between earning a spread and incurring adverse selection costs,
and incorporates the fact that adverse selection costs are increasing with queue position; (ii) a
dynamic component, that captures the optionality associated with the future value that accrues
by locking in a given queue position. Our model offers predictions of order value at different
positions in the queue as a function of market primitives, and can be empirically calibrated.
We validate our model by comparing it with estimates of queue value realized in backtesting
simulations and find the predictions to be accurate. Moreover, for some large tick-size stocks,
we find that queue value can be of the same order of magnitude as the bid-ask spread. This
suggests that accurate valuation of queue position is a necessary and important ingredient in
considering optimal execution or market-making strategies for such assets.

1. Introduction

Modern financial markets are predominantly electronic. In modern exchanges, market participants
interact with each other through computer algorithms and electronic orders. The image of traders
frantically gesturing and yelling to each other on the trading floor has largely given way to im-
personal computer terminals. In terms of market structure, the electronic limit order book (LOB)
has become dominant for certain asset classes such as equities and futures in the United States.
Figure 1 illustrates how a limit order book works. It is presented as a collection of resting limit
orders, each of which specifies a quantity to be traded and the worst acceptable price. The limit
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Figure 1: An illustration of a limit order book.

orders will be matched for execution with market orders1 that demand immediate liquidity. Traders
can therefore either provide liquidity to the market by placing these limit orders or take liquidity
from it by submitting market orders to buy or sell a specified quantity.

Most limit order books are operated under the rule of price-time priority, that is used to
determine how limit orders are prioritized for execution. First of all, limit orders are sorted by the
price and higher priority is given to the orders at the best prices, i.e., the order to buy at the highest
price or the order to sell at the lowest price. Orders at the same price are ranked depending on
when they entered the queue according to a first-in-first-out (FIFO) rule. Therefore, as soon as a
new market order enters the trading system, it searches the order book and automatically executes
against limit orders with the highest priority. More than one transaction can be generated as the
market order may run through multiple subsequent limit orders.2 In fact, the FIFO discipline
suggests that the dynamics of a limit order book resembles a queueing system in the sense that
limit orders wait in the queue to be filled by market orders (or canceled). Prices are typically
discrete in limit order books and there is a minimum increment of price which is referred to as
tick size. If the tick size is small relative to the asset price, traders can obtain priority by slightly
improving the order price. But it becomes difficult when the tick size is economically significant.
As a result, queueing position becomes important as traders prefer to stay in the queue and wait
for their turn of execution.

High-level decision problems such as market making and optimal execution are of great interest
in both academia and industry. A central question in such problems is understanding when to use

1We do not make a distinction between market orders and marketable limit orders.
2There is an alternative rule called pro-rata, which works by allocating trades proportionally across orders at the

same price. In a pro-rata setting, queue position is not relevant to order value, and hence we will not consider pro-rata
markets in this paper.
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limit orders as opposed to market orders and how to place limit orders if they are preferred. The
key ingredient necessary to answer this question is the estimation of the value of a limit order. In
this paper, we try to relate the value of a limit order to its queue position. We claim that, from a
valuation perspective, queue positions are relevant and that positions at the front of the queue are
very valuable for the following reasons:

1. Good queue positions guarantee early execution and less waiting time. This is particularly
important for algorithmic traders who potentially have a large number of trades scheduled
to be executed in a limited time horizon. Additionally, less waiting time can translate to a
higher fill rate, because there is less chance that the market price will move away while the
limit orders are resting in the queue.

2. Good queue positions also mean lower adverse selection costs. Orders at the end of a large
queue will be executed in the next instance only against large trades. On the other hand,
orders at the very front of the queue will be executed against the next trade no matter what
its size will be. Large trades often originate from informed traders who are confident about
the trades’ profitability. In this way, a good queue position acts as a filter on the population
of contra-side market orders so that the liquidity provider is less likely to be disadvantaged
by trading against informed traders. This relationship between queue positions and adverse
selection is first observed by Glosten (1994), who considers a single-period setting.

In practice, certain classes of market participants expend significant effort trying to take obtain
better queue positions in the limit order book. For example, there has been controversy in recent
years over exotic order types on certain exchanges that allow traders to attain priority in the
limit order book. These exotic order types “allow high-speed trading firms to trade ahead of less-
sophisticated investors, potentially disadvantaging them and violating regulatory rules.”3 Another
example is that there has been the technological arms race between high-frequency traders who
invest in technologies for low-latency trading. Note that a central driver for low-latency trading is
attaining good queue positions — all things being equal, orders that are emitted faster will wind up
in a better queue position, and this is especially important when traders are reacting to common
signals. Indeed, one situation where it is important to trade quickly is the instant right after a
price change. For example, when a trade wipes out the current ask and the price is about to tick
up, there will be a race to establish queue positions at the new price, and small differences in speed
among competing high-frequency traders may translate to large differences in queue position.

In the literature, some earlier work, such as that of Glosten (1994), has implications about the
value of queue positions. Although these models point out the importance of adverse selection,
they are fundamentally static models in which the value of the order is assumed to be determined
by whether it will be executed by the next trade or not. In the presence of a large queue, the life
cycle of the order will not end with the next trade and traders will not cancel and resubmit their

3Patterson, S. and Strasburg, J., “For Superfast Stock Traders, a Way to Jump Ahead in Line.” The Wall Street
Journal, September 19, 2012.
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limit orders after every single trade. What is more likely to happen is that the order will move up
in the queue if not executed by the next trade. This implies that there is value in moving up in
the queue, and that this value may accrue over a number of trades and cancellations. As a result,
aside from adverse selection, there should be an additional, fundamentally dynamic component
that can capture the optionality associated with future value that accrues by locking in a given
queue position. In order to account for this dynamic component, a multi-period model is needed.

1.1. Contributions

In this paper, we provide a dynamic model for valuing limit orders in large-tick stocks based on
their relative queue positions. We appear to be one of the first to study the limit order book queue
position value through the lens of dynamic multi-period model. Our model identifies two important
components of positional value. First, there is a static component that relates to the adverse-
selection costs originating from the possibility of information-motivated trades. We capture the
fact that adverse selection costs are increasing with queue position. Second, there is also a dynamic
component that captures the value of positional improvement that accrues after order book events
such as trades and cancellations.

By making reasonable simplifications, we provide a tractable way to predict order value at
different positions in the queue as a function of market primitives. We then empirically calibrate
our model in a subset of U.S. equities and find that queue values can be very significant in large-tick
assets. Additionally, we validate our model by checking the model-free estimates of queue values
using a backtesting technique.

There are many higher-level decision problems that have an ingredient of valuing limit orders.
One such example is that market makers need to constantly value limit orders in order to come
up with the optimal order-placing strategy. Another example is that in the optimal execution of
a large block, algorithmic traders often have to decide between market orders and limit orders. In
both cases, we need to value the limit orders and use them as building blocks for the higher-level
control problem. What we observe empirically in our model is that queue positions do matter
and that positional value is roughly of the same magnitude for large-tick assets. As a result, queue
positional value should be an important ingredient downstream of solving optimal control problems
with large-tick assets.

1.2. Literature Review

Our paper builds on the classical financial economics literature on market microstructure that
studies the informational motives of trading. Kyle (1985) and Glosten and Milgrom (1985) were
among the first to recognize the importance of adverse selection in analyzing the price impact
of trades and the spread, by assuming competitive suppliers of liquidity. Both of their models
highlight the fact that the possibility of trading against an informed trader creates incentives for
liquidity providers to charge additional premiums. However, these models do not consider queueing
effects. Glosten (1994) further extended this type of model, with implications for valuing orders in
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the limit order book. One implication of that paper is that it states that in cases where the prices
are discrete, the queue length should be determined by the fact that the value of the last order
in the queue is zero. Basically, the investor putting in the marginal order should be indifferent
between joining the queue or not. In this way, while the paper does not explicitly model the
value of queue positions,4 it does manage to relate queue length to order values. Moreover, the
model in Glosten (1994) is a single-period static model in which the order values are calculated
toward the next trade. However, what’s more likely is that an order will move up in the queue if
it is not executed. Our model incorporates the dynamic values embedded in the queue position
improvement. Additionally, by considering a dynamic model, we are also able to consider order
book events such as cancellations. As a result, queue position actually matters in our model, and
is clearly correlated with the order values. For example, if the queue position is decreasing, then
either there is a trade or people are canceling, and either event conveys information about asset
value.

