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Abstract

We introduce the pathwise optimization (PO) method, a new convex optimization procedure
to produce upper and lower bounds on the optimal value (the ‘price’) of a high-dimensional
optimal stopping problem. The PO method builds on a dual characterization of optimal stopping
problems as optimization problems over the space of martingales, which we dub the martingale
duality approach. We demonstrate via numerical experiments that the PO method produces
upper bounds of a quality comparable with state-of-the-art approaches, but in a fraction of the
time required for those approaches. As a by-product, it yields lower bounds (and sub-optimal
exercise policies) that are substantially superior to those produced by state-of-the-art methods.
The PO method thus constitutes a practical and desirable approach to high-dimensional pricing
problems.

Further, we develop an approximation theory relevant to martingale duality approaches in
general and the PO method in particular. Our analysis provides a guarantee on the quality of
upper bounds resulting from these approaches, and identifies three key determinants of their
performance: the quality of an input value function approximation, the square root of the
effective time horizon of the problem, and a certain spectral measure of ‘predictability’ of the
underlying Markov chain. As a corollary to this analysis we develop approximation guarantees
specific to the PO method. Finally, we view the PO method and several approximate dynamic
programming (ADP) methods for high-dimensional pricing problems through a common lens
and in doing so show that the PO method dominates those alternatives.

1. Introduction

Consider the following optimal control problem: a Markov process evolves in discrete time over the
state space X . Denote this process by {xt, t ≥ 0}. The process is associated with a state-dependent
reward function g : X → R. Our goal is to solve the optimization problem

sup
τ

E
[
ατg(xτ ) | x0 = x

]
,

∗The third author wishes to thank Mark Broadie and Paul Glasserman for helpful discussions.
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where the optimization is over stopping times τ adapted to the {xt} process, and α ∈ [0, 1) is
a discount factor. In other words, we wish to pick a stopping time that maximizes the expected
discounted reward. Such optimal stopping problems arise in a myriad of applications, most notably,
in the pricing of financial derivatives.

In principle, the above stopping problem can be solved via the machinery of dynamic program-
ming. However, the applicability of the dynamic programming approach is typically curtailed by
the size of the state space X . In particular, in many applications of interest, X is a high-dimensional
space and thus intractably large.

Since high-dimensional stopping problems are important from a practical perspective, a number
of alternative approaches that contend with the so-called ‘curse of dimensionality’ have emerged.
There are two broad classes of methods by which one can develop bounds on the optimal value of
a stopping problem, motivated essentially by distinct characterizations of the optimal solution to
the stopping problem:

• Lower Bounds / Approximate Dynamic Programming (ADP). The optimal control is char-
acterized by an optimal value function, which, in turn, is the unique solution to the so-called
Bellman equation. A natural goal is to attempt to approximate this value function by finding
‘approximate’ solutions to the Bellman equation. This is the central goal of ADP algorithms
such as regression pricing methods of the type pioneered by Carriere (1996), Longstaff and
Schwartz (2001), and Tsitsiklis and Van Roy (2001). Such an approximate solution can then
be used to both define a control policy and, via simulation of that (sub-optimal) policy, a
lower bound on the optimal value function.

• Upper Bounds / Martingale Duality. At a high level, this approach may be thought of
as relaxing the requirement of causality, while simultaneously introducing a penalty for this
relaxation. The appropriate penalty function is itself a stochastic process (a martingale), and
by selecting the ‘optimal’ martingale, one may in fact solve the original stopping problem. In
the context of stopping problems, part of this characterization appears to date back at least
to the work by Davis and Karatzas (1994), and this idea was subsequently fully developed by
Rogers (2002) and Haugh and Kogan (2004).

Not surprisingly, finding such an optimal martingale is no easier than solving the original
stopping problem. As such, the martingale duality approach consists of heuristically selecting
‘good’ martingale penalty functions, using these to compute upper bounds on the price (i.e.,
the optimal value of the stopping problem). Here, two techniques are commonly employed.
The first, which we will call a dual value function approach, derives a martingale penalty
function from an approximation to the optimal value function. Such an approximation will
typically be generated, for example, along the course of regression pricing procedures such as
those described above. Alternatively, in what we will call a dual policy approach, a martingale
penalty function can be derived from a heuristic control policy. This latter approach was
proposed by Andersen and Broadie (2004). A good control policy will typically also be
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generated using a regression pricing procedure.

A combination of these methods have come to represent the state-of-the-art in financial applications
(see, e.g., Glasserman, 2004). There, practitioners typically use regression pricing to derive optimal
policies for the exercise of American and Bermudan options, and to derive lower bounds on prices.
The martingale duality approach is then applied in a complementary fashion to generate upper
bounds, using either the dual value function approach or the dual policy approach. Taken together,
these methods provide a ‘confidence bound’ on the true price. In this area, the development of
such methodologies is thought to be worth considerable financial value, and thus may represent the
greatest practical success of approximate dynamic programming.

The present paper, in a nutshell, introduces a new approach to solving high-dimensional stopping
problems that draws on techniques from both of the methodologies above, and ultimately unifies
our understanding of the two approaches. This new method is ultimately seen to be desirable from
the practical perspective of rapidly pricing high-dimensional financial derivatives. In addition,
we develop a theory that allows us to characterize the quality of the solutions produced by the
approaches above.

In greater detail, we make the following contributions:

• A New Algorithm. ADP algorithms systematically explore approximations to the optimal
value function within the span of some pre-defined set of basis functions. The duality ap-
proach, on the other hand, relies on an ad-hoc specification of an appropriate martingale
penalty process. We introduce a new approach, which we call the pathwise optimization (PO)
method. The PO method systematizes the search for a good martingale penalty process. In
particular, given a set of basis functions whose linear span is expected to contain a good
approximation to the optimal value function, we posit a family of martingales. As it turns
out, finding a martingale within this family that produces the best possible upper bound to
the value function is a convex optimization problem. The PO method seeks to solve this
problem. We show that this method has several merits relative to extant schemes:

1. The PO method is a specific instance of the dual value function approach. By construc-
tion, however, the PO method produces an upper bound that is provably tighter than
any other dual value function approach that employs a value function approximation
contained in the span of the same basis function set. These latter approximations are
analogous to what is typically found using regression methods of the type proposed by
Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001). We demonstrate this
fact in numerical experiments, where we will show that, given a fixed set of basis func-
tions, the benefit of the PO method over the dual value function approach in concert with
regression pricing can be substantial. We also see that the incremental computational
overhead of the PO method over the latter method is manageable.

2. We compare the PO method to upper bounds generated using the dual policy approach in
concert with policies derived from regression pricing. Given a fixed set of basis functions,
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we will see in numerical experiments that the PO method yields upper bounds that
are comparable to but not as tight as those from the latter approach. However, the
PO method does so in a substantially shorter amount of time, typically requiring a
computational budget that is smaller by an order of magnitude.

3. The aforementioned regression techniques are the mainstay for producing control policies
and lower bounds in financial applications. We illustrate that the PO method yields
a continuation value approximation that can subsequently be used to derive control
policies and lower bounds. In computational experiments, these control policies and
lower bounds are substantially superior to those produced by regression methods.

In summary, the PO method is quite attractive from a practical perspective.

• Approximation Theory. We offer new guarantees on the quality of upper bounds of martin-
gale penalty approaches in general, as well as specific guarantees for the PO method. We
compare these guarantees favorably to guarantees developed for other ADP methods. Our
guarantees characterize the structural properties of an optimal stopping problem that are
general determinants of performance for these techniques. Specifically:

1. In an infinite horizon setting, we show that the quality of the upper bound produced
by the generic martingale duality approach depends on three parameters: the error in
approximating the value function (measured in a root-mean-squared error sense), the
square root of the effective time horizon (as also observed by Chen and Glasserman
(2007)), and a certain measure of the ‘predictability’ of the underlying Markov pro-
cess. We believe that this latter parameter provides valuable insight on aspects of the
underlying Markov process that make a particular pricing problem easy or hard.

2. In an infinite horizon setting, we produce relative upper bound guarantees for the PO
method. In particular, we produce guarantees on the upper bound that scale linearly
with the approximation error corresponding to the best possible approximation to the
value function within the span of the basis functions employed in the approach. Note
that the latter approximation is typically not computable. This result makes precise the
intuition that the PO method produces good price approximations if there exists some
linear combination of the basis functions that is able to describe the value function well.

3. Upper bounds produced by the PO methods can be directly compared to upper bounds
produced by linear programming-based ADP algorithms of the type introduced by
Schweitzer and Seidmann (1985), de Farias and Van Roy (2003), and Desai et al. (2011a).
In particular, we demonstrate that the PO method produces provably tighter upper
bounds than the latter methods. While these methods have achieved considerable suc-
cess in a broad range of large scale dynamic optimization problems, they are dominated
by the PO method for optimal stopping problems.
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The literature on ADP algorithms is vast and we make no attempt to survey it here. Bertsekas
(2007, Chapter 6) provides a good, brief overview. ADP algorithms are usually based on an
approximate approach for solving Bellman’s equation. In the context of optimal stopping, methods
have been proposed that are variations of approximate value iteration (Tsitsiklis and Van Roy, 1999;
Yu and Bertsekas, 2007), approximate policy iteration (Longstaff and Schwartz, 2001; Clément
et al., 2002), and approximate linear programming (Borkar et al., 2009).

Martingale duality-based upper bounds for the pricing of American and Bermudan options,
which rely on Doob’s decomposition to generate the penalty process, were introduced by Rogers
(2002) and Haugh and Kogan (2004). Rogers (2002) suggests the possibility of determining a good
penalty process by optimizing linear combinations of martingales; our method is a special case of this
which uses a specific parametrization of candidate martingales in terms of basis functions. Andersen
and Broadie (2004) show how to compute martingale penalties from rules and obtain upper bounds;
practical improvements to these technique were studied by Broadie and Cao (2008). An alternative
‘multiplicative’ approach to duality was introduced by Jamshidian (2003). Its connections with
martingale duality approach were explored in Chen and Glasserman (2007), who also develop
approximation guarantees for martingale duality upper bounds. Belomestny et al. (2009) describe a
variation of the martingale duality procedure that does not require inner simulation. Rogers (2010)
describes a pure dual algorithm for pricing. Generalizations of the martingale duality approach
to control problems other than optimal stopping have been studied by Rogers (2008), Lai et al.
(2010), Brown et al. (2010), and Brown and Smith (2011). Further, Brown et al. (2010) generalize
martingale duality to a broader class of information relaxations.

2. Formulation

Our framework will be that of an optimal stopping problem over a finite time horizon. Specifically,
consider a discrete-time Markov chain with state xt ∈ X ⊂ Rn at each time t ∈ T , {0, 1, . . . , d}.
Denote by P the transition kernel of the chain. Without loss of generality, we will assume that P
is time-invariant. Let F , {Ft} be the natural filtration generated by the process {xt}, i.e., for
each time t, Ft , σ(x0, x1, . . . , xt).

Given a measurable function g : X → R, we define the payoff of stopping when the state is xt as
g(xt). For each t ∈ T , let St be the space of real-valued measurable functions Jt : X → R defined
on state space X , with E[Jt(xt)2 | x0] <∞, for all x0 ∈ X . Assume that g ∈ St for all t. Define P
to be the set of functions J : X × T → R such that, for each t ∈ T , Jt , J(·, t) is contained in the
set St. In other words, P is the set of Markovian processes (i.e., time-dependent functionals of the
state) that possess second moments.

A stationary exercise policy µ , {µt, t ∈ T } is a collection of measurable functions where each
µt : X → {STOP,CONTINUE} determines the choice of action at time t as a function of the state
xt. Without loss of generality, we will require that µd(x) = STOP for all x ∈ X , i.e., the process is
always stopped at the final time d.
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We are interested in finding a policy which maximizes the expected discounted payoff of stop-
ping. The value of a policy µ assuming one starts at state x in period t is given by

Jµt (x) , E
[
ατµ(t)−tg(xτµ(t))

∣∣∣ xt = x
]
,

where τµ(t) is the stopping time τµ(t) , min {s ≥ t : µs(xs) = STOP}. Our goal is to find a policy
µ that simultaneously maximizes the value function Jµt (x) for all t and x. We will denote such an
optimal policy by µ∗ and the corresponding optimal value function by J∗.

In principle, J∗ may be computed via the following dynamic programming backward recursion,
for all x ∈ X and t ∈ T ,

(1) J∗t (x) ,

max
{
g(x), αE

[
J∗t+1(xt+1) | xt = x

] }
if t < d.

g(x) if t = d.