Recently, there has been a growing literature from the stochastic modeling and financial engi-
neering communities on the development of queueing models that solve various kinds of problems
regarding limit order books while recognizing that the price-time priority structure in the limit
order books can be modeled as a multi-class queueing system. Cont et al. (2010) was the first
to model the limit order book as a continuous-time Markov model that tracks the limit orders at
each price level. By assuming that order flows can be described as Poisson processes, the authors
provided a parametric way to calculate the conditional probability of various order book events
such as the probability of executing an order before a change in price. Cont and De Larrard (2013)
further modeled the order book events in a Markovian queueing system, and studied the endoge-
nous price dynamics resulting from executions. Lakner et al. (2013) studied a similar setup but
focused on the high-frequency regime where the arrival rate of both limit orders and market orders
is large. Blanchet and Chen (2013) derived a continuous-time model for the joint evolution of the
mid price and the bid-ask spread. Several papers such as Guo et al. (2013), Cont and Kukanov
(2013), and Maglaras et al. (2015) have been working on optimizing trading decisions in the context
of a queueing model for the limit order book. More specifically, Guo et al. (2013) proposed a model
to optimally place orders, given price impact. Cont and Kukanov (2013) derived the optimal split
between limit and market orders across multiple exchanges. Maglaras et al. (2015) studied optimal
decision making in the placement of limit orders as well as in trying to execute a large trade over
a fixed time horizon. Avellaneda et al. (2011) tried to forecast the price change based on order
book imbalance, while in our settings price changes are exogenous. However, the limitation of
the queueing literature is that it lacks the informational component of adverse selection. And yet
an important ingredient in modeling the positional value of limit orders is the concept of adverse
selection, i.e., of a correlation between trades and prices. Our model tries to bridge this gap by
considering the economics of adverse selection in a queueing framework.

4In fact, Glosten (1994) assumes that competing limit orders in the same queue are executed in a pro-rata fashion,
where queue position is not directly relevant.
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From the empirical front, there is a significant body of literature conducting empirical analyses
of the dynamics of limit order books in major exchanges. Bouchaud et al. (2006) showed that the
random-walk nature of traded prices is nontrivial. Biais et al. (1995) and Griffiths et al. (2000)
studied the limit-order submission under different market conditions. Hollifield et al. (2004) further
stated that optimal order submission depends not only on the valuation of the assets but also on
the trade-offs between order prices, execution probabilities, and picking-off risks.

There are several successful examples of modeling the optionality embedded in limit orders.
Copeland and Galai (1983) argued that informed traders are willing to pay a “fee” to obtain
immediacy in trading with liquidity providers. Chacko et al. (2008) further modeled limit orders
as American options that require delivery of the underlying shares upon execution. However, these
models are fundamentally static in that they do not explicitly model the queue positions.

The rest of this chapter is organized as follows: Section 2 provides an overview of our approach
and describe the dynamic of the order book. In Section 3, we provide closed-form solution for the
value function. In Section 4, we consider empirical calibration of the model to trading data from
NASDAQ. Section 5 describes a procedure of backtesting and analyzes the quality of the predictions
of our model with backtesting results. Section 6 concludes and discusses practical implications of
our analysis. Proofs are deferred until the technical appendix.

2. Model

In many modern exchange-traded financial markets, while the price per share differs substantially
across assets, the tick size is artificially fixed. For example, all stocks traded at NYSE have a
minimum increment of $0.01. Large-tick assets are those which, according to Eisler et al. (2012),
are such that “the bid-ask spread rarely exceeds the minimum tick size”. These are the assets where
the tick size is economically significant, and therefore they are typically traded with the bid-spread
equal to the tick size. Another important characteristic of large-tick assets is that they tend to
have large queues in the limit order book. The reason is that the cost of moving the price by one
tick will be very economically significant. For example, adjusting the price by a single tick on a
low priced asset in order to obtain order book priority can translate into a large negative return.
Hence, instead of competing through price, market participants tend to form queues. Figure 2
shows the relationship between bid-ask spread and displayed liquidity for various future contracts,
and we can see a clear pattern that queueing effect is more prominent for large-tick assets. In
this paper, we will restrict our attention to the large-tick assets where queueing is important. In
contrast, for small-tick assets, where the typical big-ask spread is much larger than the minimum
price increment, investors can obtain priority in the order book by competing on price and the
important of queueing (and hence the importance of valuing queue position) is diminished.

For simplicity, we will assume that over the time scale of our model, the bid and ask prices
do not change as the tick size is large. Additionally, we will assume that the bid-ask spread is
constant and equal to the tick size (which is almost always true for large-tick assets). Without loss
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Figure 1: Proportion of time market is not one-tick (log scale), displayed liquidity over
average trade size (log scale), and quote reversion probability, averaged throughout July-
August 2013. Symbols and colors indicate clusters.

Figure 2: A comparison of liquidity and bid-ask spread across various Futures Contracts, July–August
2013 (courtesy Robert Almgren).

of generality, we will normalize prices so that the tick size (and hence, the bid-ask spread) is 1. We
will focus only on the ask side of the market, where limit orders are posted to sell the asset and
wait to be executed against market orders from buyers. The case for the bid side can be derived
similarly. We will also consider a single-exchange setup to avoid the complications of merging limit
order books from different exchanges.

As we are interested in situations where the queue length is large, we ignore the integrality
issues related to the fact that assets must be traded in discrete quantities. Instead, we assume that
the queue position is continuous, and we are interested in modeling the positional value in placing
an incremental order of infinitesimal size. We are concerned with short intraday time horizons over
which an order might get executed. Over this short time period, we assume that the risk-free rate is
zero since there is typically no interest associated with intraday borrowing or lending. Further, we
assume that the agent is risk neutral. Risk neutrality is appropriate for several reasons. First of all,
we are looking at a single infinitesimal order here, which is relatively small compared to the agent’s
wealth. Therefore we can assume that the agent’s utility function is linear for this particular order.
Second, we expect the agent to submit many such orders over non-overlapping time intervals to
accumulate a large position. Then the law of large numbers will apply, making the agent effectively
risk neutral.

2.1. Order Valuation

Our goal is to estimate the value of a limit order, especially as it relates to the queue position of
the order, in a dynamic multi-period setting. To this end, we consider a stylized problem where an
agent arrives seeking to provide liquidity by selling5 an infinitesimal quantity of an asset via a limit
order. The order is placed at time t = 0, at the best ask price PA, and remains in the order book

5This is without loss of generality, since the buying case is symmetric.
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until either it transacts (i.e., is filled) or until its price changes and (by assumption) the order is
canceled.

To understand the value of the order, it is necessary to develop a model for the value of the
underlying asset. To this end, we assume that the asset will be liquidated at a random future time
T , and at that time will realize a (random) cash flow P . The cash flow P can be viewed as the
fundamental value of the asset. T should be viewed as the time when all information regarding the
price of the underlying asset has been made public. Denote by {Ft} the filtration that represents
the information possessed by the agent, at each time t ≥ 0, and define latent efficient price process
Pt, for t ≥ 0, according to

Pt , E[P |Ft].

We will further assume that the filtration is right-continuous in the sense that Ft = Ft+ for all
t ≥ 0. By construction, Pt is a right-continuous Doob martingale.

Now, define τ∗ ∈ [0, T ) to be the Ft-measurable stopping time when the order is either filled or
canceled. If the order is filled, the agent is paid PA in exchange for a short position with (eventual)
fundamental value P . If the order is canceled, the agent receives nothing. Therefore (assuming
risk-neutrality and a zero risk-free rate), the value of this order to the agent is given by

Vt , E
[
(PA − P ) I{FILL}

∣∣∣ Ft] ,
for all t ≥ 0. For t ∈ [0, τ∗), since Pt is a right-continuous martingale, we can apply the optional
stopping theorem (e.g., Theorem 3.22, Karatzas and Shreve, 2012) to see that

Vt = E
[
(PA − Pt) I{FILL} − (P − Pt) I{FILL}

∣∣∣ Ft]
= αt (δt − ASt) ,

(1)

where

αt , P (FILL | Ft) ,

δt , PA − Pt,

ASt , E [ (Pτ∗ − Pt) | Ft, FILL] .