The corresponding optimal stopping policy µ∗ is ‘greedy’ with respect to J∗ and given by

(2) µ∗t (x) ,

CONTINUE if t < d and g(x) < αE[J∗t+1(xt+1) | xt = x],

STOP otherwise.

2.1. The Martingale Duality Approach

We begin by defining the martingale difference operator ∆. The operator ∆ maps a function
V ∈ S1 to the function ∆V : X ×X → R according to (∆V )(x1, x0) , V (x1)− E[V (x1)|x0]. Given
an arbitrary function J ∈ P, define the process

Mt ,
t∑

s=1
αs(∆Js)(xs, xs−1), ∀ t ∈ T .

Then, M is a martingale adapted to the filtration F . Hence, we view ∆ as a projection onto the
space of martingale differences.

Next, we define for each t ∈ T , the martingale duality upper bound operator Ft : P → St
according to:

(FtJ)(x) , E

 max
t≤s≤d

αs−tg(xs)−
s∑

p=t+1
αp−t∆Jp(xp, xp−1)

 ∣∣∣∣∣∣ xt = x

 .
Finally, we define J∗ ∈ P according to J∗(x, t) , J∗t (x). We are now ready to state the following

key lemma, due to Rogers (2002) and Haugh and Kogan (2004). A proof is provided in Section A.1
of the online supplement (Desai et al., 2011b) for completeness.

Lemma 1 (Martingale Duality).

(i) (Weak Duality) For any J ∈ P and all x ∈ X and t ∈ T , J∗t (x) ≤ FtJ(x).
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(ii) (Strong Duality) For all x ∈ X and t ∈ T , J∗t (x) = FtJ
∗(x).

The above result may be succinctly stated as follows: For any t ∈ T , x ∈ X ,

(3) J∗t (x) = inf
J∈P

FtJ(x).

This is an alternative (and somewhat convoluted) characterization of the optimal value function
J∗. Its value, however, lies in the fact that any J ∈ P yields an upper bound, and evaluating this
upper bound for a given J is for all practical purposes not impacted by the size of X . Indeed, extant
approaches to using the above characterization to produce upper bounds on J∗ use, as surrogates
for J , an approximation of the optimal value function J∗ (see, e.g., Glasserman, 2004). This
approximation can be derived over the course of a regression pricing method of the type introduced
by Longstaff and Schwartz (2001) or Tsitsiklis and Van Roy (2001). We call this the dual value
function approach. Alternatively, an approximating value function corresponding to a sub-optimal
policy (Andersen and Broadie, 2004) can be used, where the policy is typically produced by a
regression pricing method. We call this the dual policy approach.

3. The Pathwise Optimization Method

Motivated by the (in general, intractable) optimization problem (3), we are led to consider the fol-
lowing: what if one chose to optimize over functions J ∈ P̂ ⊂ P, where P̂ is compactly parametrized
and easy to optimize over? Motivated by ADP algorithms that seek approximations to the optimal
value function that are linear combinations of some set of basis functions, we are led to the following
parametrization: Assume we are given a collection of K basis functions Φ , {φ1, φ2, . . . , φK} ⊂ P.
Ideally these basis functions capture features of the state space or optimal value function that are
relevant for effective decision making, but frequently generic selections work well (e.g., all mono-
mials up to a fixed degree). We may then consider restricting attention to functions that are linear
combinations of elements of Φ, i.e., functions of the form

(Φr)t(x) ,
K∑
`=1

r`φ`(x, t), ∀ x ∈ X , t ∈ T .

Here, r ∈ RK is known as a weight vector. Denote this sub-space of P by P̂ and note that P̂
is compactly parameterized by K parameters (as opposed to P, which is infinite dimensional in
general). Setting the starting epoch to t = 0 for convenience, we may rewrite the optimization
problem (3) restricted to P̂ as:

(4) inf
r
F0Φr(x).

We call this problem the pathwise optimization (PO) problem. The lemma below demonstrates
that (4) is, in fact, a convex optimization problem.
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Lemma 2. For every t ∈ T and x ∈ X , the function r 7→ FtΦr(x) is convex in r.

Proof. Observe that, given a fixed (x, t) and as a function of r, FtΦr(x) is a non-negative linear
combination of a set of pointwise suprema of affine functions of r, and hence must be convex as
each of these operations preserves convexity. �

Before devising a practical approach to solving (4), let us reflect on what solving this program
accomplishes. We have devised a means to systematically and, anticipating the developments in
the sequel, practically, find a martingale penalty process within a certain parametrized family of
martingales. To appreciate the value of this approach, we note that it is guaranteed, by construction,
to produce tighter upper bounds on price than any dual value function methods derived from value
function approximations that are within the span of the same basis function set. These latter
approximations are analogous to what is typically found using regression methods of the type
proposed by Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001).1

Now, from a practical perspective, the optimization problem (4) is an unconstrained mini-
mization of a convex function over a relatively low-dimensional space. Algorithmically, the main
challenge is evaluating the objective, which is the expectation of a functional over paths in a high-
dimensional space. We will demonstrate that this can be efficiently approximated via sampling.

3.1. Solution via Sampling

Consider sampling S independent outer sample paths of the underlying Markov process starting at
some given state x0; denote path i by x(i) ,

{
x

(i)
s , s ∈ T

}
for i = 1, 2, . . . , S. Given a fixed weight

vector r and initial state x0, define a sampled approximation to the upper bound F0Φr(x0) by

(5) F̂S0 Φr(x0) , 1
S

S∑
i=1

max
0≤s≤d

αsg(x(i)
s

)
−

s∑
p=1

αp∆(Φr)p
(
x(i)
p , x

(i)
p−1
) .

By the strong law of large numbers, almost surely, F̂S0 Φr(x0) → F0Φr(x0), as S → ∞. This
suggests F̂S0 Φr(x0) as a useful proxy for the objective in the pathwise optimization problem (4).

However, consider the quantities that appear in the left-hand side of (5),

∆(Φr)p
(
x(i)
p , x

(i)
p−1
)

= (Φr)p(x(i)
p )− E

[
(Φr)p(xp)

∣∣∣ xp−1 = x
(i)
p−1

]
.