These stochastic processes have natural interpretations at each time t ∈ [0, τ∗):

• αt is the fill probability of the order.

• δt captures the difference between the order’s posted price PA and the latent efficient price
Pt; we call this the liquidity premium or liquidity spread earned by the order.6

• ASt measures the revision of the agent’s estimate of the asset’s fundamental value from the
6For example, if Pt happened to coincide with the mid-market price, δt would equal a half-spread. In this way,

the quantity δt generalizes the intuition that a limit order “earns a half-spread” to situations where the fundamental
value of the asset differs from the mid-market price.
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present time (Pt) to the time of a fill (Pτ∗), conditional on a fill. Note that ASt = 0 if fills are
independent of the efficient price process. However, in realistic settings with asymmetrically
informed traders, one typically expects that ASt > 0. This is because of the possibility that
the contra-side trader, who is demanding liquidity and paying associated spread costs by
buying at the ask price, is motivated by private information about the fundamental value of
the asset. Hence, trades and innovations of the efficient price process are dependent in a way
that is to the detriment of the liquidity provider and, accordingly ASt is known as adverse
selection. Adverse selection is an important issue in evaluating the value of limit orders, and
has been noted in many studies, such as those by Glosten and Milgrom (1985) and Kyle
(1985).

The decomposition in (1) can be interpreted informally as an accounting identity that breaks down
the expected profitability of liquidity provision at the level of an individual order as follows:

order value = fill probability× (liquidity spread premium− adverse selection cost) .

Hollifield et al. (2004) used a similar decomposition to (1) to describe the agent’s expected
pay-off in placing the order. Their approach is slightly general as they included an error term to
represent the trader’s private value for the assets. In our model, we are looking from the perspective
of competitive market makers who have no private information. As a result, the private values are
assumed to be zero. Hollifield et al. (2004) do not explicitly consider queue positions, and the fill
probabilities are estimated in a non-parametric way for different price levels. In fact, their approach
finding the trader’s optimal submission strategy across different price levels is fundamentally static,
whereas our approach estimating values of orders at different queue positions uses a dynamic model.

2.2. Price Dynamics

We assume that innovations in the latent efficient price process are driven by two types of discrete
exogenous events, trades and price jumps. Trades correspond to the arrival of an impatient buyer
(resp., seller), who demands immediate liquidity and is matched with a seller (resp., buyer) at the
best ask (resp., bid) price. For the ith trade, denote its arrival time by τui > 0 and its signed7 trade
size by ui ∈ R. Price jumps, on the other hand, represent an instant in time at which price levels
across the board shift up (resp., down) due to the arrival of new information. In an upward (resp.,
downward) jump, we assume that all orders at the best ask (resp., best bid) price are filled. We
denote the arrival time of the kth jump by τJk and its size by Jk.

We posit the following dynamics for the latent efficient price,

Pt = P0 + λ
∑

i: τui ≤t
ui +

∑
k: τJ

k
≤t

Jk, (2)

7The case where ui < 0 represents a market order to sell, while ui > 0 represents a market order to buy.
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or, equivalently, for liquidity premium,

δt = δ0 − λ
∑

i: τui ≤t
ui −

∑
k: τJ

k
≤t

Jk, (3)

for t ∈ [0, τ∗). Accordingly, we make the following assumptions:

• Linear price impact. The ith trade impacts the latent efficient price by λui; i.e., there is a
permanent linear price impact. The quantity λ > 0 captures the sensitivity of prices to trade
size. This is consistent with the strategic model of Kyle (1985), where such price impact
results from asymmetrically informed traders. Although our model is reduced form in that
the price impact is specified exogenously, the spirit of it is that large trades are more likely
to be due to informed traders, and hence have a greater impact on the posterior beliefs of the
trader.

• Poisson trade arrivals. We will assume that the trade times {τui } are Poisson arrivals with
rate µ > 0.

• I.i.d. trade sizes. We will assume that the trade sizes {ui} are independent and identically
distributed with probability density function f(·) over R. In order to ensure that Pt is a
martingale, we will require that E[ui] = 0. To avoid technicalities, we further assume that
f(·) is continuous and f(u) > 0 for all u ∈ R; i.e., the support of the distribution is all of R.

• Poisson jump arrivals. We will assume that the jump times {τJk } are Poisson arrivals with
rate γ > 0.

• I.i.d. jump sizes. We will assume that the jump sizes {Jk} are independent and identically
distributed. In order to ensure that Pt is a martingale, we require that E[Jk] = 0.

We require that arrival times, trade sizes, and jump sizes be Ft-measurable, so that Pt is an
Ft-adapted process with sample paths that are right continuous with left limits (RCLL) — in fact,
Pt is a piecewise constant pure jump process.

Note that the dynamics of Pt are determined by the arrival rate parameters (λ, µ, γ) ∈ R3
+ and

the distributions of trade sizes and jump sizes. An application of the law of total variance yields,
for t ∈ [0, T ),

Var(Pt) =
(
µλ2σ2

u + γσ2
J

)
t,

where σ2
u , Var(u) is the variance of trade sizes and σ2

J , Var(J) is the variance of jump sizes.
Expressing this as a per-unit time price volatility of the asset σP , we have

σP ,
√

Var(Pt)/t =
√
µλ2σ2

u + γσ2
J .
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2.3. Limit Order Book Dynamics

The limit order is placed at the best ask price PA, and remains in the order book either until it is
filled, or until the price changes and (by assumption) the order is canceled. Moreover, during the
time that is active, the order moves toward the front of its position, as orders with greater queue
priority are filled or canceled, according to price-time priority rules.

Specifically, subsequent to its placement, denote the queue position of the limit order by qt ∈
Q , R+ ∪ {FILL,CANCEL}. Specifically, at each time t ∈ [0, τ∗) at which the order has not been
filled or canceled, qt ∈ R+ and the quantity qt of asset shares, available for sale at the best ask
price, is of greater priority than the limit order. If the order has been filled (resp., canceled) prior
to time t, then qt = FILL (resp., qt = CANCEL). Until the order is filled or canceled, the queue
position qt evolves according to a sequence of arrivals of one of the following types of events at each
event time τ > 0:

1. A trade occurs with size ui ∈ R. As per equation (2), the liquidity spread evolves according
to

δτ = δτ− − λui.

For the evolution of the queue position, there are three cases:

(a) ui ∈ [qτ−,∞). In this case, the quantity of shares is purchased at the best ask price
that exceeds the limit order queue position; hence, the order is filled and realizes a final
expected value of

Vτ = E[PA − P |Fτ ] = δτ = δτ− − λui,

where, for the last inequality, we apply the price dynamics of equation (2).

(b) ui ∈ [0, qτ−). In this case, the quantity of shares is purchased at the best ask price but
it is insufficient to result in a fill; however, the order position improves according to

qτ = qτ− − ui > 0.

(c) ui ∈ (−∞, 0). In this case, the quantity of shares is purchase; hence the queue position
qτ remains fixed.

2. A price jump occurs with size Jk ∈ R. As per equation (2), the liquidity spread evolves
according to

δτ = δτ− − Jk.

For the evolution of the queue position, there are two cases:

(a) Jk > 0. Under a positive price jump, the order is assumed to be filled and realizes a
final expected value of

Vτ = E[PA − P |Fτ ] = δτ = δτ− − Jk.

11



(b) Jk > 0. Under a negative price jump, the price levels shift down and the order is assumed
to be canceled, realizing a final value of VT = 0.

3. The next event is the cancellation of a quantity of higher priority at the best ask price level.
We will describe the underlying assumptions of cancellation model shortly, but for now it
suffices to note that the ith cancellation event is associated with a proportion `i ∈ [0, 1], and
therefore a fraction 1 − `i of the shares with higher priority at the best ask price level are
canceled. Hence,

qτ = `iqτ−.