The expectation in the above expression may, in certain cases, be computed in closed form (see, e.g.,
Glasserman and Yu, 2002; Belomestny et al., 2009). More generally, however, in order to achieve a
tractable objective, we can instead replace the conditional expectation by its empirical counterpart.
In particular, we generate I independent inner samples

{
x

(i,j)
p , j = 1, . . . , I

}
, conditional on xp−1 =

1Strictly speaking, the regression pricing approaches of Longstaff and Schwartz (2001) and Tsitsiklis and Van
Roy (2001) seek linearly parameterized approximations to the optimal continuation value function, as is described
in Section 4. However, the same ideas could easily be applied to find linearly parameterized approximations to the
optimal value function.
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x
(i)
p−1. In other words, these inner samples are generated according to the one-step transition

distribution P
(
x

(i)
p−1, ·

)
. Then, consider the approximation

(6) ∆̂(Φr)p
(
x(i)
p , x

(i)
p−1
)
, (Φr)p(x(i)

p )− 1
I

I∑
j=1

(Φr)p
(
x(i,j)
p

)
.

Note that, almost surely, ∆̂(Φr)p
(
x

(i)
p , x

(i)
p−1
)
→ ∆(Φr)p

(
x

(i)
p , x

(i)
p−1
)

as I → ∞. This suggests the
nested Monte Carlo approximation

(7) F̂S,I0 Φr(x0) , 1
S

S∑
i=1

max
0≤s≤d

αsg(x(i)
s

)
−

s∑
p=1

αp∆̂(Φr)p
(
x(i)
p , x

(i)
p−1
) ,

to the objective in the pathwise optimization problem (4). Having thus replaced expectations by
their empirical counterparts, we are ready to state a general, implementable, sampled variant of
the optimization problem (4):

(8) inf
r
F̂S,I0 Φr(x).

The following theorem establishes that subject to technical conditions, given a sufficiently large
number of outer sample paths S and one-stage inner samples I, the upper bound achieved by
minimizing the nested Monte Carlo approximation F̂S,I0 Φr(x0) can be made arbitrarily close to
that of the pathwise optimization problem (4):

Theorem 1. Let N ⊂ RK be a compact set. Fix an initial state x0 and ε > 0. Then, almost surely,
if S is sufficiently large, for all I sufficiently large,∣∣∣∣min

r∈N
F0Φr(x0)−min

r∈N
F̂S,I0 Φr(x0)

∣∣∣∣ ≤ ε.
The proof of Theorem 1 is provided in Section A.2 of the online supplement. It relies on

establishing the uniform convergence of F̂S,I0 Φr(x0)→ F0Φr(x0) over all r in the compact set N .2

Now, observe that the sampled optimization problem (7) can be written as

(9)
minimize

r,u

1
S

S∑
i=1

ui

subject to ui +
s∑

p=1
αp∆̂(Φr)p

(
x(i)
p

)
≥ αsg(x(i)

s ), ∀ 1 ≤ i ≤ S, 0 ≤ s ≤ d.

The optimization problem (9) is a linear program (LP) that can be solved with standard commercial
LP solvers. It has K + S variables and S(d + 1) constraints. Since no two variables {ui, uj}

2Note that the restriction of the weight vectors to a compact set is a standard technical assumption in the
theoretical analysis of sample average approximations to optimization problems (see, e.g., Shapiro et al., 2009). In
practice, this bounding set can be chosen sufficiently large so as to be likely to include the optimal solution of the
unconstrained pathwise optimization problem (4), or it can simply be omitted.
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with i 6= j appear in the same constraint, it is easy to see that the Hessian corresponding to a
logarithmic barrier function for the problem has block arrow structure. Inverting this matrix will
require O(K2S) floating point operations (see, e.g., Appendix C, page 675, Boyd and Vandenberghe,
2004). Consequently, one may argue that the complexity of solving this LP via an interior point
method essentially scales linearly with the number of outer sample paths S.

3.2. Unbiased Upper Bound Estimation

Denote by r̂PO a solution to the sampled pathwise problem (9). An obvious upper bound on J∗0 (x0)
is given by the optimal value of quantity F0Φr̂PO(x0). Since we can’t compute this quantity directly,
it makes sense to approximate it via sampling to obtain an estimated upper bound. Note that the
optimal objective value of the problem (9) itself is a biased upper bound estimate. This bias comes
from the fact that the fact that the expected value of the minimum of the sample average in (9) is
less than the minimum of the expected value and is essentially a consequence of Jensen’s inequality
(see, e.g., Glasserman, 2004, Section 8.2). In order to obtain an unbiased upper bound estimate,
given r̂PO, we use a second, independent Monte Carlo procedure to estimate an upper bound as
follows:

1. Generate a second set of S outer sample paths, each with I inner samples, obtained indepen-
dently of the samples used in solving (9).

2. Compute the sampled martingale differences associated with value function approximation
Φr̂PO using (6), with the new set of samples. As discussed by Glasserman (2004, Section 8.7,
pg. 473), since (6) involves an an unbiased estimate of the conditional expectation, this
expression indeed yields a martingale difference.

3. Using the new sample paths and the new sampled martingale differences, compute the quan-
tity

(10) 1
S

S∑
i=1

max
0≤s≤d

αsg(x(i)
s

)
−

s∑
p=1

αp∆̂(Φr̂PO)p
(
x(i)
p , x

(i)
p−1
) .

By Lemma 1, the expected value of (10) is an upper bound on the optimal value. By the
strong law of large numbers, (10) will thus converge to an upper bound as S → ∞. Finally,
the central limit theorem can be applied to compute confidence intervals for the upper bound
estimator of (10).

3.3. Lower Bounds and Policies

The PO method generates upper bounds on the performance of an optimal policy. We are also
interested in generating good stopping policies, which, in turn, will yield lower bounds on opti-
mal performance. Here, we describe a method that does so by computing a continuation value
approximation.
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In particular, for 0 ≤ t < d and xt ∈ X , denote by C∗t (xt) the optimal continuation value, or,
the best value the can be achieved by any policy at time t and state xt that does not immediately
stop. Mathematically,

C∗t (xt) , αE
[
J∗t+1(xt+1)

∣∣xt] .
Note that the optimal policy µ∗ can be expressed succinctly in terms of C∗ via

(11) µ∗t (x) ,

CONTINUE if t < d and g(x) < C∗t (x),

STOP otherwise,

for all t ∈ T and x ∈ X . In other words, µ∗ decides to stop or not by acting greedily using C∗ to
assess the value of not stopping. Inspired by this, given a good approximation C̃ to the optimal
continuation value, we can attempt to construct a good policy by replacing C∗ with C̃ in (11).

Now, given a solution to (9), r̂PO, we can generate upper bounds on continuation value and
regress these against basis functions to generate a continuation value approximation. In particular,
it follows from Lemma 1 that

(12) C∗t (xt) ≤ E

 max
t+1≤s≤d

αs−tg(xs)−
s∑

p=t+2
αp−t∆(Φr̂PO)p(xp, xp−1)

∣∣∣∣∣∣ xt
 ,

for all 0 ≤ t < d and xt ∈ X . Thus, at time t along the ith sample path, a point estimate of an
upper bound on C∗t

(
x

(i)
t

)
is given by

c̄
(i)
t , max

t+1≤s≤d
αs−tgs

(
x(i)
s

)
−

s∑
p=t+2

αp−t
{

(Φr̂PO)p
(
x(i)
p

)
− Ê

[
(Φr̂PO)p(xp)

∣∣∣x(i)
p−1

]}
.

For each 0 ≤ t < d−1, the values
{
c̄

(i)
t , 1 ≤ i ≤ S

}
can now be regressed against basis functions

to obtain a continuation value approximation. In particular, defining a set of K basis functions of
the state xt, Ψt , {ψ1,t, ψ2,t, . . . , ψK,t} ⊂ St, we can consider linear combinations of the form

(Ψtκt)(x) ,
K∑
`=1

κ`,tψ`,t(x), ∀ x ∈ X ,

where κt ∈ RK is a weight vector.3 The weight vectors {κt, 0 ≤ t < d} can be computed efficiently
in a recursive fashion as follows:

1. Iterate backward over times t = d− 1, d− 2, . . . , 0.

2. For each sample path 1 ≤ i ≤ S, we need to compute the continuation value estimate c̄(i)
t . If

3In our experimental work we used ψ`,t(·) = φi(·, t). In other words, we used the same basis function architecture
to approximate continuation values as were used for value functions.
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t = d− 1, this is simply c̄(i)
d−1 = αg

(
x

(i)
d

)
. If t < d− 1, this can be computed recursively as

c̄
(i)
t = αmax

{
g
(
x

(i)
t+1
)
, c̄

(i)
t+1 − α

(
(Φr̂PO)t+2

(
x

(i)
t+2
)
− Ê

[
(Φr̂PO)t+2(xt+2)

∣∣∣x(i)
t+1

])}
.

3. Compute the weight vector κt via the regression

κt ∈ argmin
κ

1
S

S∑
i=1

(
Ψtκ

(
x

(i)
t

)
− c̄(i)

t

)2
.

We may then use the sub-optimal policy that is greedy with respect to the continuation value
approximation given by Ψtκt, for each 0 ≤ t ≤ d− 1.

Observe that, at a high-level, our algorithm is reminiscent of the regression pricing approach
of Longstaff and Schwartz (2001). Both methods proceed backward in time over a collection of
sample paths, regressing basis functions against point estimates of continuation values. Longstaff
and Schwartz (2001) use point estimates of lower bounds derived from sub-optimal future policies.
We, on the other had, use point estimates of upper bounds derived from the PO linear program
(9). As we shall see in Section 4, despite the similarities, the PO-derived policy can offer significant
improvements in practice.

4. Computational Results

In this section, we will illustrate the performance of the PO method versus a collection of com-
petitive benchmark algorithms in numerical experiments. We begin by defining the benchmark
algorithms in Section 4.1. In Section 4.2, we define the problem setting, which is that of pricing a
high-dimensional Bermudan option. Implementation details such as the choice of basis functions
and the state sampling parameters are given in Section 4.3. Finally, the results are presented in
Section 4.4.

4.1. Benchmark Methods

The landscape of techniques available for pricing high-dimensional options is rich; a good overview
of these is available from Glasserman (2004, Chapter 8). We consider the following benchmarks,
representative of mainstream methods, for purposes of comparison with the PO method:

• Lower Bound Benchmark. The line of work developed by Carriere (1996), Tsitsiklis and Van
Roy (2001), and Longstaff and Schwartz (2001) seeks to produce approximations to the opti-
mal continuation value function. These approximations are typically weighted combinations
of pre-specified basis functions that are fit via a regression-based methodology. The greedy
policies with respect to these approximations yield lower bounds on price.

We generate a continuation value approximation Ĉ using the Longstaff and Schwartz (2001)
(LS) method. Details are available from Glasserman (2004, Chapter 8, pg. 461). We simulate
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the greedy policy with respect to this approximation to generate lower bounds. We refer to
this approach as LS-LB.

• Upper Bound Benchmarks. The martingale duality approach, originally proposed for this
task by Rogers (2002) and Haugh and Kogan (2004) is widely used for upper bounds. Recall
from Section 2.1 that a martingale for use in the duality approach is computed using the
optimal value function, and extant heuristics use surrogates that approximate the optimal
value function. We consider the following surrogates:

1. DVF-UB: This is a dual value function approach that derives a value function approxi-
mation from the continuation value approximation of the LS-LB regression pricing pro-
cedure. In particular, given the LS-LB continuation value approximation, Ĉ, we generate
a value function approximation V̂ according to

V̂t(x) , max{g(x), Ĉt(x)}, ∀ x ∈ X , t ∈ T .

This approach is described by Glasserman (2004, Section 8.7, pg. 473).

2. DP-UB: This is a dual policy approach that derives a value function approximation from
the policy suggested by the LS-LB regression pricing procedure. In particular, let µ̂
denote the greedy policy derived from the LS-LB continuation value approximation Ĉ,
i.e., for all states x and times t,

µ̂t(x) ,

CONTINUE if t < d and g(x) < Ĉt(x),

STOP otherwise.

Define V µ̂
t (x) as the value of using the policy µ̂ starting at state x in time t. The quantity

V µ̂
t (x) can be computed via an inner Monte Carlo simulation over paths that start at time
t in state x. This can then be used as a value function surrogate to derive a martingale
for the duality approach. This approach was introduced by Andersen and Broadie (2004)
and a detailed description is available from Glasserman (2004, Section 8.7, pg. 474–475).