While the impact of trades is easy to model with the FIFO rule, cancellations can happen at
any position in the queue. Moreover, we are interested only in the cancellations that happened in
front of the current position. In order to model cancellations, we introduce the two assumptions as
follows:

• Proportional and Uniform Cancellations. We will assume that after each cancellation on the
ask side, the ask queue is homogeneously contracted by a certain proportion `, where {`i}
are i.i.d. with continuous p.d.f. g(·) over [0, 1]. Further, cancellations occur on the ask side
at times associated with a Poisson process of rate η+. Additionally, we assume that the
cancellation happens uniformly across different queue positions. Under this assumption, the
queue position of a limit order will be updated from q to `iq after the ith cancellation.

• Uninformed Cancellations. We assume that cancellations happen randomly and possess no
extra information. Some empirical work, such as that of Cont et al. (2014), has argued that
there is a correlation between price moves and cancellations; however, the market impact of
cancellations should be much smaller than that of market orders and hence we will neglect
this effect due to its technicality.

All things being equal, we expect cancellations to be larger when the queue is larger. Therefore,
instead of modeling both the size and the position of cancellations, we assume proportional cancel-
lations with a specific distribution fitted from the data. The order dynamics with cancellations is
then presented as follows:

1. If the cancellation happens on the ask side with cancellation fraction `, then the queue position
of the order (currently q) is assumed to shrink to `q.

2. If the cancellation happens on the bid side, then the referenced order is not affected at all.

3. Analysis

Now we consider the value of the queue position from the perspective of the agent. In Section 2.1,
we defined the value of a limit order. In this section, under the dynamics described in Section 2.2
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and Section 2.3, we will characterize this value. In what follows, we assume that the agent places
his order at time 0.

Naturally, the value of a limit order is determined by the price at which the order is placed
(PA), the latent efficient price (Pt) at the time it is executed (resp., canceled), and the probability
of execution. Because our price dynamics do not depend on price levels, we can consider prices
relative to the ask price of time zero (PA), which is denoted by δt. In addition, the probability of
execution is a function of queue position according to the order dynamics in our model. Hence the
value of a limit order can be uniquely determined by the state variable (δ, q). Given that all the
events in our model (trades, price jumps, and cancellations) are assumed to have Poisson arrival
times, the evolution of state variable (δ, q) over time can be viewed as a continuous-time Markov
chain. By setting the uniformization parameter as ζ = µ+ γ + η+, we can transfer the continuous-
time Markov chain to a discrete-time Markov chain (see, e.g., Chapter 5.8, Ross, 1996). Following
our discussion in Section 2.3, the transitions of states are as follows:

• With probability µ
ζ , the next event will be a trade. Suppose that the trade size is u.

1. If u < 0, the state will be updated to (q, δ − λu).

2. If 0 ≤ u < q, the state will be updated to (q − u, δ − λu).

3. If u ≥ q, the order value is realized at δ − λu.

• With probability γ
ζ , the next event will be a price jump, with jump size J .

1. If J > 0, the order value is realized at δ − J .

2. If J ≤ 0, the order value is realized at 0.

• With probability η+

ζ , the next event will be a cancellation, with cancellation fraction `. The
state will be updated to (`q, δ), where ` is the proportion that remains after the cancellation.

Putting together all of the above, we have the following lemma.

Lemma 1. The order value process Vt takes the form

Vt = V (qt, δt),

for t ∈ [0, τ∗), where V (·) is the unique solution of the equation

V (q, δ) = µ

ζ
Eu
[
I{0≤u<q}V (q − u, δ − λu) + I{u≥q}(δ − λu) + I{u<0}V (q, δ − λu)

]
+ γ

ζ
EJ
[
I{J>0}(δ − J)

]
+ η+

ζ
E` [V (`q, δ)] ,

(4)

for all (q, δ) ∈ R+ × R.
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In what follows, define the quantities

p+
u , P(u > 0), ū+ , E[uI{u>0}], p+

J , P(J > 0), J̄+ , E[JI{J>0}].

Theorem 1 (Value Function). The value function V (q, δ) is linear in δ; that is, it takes the form

V (q, δ) = α(q)δ − β(q), (5)

where the functions α : R+ → R and β : R+ → R are uniquely determined by the integral equations

α(q) = µ

µp+
u + γ + η+

{
p+
u +

∫ q

0

(
α(q − x)− 1

)
f(x) dx

}
+ γp+

J

µp+
u + γ + η+

+ η+

µp+
u + γ + η+

∫ 1

0
α(`q)g(`) d`,

(6)

β(q) = µ

µp+
u + γ + η+

{∫ q

0
β(q − x)f(x) dx+ λ

∫ q

0

(
α(q − x)− 1

)
xf(x) dx

− λū+(α(q)− 1
)}

+ γJ̄+

µp+
u + γ + η+ + η+

µp+
u + γ + η+

∫ 1

0
β(`q)g(`) d`,

(7)

for q > 0, with boundary conditions

α(0) = µp+
u + γp+

J

µp+
u + γ

, β(0) = µ[γ(1− p+
J )]

(µp+
u + γ)2 λū

+ + γ

µp+
u + γ

J̄+. (8)

Theorem 1 shows that the value function is quasi-linear on the premium δ while the coefficients
are determined by the queue position. Specifically, if the order is executed, the agent will earn the
premium δ but incur cost β(q); if the order is not executed, the order value is just zero. Note that
the Volterra integral equations (6)–(7) can be readily solved numerically.

In order to estimate the value function, the following parameters need to be obtained from data:

1. γ/µ, the ratio of arrival rate of jumps to arrival rate of trades.

2. η+/µ, the ratio of arrival rate of cancellations to arrival rate of trades.

3. f(·), the distribution of trade sizes.

4. λ, the price impact coefficient.

5. p+
J = P (Ji > 0), the probability that a price jump is positive.

6. J̄+/p+
J = E[Ji|Ji > 0], then expected value of a positive jump.

Notice that the value function is determined by the ratio of arrival rates rather than their
absolute value. Intuitively, ratios of arrival rates determine whether an order is executed, while
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their absolute values determine when that happens. As our model does not incorporate time value,
absolute values of arrival rates do not change the value of the order. Additionally, we require only
the first moment of price jumps rather than their distribution. This is because the size of a price
jump is used only to calculate the expected order value at the time that the price jump happens.
The distribution of trade size is important as it helps to determine the optionality of an order that
has been executed. The price impact coefficient captures the adverse selection cost due to trading,
and hence appears only in the expression of β(·).

We can now establish the following properties of α(·) and β(·):

Theorem 2. 1. Compared with equation (1), we have

αt = α(q), ASt = β(q)
α(q) .

2. The probability of execution α(q) is non-increasing in queue position.

3. The adverse selection is positive, i.e.,

β(q)/α(q) > 0.

4. With no cancellations (η = 0), we have

lim
q→∞

α(q) = p+
J , lim

q→∞
β(q) = J̄+.

The first statement provides intuition for the two value function components. A by-product of
the proof shows that the quasi-linear form of the value function in equation (6) is a general result
that does not require a Poisson arrival of events.

The second statement shows that the probability of execution is smaller for orders with a larger
queue position. This is expected due to the FIFO rule.

The third statement suggests that the adverse selection cost is always positive, which is in
line with intuition. Specifically, adverse selection can be broken down into two parts. The first
part originates from price jumps, and the second comes from the asymmetric information between
liquidity takers and liquidity providers.

The last statement provides the asymptotic behavior of the value function when there is no
cancellation. Intuitively, if the queue position is extremely large, it is unlikely that the order will
be executed by trades that deplete the queue of higher priority orders. Hence the probability
of execution α(q) is just the probability of a positive price jump. The case with cancellations is
technically more complicated as we assume that cancellations cause a shrinking of the queue length.

While in general it’s difficult to obtain close-form solutions to Volterra integral equations, some
special cases can be solved using Laplace transform. Theorem 3 provides such an example.

Theorem 3 (Exponential Trade Sizes). Suppose there are no cancellations and that the trades sizes

15



follow a two-sided exponential distribution with parameter θ > 0, i.e.,

f(u) , θ

2e
−θ|u|,

for all u ∈ R. Then, the value function is given by V (δ, q) = α(q)δ − β(q), where

α(q) = p+
J + µ(1− p+

J )
µ+ 2γ e−bq, (9)

β(q) = J̄+(1− µ

µ/2 + γ
e−bq) + λµγ(p+

J − 1)
2(γ + µ/2)2θ

e−bq + λ(γ − µ)γ(p+
J − 1)

2(γ + µ/2)3 qe−bq, (10)

for all q ≥ 0, with b , (γ + ζ)θ/(µ/2 + γ).