The LS-LB, DVF-UB, and DP-UB methods described above will be compared with upper bounds
computed with the PO method (PO-UB) and their corresponding lower bounds (PO-LB), as de-
scribed in Section 3. Further implementation details for each of these techniques will be provided
in Section 4.3.

4.2. Problem Setting

We consider a Bermudan option over a calendar time horizon T defined on multiple assets. The
option has a total of d exercise opportunities at calendar times {δ, 2δ, . . . , δd}, where δ , T/d. The
payoff of the option corresponds to that of a call option on the maximum of n non-dividend paying
assets with an up-and-out barrier. We assume a Black-Scholes framework, where risk-neutral asset
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price dynamics for each asset j are given by a geometric Brownian motion, i.e., the price process{
P js , s ∈ R+

}
follows the stochastic differential equation

(13) dP js = rP js ds+ σjP
j
s dW

j
s .

Here, r is the continuously compounded risk-free interest rate, σj is the volatility of asset j, W j
s is

a standard Brownian motion, and the instantaneous correlation of each pair W j
s and W j′

s is ρjj′ .
Let {pt, 0 ≤ t ≤ d} be the discrete time process obtained by sampling Ps at intervals of length
δ, i.e., pjt , P jδt for each 0 ≤ t ≤ d. On the discrete time scale indexed by t, the possible exercise
times are given by T , {1, 2, . . . , d}, and the discount factor is given by α , e−rδ.

The option is ‘knocked out’ (and worthless) at time t if, at any of the times preceding and
including t, the maximum of the n asset prices exceeded the barrier B. We let yt ∈ {0, 1} serve
as an indicator that the option is knocked out at time t. In particular, yt = 1 if the option has
been knocked out at time t or at some time prior, and yt = 0 otherwise. The {yt} process evolves
according to

yt =


I{max1≤j≤n pj0≥B} if t = 0,

yt−1 ∨ I{max1≤j≤n pjt≥B} otherwise.

A state in the associated stopping problem is then given by the tuple x , (p, y) ∈ Rn ×{0, 1}, and
the payoff function is defined according to

g(x) ,
(

max
j

pi(x)−K
)+ (

1− y(x)
)
.

where y(x) and pj(x), respectively, are the knock-out indicator and the jth price coordinates of the
composite state x.

4.3. Implementation Details

Basis Functions. We use the following set of n+ 2 basis functions:

φ1(x, t) =
(
1− y(x)

)
; φ2(x, t) = g(x); φj+2(x, t) =

(
1− y(x)

)
pj(x), ∀ 1 ≤ j ≤ n.

Described succinctly, our basis function architecture consists of a constant function, the payoff
function, and linear functions of each asset price, where we have further ensured that each basis
function takes the value zero in states where the option is knocked out. This is because zero is
known to be the exact value of the option in such states. Note that many other basis functions
are possible. For instance, the prices of barrier options on each of the individual stocks seems like
a particularly appropriate choice. We have chosen a relatively generic basis architecture, however,
in order to disentangle the study of the pricing methodology from the goodness of a particular
tailor-made architecture.
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State Sampling. Both the PO method as well as the benchmark methods require sampling states
from the underlying Markov chain, however their requirements tend to be different. In particular,
LS-LB procedure requires only outer sample paths, DVF-UB and PO-UB require outer sample paths
with shallow inner sampling (next state samples) and DP-UB requires outer sample paths with
deep inner sampling (sample paths simulated till the option expires or gets exercised). In general,
it may be possible to judiciously choose the sampling parameters so as to, for example, optimize the
accuracy of a method given a fixed computational budget, and that such a good choice of parameters
will likely vary from method to method. We have not attempted such an optimization. For LS-LB
and DP-UB, we have chosen parameters that generally follow those chosen by Andersen and Broadie
(2004) and for DVF-UB and PO-UB, parameters were chosen so that the resulting standard error
is comparable to DP-UB. In this sense, our choice of parameters represents an ‘apples-to-apples’
comparison. Our parameter settings are listed below:

• LS-LB: This approach requires sample paths of the underlying Markov process to run the
regression procedure. We used 200,000 sample paths for the regression. The greedy policy
with respect to the regressed continuation values was evaluated over 2,000,000 sample paths.

• PO-UB: In the notation of Section 3.1, we solved the LP (9) using S = 30,000 outer sample
paths, and I = 500 next state inner samples for one-step expectation computations. Given
a solution, r̂PO, we evaluated F0Φr̂PO(x0) using a distinct set of S = 30,000 outer sample
paths, with I = 500 inner samples for one-step expectations.

• PO-LB: The policy here is constructed using computations entailed in the PO-UB method.
We evaluate this policy to compute the lower bound using the same set of 2,000,000 sample
paths used for the evaluation of LS-LB above.

• DVF-UB: As discussed earlier, a value function estimate V̂ is obtained from the continuation
value estimates of the regression procedure used for LS-LB above. We then estimate the DVF-
UB upper bound, F0V̂ (x0), using the same set of 30,000 sample paths and one step samples
in the evaluation of PO-UB above.

• DP-UB: As discussed earlier, this approach uses the value function approximation V µ̂. We
obtain continuation value estimates Ĉ via the regression computation for LS-LB. We estimate
the upper bound F0V

µ̂(x0) using 3,000 sample paths;4 we evaluate V µ̂ at each point along
these sample paths using 10,000 inner sample paths.

4.4. Results

In the numerical results that follow, the following common problem settings were used:5

4Andersen and Broadie (2004) used 1,500 sample paths. We chose the larger number to obtain standard errors
comparable to the other approaches in the study.

5Note that while all the parameter choices here are symmetric across assets, and hence the assets are identical in
the problems we consider. However, this symmetry was not exploited in our implementations.
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• strike price: K = 100; knock-out barrier price: B = 170; time horizon T = 3 years

• risk-free rate: r = 5% (annualized); volatility: σj = 20% (annualized)

In Table 1, we see the upper and lower bounds produced by the PO approach and the benchmark
schemes described above. Here, we vary the number of assets n and the initial price pj0 = p̄0 common
to all assets, and the assets are uncorrelated (ρjj′ = 0). Standard errors are in parentheses. We
report average upper and lower bounds on the option price over 10 trials. In Section C of the online
supplement, we provide additional results where the number of exercise opportunities d and the
asset price correlation matrix ρ are varied. Taken together, we make the following broad conclusions
from these experimental results:

• Lower Bound Quality. The PO-LB method provides substantially better exercise policies
than does the LS-LB procedure and consequently tighter lower bounds. The exercise policies
provide an improvement of over 100 basis points in most of the experiments; in some cases
the gain was as much as 200 basis points.