4. Empirical Calibration

Having laid the framework, we now test our model using NASDAQ ITCH data for a number large-
tick U.S. stocks with high liquidity. NASDAQ ITCH data is a so-called market-by-order data
feed. As opposed to market-by-level data, which displays orders accumulated on price, market-by-
order data contains all order book events including limit order postings, trades, and limit order
cancellations. Market-by-order data makes it possible to reconstruct the limit order book at any
given time and hence can be used to view queue position and size of individual orders at a price
while remaining anonymous.

One advantage of our model is that it offers predictions of order value at different positions in
the queue as a function of market primitives, and hence can be easily calibrated. In this section,
we will take Bank of America (BAC) as an example to illustrate our estimation process and model
results. We will first describe the calibration of our model parameters, and then solve for the
predicted queue position values using the market primitives obtained.

4.1. Data Overview

Our attention is restricted to large-tick assets, where the queueing effects are large. Bank of America
(BAC) is one of the most liquid stocks traded, with an average daily volume of 88 million shares
in August 2013. The bid-ask spread is almost always equal to one tick and is large (about 7 basis
points) relative to its price. Hence BAC qualifies as a large-tick asset.

U.S. equities can be traded on multiple exchanges simultaneously. To avoid the complexity of
aggregating multiple limit order books, we consider only the NASDAQ order book by using ITCH
data, which provides historical data for full order depth. ITCH enables us to track the status of
each order from the time it is placed to the time it is either executed or canceled. We use the
database of Yahoo Finance for daily closing prices.
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4.2. Calibrating Parameters

The main parameters involved in our model are: distribution of order size, trade arrival rate µ,
price jump arrival rate γ, cancellation arrival rate η, market impact λ, and jump size J . These
parameters exhibit significant day-to-day heterogeneity as some days are more active than others.
In what follows, these parameters will be estimated on a daily basis and we will see how their
heterogeneity changes order values.

Price jumps are instances when the ask or the bid price changes. A trade happens when a
market order (or a marketable limit order) is executed with existing limit orders. Sometimes trades
and price jumps can coincide. This happens when an execution is large enough to eliminate the
entire queue and cause a price jump. In the following analysis, trades will refer to executions that
do not cause price moves, while executions that are large enough to deplete the queue will be
counted as price jumps. As a result, a price jump can come in the form of an order being executed
with arbitrary size.

Price Jumps. In our settings, the size of price jumps is defined by changes in the latent efficient
price. Since the latent efficient price is not observable, we assume that the price ∆t later is an
unbiased estimate of the latent price after a jump.8 The intuition here is that the market will
take some time (∆t) to digest and factor in the information. Hence, the size of a price jump is
calculated as the price change ∆t after the price moves. ∆t is expected to differ among stocks due
to differences in factors such as liquidity. Here, we take ∆t to be proportional to the expected time
interval between price jumps. Notice that in this case the jump size can be smaller than one tick
when a reversion happens within ∆t. The number of price jumps is counted separately for both
the ask side and the bid side, and then the average is taken. The arrival rate for price jumps is
calculated simply by counting price jumps.

Trades. In our model, trade size is defined as the size of an aggressive market order. In electronic
markets, once an aggressive market order comes, it is matched with the very first limit order in
the queue. If, however, the aggressive market order is too large to be filled with a single limit
order, it may trade with multiple resting limit orders, resulting in multiple individual fills. Notice
that what we observe from the ITCH data feeds are individual fills, and therefore it is necessary
to combine these fills to reconstruct the size of the original market order. We take a time window
of two milliseconds, and calculate the order size by putting together the trades of the same side
within that time window. If the price changes during that time, we consider the execution to be a
price jump.

Our empirical results show that the shape of order size distribution closely resembles a log-
normal distribution, which is consistent with findings in Kyle and Obizhaeva (2016). In particular,
we obtained the MLE estimate of the mean and standard deviation under this distributional as-
sumption. We obtained the arrival rate, however, in a much more straightforward manner, we
simply counted the number of trades.

Cancellations. With market-by-order data, we can keep close track of the position and size of
8In our analysis, ∆t is set at one minute.
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every canceled order. As we mentioned in Section 3, we view each cancellation as a contraction of the
whole queue. In other words, we assume that each cancellation decreases the queue size uniformly
by a certain proportion l. We then fit the cancellation proportion l using Beta distribution.

Market Impact. The calibration of market impact has always been of great interest in the
market microstructure literature. Kyle (1985) suggested linear market impact in a continuous-
time theoretical model. He argued that the price impact of one unit of asset is determined by the
fundamental volatility and variance of order-flow imbalance. Other researchers, such as Breen et al.
(2002), took a purely empirical approach by regressing the price changes on order-flow imbalances.
In this paper, we derive the market impact parameter by following the market invariant approach
of Kyle and Obizhaeva (2016). Specifically, Kyle and Obizhaeva (2016) proposed a model in which
the market impact parameter λ is given by the following equation:

λ = C(Pσ)
4
3V −

2
3 , (11)

where C is a constant9 calibrated from a portfolio transition data set, P is the asset price, σ is the
asset’s volatility of daily return, and V is the daily trading volume (in shares).

Liquidity Premium. In reality, the latent price is not observable. We will assume that on
average it can be approximated by the mid-price. In other words, we will assume that the liquidity
premium is is a half-spread. However, we will make an adjustment in order to factor in a liquidity
rebate of 0.3 ticks offered by NASDAQ. The rebate is offered by the exchange in order to encourage
market participants to provide liquidity. Hence the liquidity premium is given by

δ0 = (half-spread) + (rebate) = 0.8 (ticks).

Table 1 provides the estimated parameters for Bank of America over 22 trading days. As we
can see, the average jump size is very close to one tick, which means that the price process is
driven primarily by single tick jumps. Note that the jump size can be less than one tick as we
approximate it as the price change ∆t after the price moves. Our empirical findings show that the
order size distribution is roughly consistent across trading days. The market impact parameter λ
too is subject to very little variation across trading days. The only parameters with much variation
from day to day are the ratios between arrival rates (γ/µ, η/µ), which, as will see, are the driving
force of interday heterogeneity in the order values predicted by our model.

4.3. Observations

Given the market parameters estimated above, the main output of our model is the value function
of queue position, which can be obtained by numerically solving equation (6) and (7) in Section 3.
Figure 3 provides the plots of the value function, execution probability, and adverse selection for
BAC on two representative trading days (8/9/2013 and 8/20/2013).

9C = 0.0156 according to Kyle and Obizhaeva (2016).
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Date µ
Average
Trade
Size

Trade
Size
STD

η
Average

Cancellation
Size

γ
Average
Jump
Size

λ
Average
Queue
Size

(/min) (shares) (shares) (/min) (shares) (/min) (ticks) (shares)

8/30/13 1.43 2270 4793 148.3 1971 0.85 0.86 3.91 46092
8/29/13 1.25 2635 6535 128.8 2103 0.57 0.86 3.97 48454
8/28/13 1.55 2526 4463 140.1 2140 0.79 1.12 4.41 52845
8/27/13 2.25 2435 5395 178.2 2049 1.05 0.91 4.79 48526
8/26/13 1.27 2481 5441 95.5 2114 0.51 0.82 3.53 52434
8/23/13 1.11 2058 3922 114.5 2340 0.56 0.85 3.68 59337
8/22/13 1.20 2998 6082 95.6 1835 0.53 0.92 3.84 37617
8/21/13 1.74 2091 4329 163.7 2134 1.39 1.14 3.93 42240
8/20/13 1.38 3669 7157 127.8 1970 0.95 1.03 4.19 46665
8/19/13 1.21 1979 3676 126.5 1868 0.72 0.84 4.87 45502
8/16/13 1.26 2223 4512 134.5 1737 0.67 0.94 5.37 45480
8/15/13 1.94 1582 3037 165.0 1698 0.82 0.75 5.23 46627
8/14/13 1.37 2034 4449 122.5 1455 0.90 0.95 4.51 33647
8/13/13 1.54 2327 5008 107.8 1628 0.72 1.09 4.68 37320
8/12/13 1.08 2426 4977 103.5 1887 0.49 0.92 4.39 60888
8/9/13 1.65 2762 5986 122.4 1875 0.71 0.91 4.81 50032
8/8/13 1.29 2303 4351 108.4 1764 0.95 1.25 5.16 38409
8/7/13 1.99 2494 5106 130.5 2303 1.01 0.91 5.99 53673
8/6/13 1.47 2610 5692 85.8 1930 0.55 0.93 5.19 50083
8/5/13 0.81 1598 2941 88.3 1502 0.44 0.78 4.59 38647
8/2/13 1.57 2039 4545 112.4 1511 0.53 0.86 5.05 47777
8/1/13 1.58 2853 7978 120.0 1854 0.71 0.85 5.52 51163