• Upper Bound Quality. The DVF-UB upper bounds are the weakest while the DP-UB upper
bounds are typically the strongest. The gap between these two bounds was typically on
the order of 100 basis points. The upper bound produced via the PO-UB method was of
intermediate quality, but typically recovered approximately 60% of the gap between the DVF-
UB and DP-UB upper bounds.

Table 2 summarizes relative computational requirements of each method. Note that, for the
dual upper bound methods, we report the time to compute both upper and lower bounds. This is
for consistency, since for the DVF-UB and DP-UB methods, the LS-LB continuation value estimate
is required and must be computed first. The running times are typically dominated by sampling
requirements, and can be broken down as follows:

• LS-LB: The LS-LB method requires only the generation of outer sample paths and is thus the
fastest.

• LS-LB + DVF-UB: Along each outer sample path, the DVF-UB method requires generation of
inner samples for the next state.

• PO-LB + PO-UB: For the PO-UB method, the structure of the LP (9) permits extremely effi-
cient solution via an interior point method as discussed in Section 3.1; the computation time
is dominated by sampling rather than optimization. Qualitatively, the sampling requirements
for the PO-UB method are the same as that of DVF-UB: next state inner samples are needed.
However, in order to generate an unbiased estimate, the PO-UB method requires one set of
sample paths for optimization, and a second set of sample paths for evaluation of the upper
bound estimate. Hence, PO-UB takes about twice the computational time of DVF-UB.

• LS-LB+DP-UB: The inner simulation requirements for DP-UB result in that method requiring
an order of magnitude more time than either of the other upper bound approaches. This is
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(a) Upper and lower bounds, with standard errors.

p̄0 LS-LB S.E. PO-LB S.E. DP-UB S.E. PO-UB S.E. DVF-UB S.E.
n = 4 assets

90 32.754 (0.005) 33.011 (0.011) 34.989 (0.014) 35.117 (0.026) 35.251 (0.013)
100 40.797 (0.003) 41.541 (0.009) 43.587 (0.016) 43.853 (0.027) 44.017 (0.011)
110 46.929 (0.003) 48.169 (0.004) 49.909 (0.016) 50.184 (0.017) 50.479 (0.008)

n = 8 assets
90 43.223 (0.005) 44.113 (0.009) 45.847 (0.016) 46.157 (0.037) 46.311 (0.015)

100 49.090 (0.004) 50.252 (0.006) 51.814 (0.023) 52.053 (0.027) 52.406 (0.014)
110 52.519 (0.005) 53.488 (0.007) 54.890 (0.020) 55.064 (0.019) 55.513 (0.005)

n = 16 assets
90 49.887 (0.003) 50.885 (0.006) 52.316 (0.020) 52.541 (0.010) 52.850 (0.011)

100 52.879 (0.001) 53.638 (0.004) 54.883 (0.020) 55.094 (0.016) 55.450 (0.013)
110 54.620 (0.002) 55.146 (0.003) 56.201 (0.009) 56.421 (0.016) 56.752 (0.007)

(b) Relative values of bounds.

p̄0 (PO-LB)− (LS-LB) (%) (PO-UB)− (DP-UB) (%) (DVF-UB)− (PO-UB) (%)
n = 4 assets

90 0.257 0.78% 0.127 0.39% 0.134 0.41%
100 0.744 1.82% 0.266 0.65% 0.164 0.40%
110 1.240 2.64% 0.275 0.59% 0.295 0.63%

n = 8 assets
90 0.890 2.06% 0.310 0.72% 0.154 0.36%

100 1.162 2.37% 0.239 0.49% 0.353 0.72%
110 0.970 1.85% 0.174 0.33% 0.450 0.86%

n = 16 assets
90 0.998 2.00% 0.225 0.45% 0.308 0.62%

100 0.759 1.43% 0.210 0.40% 0.356 0.67%
110 0.526 0.96% 0.220 0.40% 0.331 0.61%

Table 1: A comparison of the lower and upper bound estimates of the PO and benchmarking methods, as
a function of the common initial asset price pj

0 = p̄0 and the number of assets n. For each algorithm, the
mean and standard error (over 10 independent trials) is reported. The number of exercise opportunities
was d = 54 and the common correlation was ρjj′ = ρ̄ = 0. Percentage relative values are expressed
relative to the LS-LB lower bound.
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method time
(normalized)

LS-LB (lower bound only) 1.0
LS-LB + DVF-UB (upper and lower bounds) 3.6
PO-LB + PO-UB (upper and lower bounds) 6.8
LS-LB + DP-UB (upper and lower bounds) 51.7

Table 2: Relative time values for different algorithms for the stopping problem setting of Table 1 with
n = 16 assets. Here, all times are normalized relative to that required for the computation of the LS-
LB lower-bound . All computations were single-threaded and performed on an Intel Xeon E5620 2.40
GHz CPU with 64 GB RAM. The PO-UB linear program was solved with IBM ILOG CPLEX 12.1.0
optimization software.

because along each outer sample path, inner samples not just for one time step, but for an
entire trajectory until the option is knocked-out or exercised.

To summarize, these experiments demonstrate the two primary merits to using the PO method
to produce upper and lower bounds:

1. The PO-UB method produces upper bounds that are superior to the DVF-UB method, and,
in many cases, of comparable quality to the state-of-the-art DP-UB method. However, the
PO-UB method requires an order of magnitude less computational effort than the DP-UB
approach, and is highly practical.

2. The PO-LB method produces substantially superior exercise policies relative to the LS-LB
method. These policies are effectively a by-product of the upper bound computation.

5. Theory

In this section, we will seek to provide theoretical guarantees for the martingale penalty approach
in general as well as specific guarantees for the PO method.

Note that our setting here will be that of an optimal stopping problem that is discounted,
stationary, and has an infinite horizon. This will yield us considerably simpler notation and easier
statement of results, and is also consistent with other theoretical literature on ADP for optimal
stopping problems (e.g., Tsitsiklis and Van Roy, 1999; Van Roy, 2010). Many of our results in the
aforementioned setting have finite horizon, non-stationary analogues and the intuition derived from
these results carries over to the non-stationary setting. In particular, we establish two theorems
for the stationary setting and outline their non-stationary analogues in Section B of the online
supplement. Our stationary setting is introduced in Section 5.1.