Table 1: Estimated market parameters for BAC in a month. λ is estimated as the price impact in basis
points for one percent of daily volume. Note that here we consider only shares traded on NASDAQ.
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First, as predicted by Theorem 2, the probability of execution is decreasing with queue length
and becomes quite flat when the queue length is large. Intuitively, when the queue length is
extremely large, the order on the ask side can be executed only by positive price jumps. Hence,
the execution probability should converge toward the probability of a positive price jump (p+

J as
in Theorem 2). Second, the adverse selection cost remains positive and is increasing with queue
length. Intuitively, this is because orders at the end of a large queue are more likely to be executed
against a large trade. With our assumption of linear price impact, large trades translate to higher
adverse selection costs. Third, the order value curve is decreasing as the queue gets longer. From
equation (1), we can see that the decreasing value curve is due to a combined effect of decreasing
execution probability and increasing adverse selection cost. Fourth, the value difference between
an order placed at the very front of the queue and an order placed in a queue length of average
was about 0.26 ticks on 8/9/2013 and 0.21 ticks on 8/20/2013, which is comparable to the bid-ask
spread. This shows that the queue’s positional value cannot be neglected in higher- level control
problems such as optimal execution and market making. Finally, Figure 3 provides comparisons of
model outputs on two different trading days. We can see that orders in the same queue position
were worth less on 8/20/2013, and had a lower fill probability. This is because the ratio of arrival
rate γ/µ was significantly higher on 8/20/2013 (0.69) than on 8/9/2013 (0.43). Intuitively, large
γ/µ means that the order is less likely to be executed against a trade before the price changes, and
hence translate to a lower fill probability.

5. Empirical Validation: Backtesting

In the previous section, we calibrated a parametric model to estimate the positional value of limit
orders using market data. Now we want to verify these predictions using a non-parametric model
based on backtesting. One challenge is that the order value cannot be measured by the profitability
of the actual historical orders in the limit order book, since actual orders may have private infor-
mation. In order to bypass this difficulty, instead of actual orders, we will simulate the outcome of
randomly placed artificial orders.

Market-by-order data enables us to simulate the life-span of each artificial order in the limit
order book. We can then calculate various statistics such as order value and fill probability for orders
at different positions. We then compare the backtesting results with the parametric estimations.
More specifically, we restrict our attention to 9 highly liquid U.S. equities or ETFs with a bid/ask
spread close to 1 tick. A list of the stocks and their descriptive statistics are given in Table 2.

5.1. Backtesting Simulation

The technique of backtesting is widely used in the financial industry to test a predictive model with
existing historical data. Our paper benefited from the advantage of accessing ITCH data, a source
of market-by-order data provided by NASDAQ. With full information on historical order/trade
data, we were able to construct a simulator to backtest our proposed valuation model. Backtesting
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Figure 3: Model outputs as functions of queue positions on two different trading days (08/09/2013 and
08/20/2013). The red dots represent the average queue length of that trading day.
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Symbol Listing
Exchange

Price Average
Bid-Ask
Spread

Average
Volatility

Average
Daily

VolumeLow High
($) ($) ($) (daily) (shares, ×106)

Bank of America BAC NYSE 14.11 14.95 1.017 1.2% 87.9
Cisco CSCO NASDAQ 23.31 26.38 0.996 1.0% 38.7

General Electric GE NYSE 23.11 24.70 1.002 0.9% 29.6
Ford F NYSE 15.88 17.50 1.005 1.4% 33.6
Intel INTC NASDAQ 21.90 23.22 1.005 1.1% 24.5
Pfizer PFE NYSE 28.00 29.37 1.007 0.7% 23.3

Petroleo Brasilleiro PBR NYSE 13.39 14.98 1.010 2.6% 17.9
iShares MSCI Emerging Markets EEM NYSE 37.35 40.10 1.006 1.2% 64.1

iShares MSCI EAFE EFA NYSE 59.17 62.10 1.021 0.7% 14.4

Table 2: Descriptive statistics for 9 stocks over the 21 trading days of August 2013. The average
bid/ask spread is defined as the time average computed from the ITCH data. The volatility is defined
as the standard deviation of percentage daily returns. All other statistics were retrieved from Yahoo
Finance.

with artificial orders requires one assumption: real orders may influence other market participants,
while counterfactual artificial orders clearly do not. Here we will assume that all of the artificial
orders are of infinitesimal size and hence have no market impact. This is in consistent with our
model assumptions. First, the historical data will be used to recreate the state and dynamics of
order book; then artificial orders will be placed and processed according to market rules; finally,
the value of the artificial orders will be calculated. The details of our procedure are as follows:

Placement of Artificial Orders. We start by defining two types of artificial orders based on the
position at which they are inserted.

• Regular orders are orders that are appended to the end of the queue at the current best price.
The name regular orders comes from the fact that these orders are placed according to the
FIFO rule.

• Touch orders are orders that are inserted at the very front of the queue at the current best
price. These orders are used to evaluate the value of being placed at the front of the queue.
Comparing touch orders with regular orders will help to illustrate the magnitude of the effect
of the value of queue position.

In the simulation, we associate each real limit order with an entry-time stamp to keep track of
the time that the order entered the order book. The side (bid or ask) of each artificial order is
randomly picked. Suppose that it is an ask order; then its evolution in the limit order book will be
as follows.

• At a random time, the artificial order is generated and inserted at the end of the queue at
the then current best ask price.

• The artificial order is processed following the market rule of price/time priority. We start
updating the limit order book according to the real data until one of the following events
occurs.
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1. New order arrival: If a new limit order is added to the same side at a better price
(lower for the ask side, higher for the bid side) than that of the artificial order, then the
artificial order will no longer be at the best price, and we will assume that it is canceled
immediately.

2. Fill: If a limit order at the same price that has arrived after the artificial order is filled,
we will assume that the artificial order is also filled.

3. Cancellation: If the price moves because all other orders in the queue are canceled (which
is rare), we will assume that the artificial order is canceled as well.

In order to eliminate outliers, we ignore the first and last half hours of the trading day. Accord-
ingly, we pick 1000 time points uniformly at random between 10:00 and 15:30 on each trading day,
and insert an artificial order on a random side of the market at each of these times.

Order Valuation. If the artificial order is canceled then it possesses no value. If, however, the
artificial order is filled then its value will be the difference between the execution price and the
fundamental value of the asset. In order to backtest order values at different positions, we need
to determine the fundamental value. Since the fundamental value cannot be observed directly in
the historical data, we need to calibrate it through a tractable valuation process. In this paper, we
assume that the mid-price one minute after the order’s execution is an unbiased point estimate of
the fundamental value at the time of execution. This is a noisy approximation and requires many
observations for a reasonably accurate estimate. Hence, we choose to estimate the average order
value over all orders placed across 30 trading days instead of using a shorter period.

5.2. Observations

Table 3 shows the comparison of the results from backtesting and model outputs. The order value
measures the value of regular orders that are placed at the end of the queue, while the touch value
measures the value of touch orders placed at the very front of the queue.

Symbol Order Value Fill Probability Adverse Selection Touch Value
Model Simulation Model Simulation Model Simulation Model Simulation
(ticks) (ticks) (ticks) (ticks) (ticks) (ticks)

BAC 0.14 0.14 0.62 0.60 0.57 0.57 0.36 0.31
CSCO 0.08 0.07 0.63 0.59 0.68 0.68 0.24 0.21
GE 0.08 0.09 0.62 0.60 0.67 0.65 0.19 0.23
F 0.13 0.15 0.65 0.64 0.60 0.53 0.24 0.23

INTC 0.11 0.09 0.64 0.61 0.63 0.56 0.28 0.23
PFE 0.12 0.11 0.63 0.58 0.62 0.61 0.16 0.21
PBR -0.03 -0.04 0.57 0.53 0.85 0.89 0.03 0.03
EMM 0.07 0.08 0.63 0.63 0.69 0.64 0.21 0.15
EFA 0.03 0.04 0.57 0.53 0.74 0.73 0.06 0.09

Table 3: Estimated model values vs. simulation values. All the values above were calculated as the
average across 30 trading days. Touch value refers to the value of orders at the very front of the queue.
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We can see that the values estimated from our model are very close to the backtesting results.
Further, if we break down the value into fill probability and adverse selection cost, we can see that
the values are also close. This shows that our model provides a good approximation of the value
of queue positions.

Notice that the difference between the value of touch orders and the value of regular orders
provides information about the magnitude of the value of queue position. First of all, the value of
orders placed at the front of the queue is always larger than the value of orders placed at the end.
This shows that better queue position does carry an advantage. Second, the magnitude of the gap
differs between symbols. For some symbols, such as BAC and CSCO, the gap can be very large
and comparable to the bid ask spread (> 0.1 ticks). For others, such as PFE and PBR, the gap is
less prominent (< 0.1 ticks). These differences are consistent in both the predictions made by our
model and by the values estimated using the non-parametric backtest.

5.3. Discussion

In this section, we provide a framework based on backtesting to estimate the value of queue posi-
tions. This non-parametric approach enables us to test the accuracy of our model. This leads to a
natural question: if a non-parametric, model-free estimation method is available, why do we need
a parametric method, such as the one discussed in this paper? The reasons is as follows. In the
backtest, the value of artificial orders is estimated through price changes post execution. These
estimates are very noisy, and hence many independent observations are needed to obtain accurate
estimates. As a result, the non-parametric can be used only to estimate the average value of orders
across large intervals of time (e.g., 30 days). However, market parameters, such as arrival rates of
order book events, are constantly changing on a daily or even intraday basis. Backtesting cannot
capture this variation. On the other hand, the estimates from our model are conditional on market
primitives that can be estimated in real time and hence provide more precise predictions in real
time.

6. Concluding Remarks

In this paper, we exhibited a dynamic model for valuing queue position in limit order books. We
provided analytic evidence for sizable difference in values for orders at different queue positions.
We specifically quantified the disadvantage of bad queue positions that originate from decreasing
execution probability and increasing adverse selection costs.

The formulation of the model is based entirely on observable quantities so that the parameters
can be estimated from market data. This tractability allowed us to calibrate our model empirically.
We further validated the model by comparing the outputs with results from backtesting simulations.

This analysis has practical implications for both market participants and regulators:

1. For large tick-size assets, queueing effects can be very significant.
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2. Accounting for queue position cannot be ignored when solving market making or algorithmic
trading problems in large-tick assets.

3. The value embedded in the queue position rewards the trading speed of high-frequency firms.
This creates a disadvantage for individual traders who have less or no access to fast-trading
technologies. From a regulatory level, an important question is whether this time-price pri-
ority rule is a good mechanism for organizing exchanges for the trading of large-tick assets.
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Supplementary Material

A. Theorem Proofs

Theorem 1 (Value Function). The value function V (q, δ) is linear in δ; that is, it takes the form

V (q, δ) = α(q)δ − β(q), (5)

where the functions α : R+ → R and β : R+ → R are uniquely determined by the integral equations

α(q) = µ

µp+
u + γ + η+

{
p+
u +

∫ q

0

(
α(q − x)− 1

)
f(x) dx

}
+ γp+

J

µp+
u + γ + η+

+ η+

µp+
u + γ + η+

∫ 1

0
α(`q)g(`) d`,

(6)

β(q) = µ

µp+
u + γ + η+

{∫ q

0
β(q − x)f(x) dx+ λ

∫ q

0

(
α(q − x)− 1

)
xf(x) dx

− λū+(α(q)− 1
)}

+ γJ̄+

µp+
u + γ + η+ + η+

µp+
u + γ + η+

∫ 1

0
β(`q)g(`) d`,

(7)

for q > 0, with boundary conditions

α(0) = µp+
u + γp+

J

µp+
u + γ

, β(0) = µ[γ(1− p+
J )]

(µp+
u + γ)2 λū

+ + γ

µp+
u + γ

J̄+. (8)

Proof. First of all, we solve for the solution to equation (4). The boundary condition can be verified
by setting q = 0 in (4), which gives

V (0, δ) = µ

ζ
E
[
I{u≥0}(δ − λu) + I{u<0}V (q, δ − λu)

]
+ γ

ζ
E
[
I{J>0}(δ − J)

]
+ η+

ζ
V (0, δ).

Notice that it’s an integral equation with a linear drift on δ. Hence the solution of V (0, δ)
should also be linear on δ. The equation above thus boils down to

µ+ γ

µ
(α(0)δ − β(0)) = E

[
I{u>0} (δ − λu)

]
+ E

[
I{u≤0} (α(0)(δ − λu)− β(0))

]
+ γ(δ − J̄+)/µ

= p+δ − λ
∫ +∞

0
uf(u) du+

∫ 0

−∞

(
α(0)(δ − λu)− β(0)

)
f(u) du+ γ(δ − J̄+)/µ.
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Solving the equation above for α(0) and β(0), we obtain the boundary condition:

α(0) = µp+
u + γp+

J

µp+
u + γ

, β(0) = µ[γ(1− P+
J )]

(µp+
u + γ)2 λū+ + γ

µp+
u + γ

J̄+.

For q > 0, the integral equation still has a linear drift, which provides the linearity of the
solution:

µ+ γ + η+

µ

(
α(q)δ − β(q)

)
= E

[
I{u>q} (δ − λu)

]
+ E

[
I{u≤0}

(
α(q)

(
δ − λu

)
− β(q)

)]
+ E

[
I{0<u≤q}

(
α(q − u)

(
δ − λu

)
− β(q − u)

)]
+ γ(δ − J̄+)/µ+ η+E [α(`q)δ − β(`q)]

=
∫ +∞

q
(δ − λu)f(u) du+

∫ q

0

(
α(q − u)

(
δ − λu

)
− β(q − u)

)
f(u) du

+
∫ 0

−∞

(
α(q)(δ − λu)− β(q)

)
f(u) du

+ γ(δ − J̄+)/µ+ η+

µ

∫ 1

0

(
α(`q)δ − β(`q)

)
d`.

Solving the equation for α(q) and β(q), we obtain the solution:

V (q, δ) = α(q)δ − β(q).

Now we would like to prove the uniqueness and existence of the solution to equations (6) and
(7). Notice that α(·) is defined on R+. Then the expression of α(q) is a Volterra integral equation
of the second kind. We can rewrite the expression as follows:

α(q) = k1(q) +
∫ q

0
k2(x, q, α(x)) dx, ∀q ∈ R+, (12)

where
k1(q) = µ

µp+
u + γ + η+ (p+

u −
∫ q

0
f(x) dx) + γp+

J

µp+
u + γ + η+ , ∀q ∈ R+,

k2(x, q, z) = { µf(q − x)
µp+

u + γ + η+ + η+g(x/q)/q
µp+

u + γ + η+ }z, ∀q ∈ R+, x ∈ R+, z ∈ R.

Given the continuity of f(·), g(·), we have k1 ∈ C(R+), k2 ∈ C(R+ × R+ × R). Also, it is trivial
that k2 satisfies the following Lipschitz condition:

|k2(x, q, z)− k2(x, q, z′)| ≤ L(x, q)|z − z′|, for some L ∈ C(R+ × R+).

Hence by Theorem 2.1.1 of Hackbusch (1995), there is exactly one solution of the integral
equation (12). Additionally, the solution α(·) is continuous on R+.

The existence and uniqueness of β(·) can be established in a similar way. Specifically, we can
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write equation (7) in the following form:

β(q) = k3(q) +
∫ q

0
k4(x, q, β(x)) dx, ∀q ∈ R+, (13)

where

k3(q) = µ

µp+
u + γ + η+

{
λ

∫ q

0

(
α(q−x)− 1

)
xf(x) dx−λū+(α(q)− 1

)}
+ γJ̄+

µp+
u + γ + η+ , ∀q ∈ R+,

k4(x, q, z) = k2(x, q, z), ∀q ∈ R+, x ∈ R+, z ∈ R.

Hence, by a similar analysis, there is exactly one solution to integral equation (7), and that solution
is continuous.

�

Theorem 2. 1. Compared with equation (1), we have

αt = α(q), ASt = β(q)
α(q) .

2. The probability of execution α(q) is non-increasing in queue position.

3. The adverse selection is positive, i.e.,

β(q)/α(q) > 0.

4. With no cancellations (η = 0), we have

lim
q→∞

α(q) = p+
J , lim

q→∞
β(q) = J̄+.

Proof. 1. Consider an order placed on the ask side at position q at time 0; denote τ∗ to be the
time that it is filled or canceled.

V (q, δ) = E
[
(PA − P )I{FILL}

]
= E

[(
(PA − P0)− (P − P0)

)
I{FILL}

]
= E

[
(δ − (P − P0)) I{FILL}

]
= P(FILL)δ − P(FILL)E [Pτ∗ − P0|FILL] .

(14)

Notice that E [Pτ∗ − P0|FILL] represents the opportunity cost conditional on executing the
order, which coincides with the definition of adverse selection.
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Compared to the notations in equation (5), it is easy to see that

α(q) = P(FILL) β(q)/α(q) = E [Pτ∗ − P0|FILL] .

Hence α(q) is exactly the probability of the order being executed, and β(q)/α(q) represents
the adverse selection cost.

2. It suffices to show that ∀0 ≤ q0 < q1, we have α(q0) ≥ α(q1).

Consider an infinitesimal order A0 with a queue position q0, and let E0 be the set of events
that the order is eventually filled. Then we have

α(q0) = P(E0).

Notice that in our model, the value of an order does not depend on the orders that follows
it in the queue. Hence it is possible to couple the order A0 with an infinitesimal order A1 in
the exact same queue but with a position q1. Similarly, we define E1 to be the set of events
that A1 is eventually executed.

Notice that since the size of the orders is infinitesimal, the marginal probabilities P(E0),P(E1)
should be intact with coupling. There are two scenarios where E1 can happen:

• A1 is executed by a trade. Then, in our setup, there can be no price jump before this
event. As A0 is placed in front of A1, it should be executed already.

• A1 is executed by a positive price jump. In our setup, there can be no negative price
jump before this event. Hence A0 can be executed either by this positive price jump or
by an earlier trade.

The above analysis shows that {E1} ⊆ {E0}; hence

α(q1) = P(E1) ≤ P(E0) = α(q0).

3. Since ∀q > 0, 0 < α(q) < 1, it suffices to show that ∀q > 0, β(q) > 0.

We have already proved that α(q) is increasing in q; hence ∀0 ≤ x < q , α(q − x) ≥ α(q).
According to equation (6), we have

β(q) ≥ µ

µp+
u + γ + η+

{∫ q

0
β(q − x)f(x) dx− λ

∫ ∞
q

(
α(q)− 1

)
xf(x) dx

}
+ γJ̄+

µp+
u + γ + η+ + η+

µp+
u + γ + η+

∫ 1

0
β(`q)g(`) d`.

(15)

Notice that we have β(0) > 0 and that β(·) is continuous. Now suppose that β(q) is not
always positive for q ≥ 0; then there must exist q0 such that β(·) attains a value of zero
for the first time. By continuity, we have β(q) > 0 for q ∈ [0, q0). Notice that at q0, the
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right-hand side of equation (15), is strictly positive; hence it is impossible that β(q0) = 0. As
a result, it must be that β(·) is positive for all q ≥ 0.

4. Given that p.d.f. of trade size f(·) is assumed to be continuous over [0,+∞), we have∫ ∞
0

e−stf(t) dt ≤
∫ ∞

0
f(t) dt = p+

u ,∀s ≥ 0.

Hence the Laplace transform of f(·) exists on [0,+∞). Let P (s) denote the Laplace transform
of p.d.f. f(·) of trade size and define C(q) = α(q)− 1. We have

C(q) = µ

µp+
u + γ

∫ q

0
C(q − x)f(x) dx+ γ(p+

J − 1)
µp+

u + γ
. (16)

Now take the Laplace transform on both sides of equation (16); we have

L{C}(s) = µ

µp+
u + γ

L{C}(s)P (s) + γ(p+
J − 1)

s(µp+
u + γ)

,

⇒ µp+
u + γ − µP (s)
µp+

u + γ
L{C}(s) = γ(p+

J − 1)
s(µp+

u + γ)
.

Given the fact that ∀s ≥ 0, P (s) ≤ p+
u , we have µp+

u +γ−µP (s) > 0. As a result, the Laplace
transform of C(q) is well defined on [0,+∞) and takes the form

L{C}(s) = γ(p+
J − 1)

s(µp+
u + γ − µP (s))

. (17)

Hence, the Laplace transform for α(q) is

L{α}(s) = L{C}(s) + 1/s = γ(p+
J − 1)

s(µp+
u + γ − µP (s))

+ 1/s. (18)

By the final value theorem of Laplace transform, we have

lim
q→∞

α(q) = lim
s→0

sL{α}(s) = −γ(p+
J − 1)

µp+ γ − µP (0) + 1 = p+
J .

Similarly, it is easy to see that the Laplace transform of β(q) is also well defined on [0,+∞);
hence we have

L{β}(s) = − µ

µp+
u + γ − µP (s)

[λL{C}(s)P ′(s) + λū+L{C}(s)− γJ̄+/(sµ)]. (19)
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Then by the finite value theorem of Laplace transform:

lim
q→∞

β(q) = lim
s→0

sL{β}(s)

= lim
s→0
− µ

µp+
u + γ − µP (s)

[λsL{C}(s)P ′(s) + λū+sL{C}(s)− γJ̄+/µ]

= J̄+.

(20)

�

Theorem 3 (Exponential Trade Sizes). Suppose there are no cancellations and that the trades sizes
follow a two-sided exponential distribution with parameter θ > 0, i.e.,

f(u) , θ

2e
−θ|u|,

for all u ∈ R. Then, the value function is given by V (δ, q) = α(q)δ − β(q), where

α(q) = p+
J + µ(1− p+

J )
µ+ 2γ e−bq, (9)

β(q) = J̄+(1− µ

µ/2 + γ
e−bq) + λµγ(p+

J − 1)
2(γ + µ/2)2θ

e−bq + λ(γ − µ)γ(p+
J − 1)

2(γ + µ/2)3 qe−bq, (10)

for all q ≥ 0, with b , (γ + ζ)θ/(µ/2 + γ).

Proof. First denote P (s) as the Laplace transform of the truncated p.d.f. of trade size on the
positive domain (f(u) = θ

2e
−θu). We have

P (s) = θ

2(s+ θ) ū+ = 1
2θ . (21)

Plugging equation (21) into (18), we obtain the Laplace transform of α(q):

L{α}(s) = γ(p+
J − 1)

s(µp+
u + γ − µP (s))

+ 1/s. (22)

Then, by taking the inverse Laplace transform, we get

α(q) = p+
J + µ(1− p+

J )
µ+ 2γ e

− γθq
µ/2+γ . (23)

Similarly, we can plug equation (21) into (19) to obtain the Laplace transform of β(q):

L{β}(s) = J̄+

s
− µ

µ+ 2γ
J̄+

s+ b
+ λµγ(p+

J − 1)
2(γ + µ/2)2θ(s+ b) + λ(γ − µ)γ(p+

J − 1)
2(γ + µ/2)3(s+ b)2 . (24)
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where b = γθ
γ+µ/2 . Taking the inverse Laplace Transform, we get

β(q) = J̄+(1− µ

µ+ 2γ e
−bq) + λµγ(p+

J − 1)
2(γ + µ/2)2θ

e−bq + λ(γ − µ)γ(p+
J − 1)

2(γ + µ/2)3 qe−bq. (25)

�
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