Our first class of theoretical results are approximation guarantees. These guarantee the quality
of an upper bound derived from the martingale duality approach, relative to error in approximating
the value function. A crucial parameter for our bounds measures the ‘predictability’ of a Markov
chain; this is introduced in Section 5.2. In Section 5.4, we develop an approximation guarantee
that applies generically to martingale duality upper bounds, and discuss the structural properties of
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optimal stopping problems that impact this bound. In Section 5.5, we develop a relative guarantee
that is specific to the PO method; this guarantees the quality of the PO upper bound relative to the
best approximation of the true value function within the span of the basis functions. In Section 5.6,
we compare our guarantees to similar guarantees that have been developed for ADP lower bounds.

Our second class of theoretical results are comparison bounds, developed in Section 5.7. Here,
we compare the upper bounds arising to the PO approach to other upper bounds which have been
developed using ADP techniques based in linear programming. In this case, the upper bounds can
be compared on a problem instance by problem instance basis, and we show that the PO method
dominates the alternatives.

5.1. Preliminaries

Consider a discrete-time Markov chain with state xt ∈ X ⊂ Rn at each time t ∈ {0, 1, . . .}.
Denote by P the transition kernel of the chain. Assume that the chain is ergodic, with stationary
distribution π. Let F , {Ft} be the natural filtration generated by the process {xt}, i.e., for each
time t, Ft , σ(x0, x1, . . . , xt).

Given a function g : X → R, we define the payoff of stopping when the state is xt as g(xt). We
define P to be the set6 of real-valued functions V : X → R of the state space with Eπ[V (x0)2] <∞.
Here, Eπ denotes expectation with respect to the stationary distribution. We assume that g ∈ P.
We are interested in maximizing the expected discounted payoff of stopping. In particular, given
an initial state x ∈ X , define the optimal value function

J∗(x) , sup
τ

E
[
ατg(xτ ) | x0 = x

]
.

Here, the supremum is taken over all F-adapted stopping times τ , and α ∈ [0, 1) is the discount
factor.

We will abuse notation to also consider the transition kernel as a one-step expectation operator
P : P → P, defined by

(PJ)(x) , E
[
J(xt+1) | xt = x

]
, ∀ x ∈ X .

Given a function J ∈ P, define the Bellman operator T : P → P by

(TJ)(x) , max
{
g(x), αPJ(x)

}
, ∀ x ∈ X .

Observe that the optimal value function is the unique fixed point TJ∗ = J∗.
In order to define the pathwise optimization approach in this setting, we first define the martin-

gale difference operator ∆. The operator ∆ maps a function J ∈ P to a function ∆J : X ×X → R,
where

∆J(xt, xt−1) , J(xt)− PJ(xt−1), ∀ xt−1, xt ∈ X .
6Note that earlier we defined P to be the set of real-valued functions of state and time. In the stationary infinite

horizon setting, it suffices to consider only functions of state.
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Observe that, for any J , the process {∆J(xt, xt−1), t ≥ 1} is a martingale difference sequence.
Now, for each J , the martingale duality upper bound operator F : P → P is given by

(FJ)(x) , E
[

sup
s≥0

αsg(xs)−
s∑
t=1

αt∆J(xt, xt−1)
∣∣∣∣∣ x0 = x

]
, ∀ x ∈ X .

The following lemma establishes that the the F operator yields dual upper bounds to the original
problem, the proof follows along the lines of the proof of Lemma 1, found in Section A.1 of the
online supplement, and is omitted:

Lemma 3 (Infinite Horizon Martingale Duality).

(i) (Weak Duality) For any function J ∈ P and all x ∈ X , J∗(x) ≤ FJ(x).

(ii) (Strong Duality) For all x ∈ X , J∗(x) = FJ∗(x).

In order to find a good upper bound, we begin with collection of K basis functions

Φ , {φ1, φ2, . . . , φK} ⊂ P.

Given a weight vector r ∈ RK , define the function Φr ∈ P as the linear combination

(Φr)(x) ,
k∑
`=1

r`φ`(x), ∀ x ∈ X .

We will seek to find functions within the span of the basis Φ which yields the tightest average upper
bound. In other words, we will see to solve the optimization problem

(14) minimize
r

Eπ
[
FΦr(x0)

]
.

As before, this optimization problem is an unconstrained minimization of a convex function.

5.2. Predictability

Our approximation guarantees incorporate a notion of predictability of the underlying Markov
chain, which we will define in this section. First, we begin with some notation. For functions
J, J ′ ∈ P, define the inner product

〈J, J ′〉π , Eπ
[
J(x0)J ′(x0)

]
.

Similarly, define the norms

‖J‖p,π ,
(
Eπ
[
|J(x0)|p

])1/p
, ∀ p ∈ {1, 2}, ‖J‖∞ , sup

x∈X
|J(x)|,
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and define Varπ(J) to be the variance of J(x) under the distribution π, i.e.,

Varπ(J) , Eπ
[(
J(x0)− Eπ [J(x0)]

)2]
,

and define the one-step conditional variance

Var
(
J(x1) | x0

)
, E

[(
J(x1)− E [J(x1)|x0]

)2 ∣∣∣ x0
]
.

The following quantity, a property of the transition kernel P , will be important for our analysis:

(15) λ(P ) = sup
J∈P, J 6=0

(
Eπ
[
Var

(
J(x1) | x0

)]
Varπ(J)

)1/2

.

In order to interpret λ(P ), note that, by the law of total variance and the fact that π is the
stationary distribution, for J ∈ P,

Eπ
[
Var

(
J(x1) | x0

)]
= Varπ

(
J(x1)

)
−Varπ

(
E
[
J(x1) | x0

])
= Varπ

(
J(x0)

)
−Varπ

(
E
[
J(x1) | x0

])
≤ Varπ(J),

(16)

thus λ(P ) ∈ [0, 1]. By the definition (15), for all J ∈ P,

Eπ
[
Var

(
J(x1) | x0

)]
≤ λ(P )2 Varπ(J).

Suppose that λ(P ) ≈ 0. Then, for all J ,

Eπ
[
Var

(
J(x1) | x0

)]
� Varπ(J).

In this case, for all J , the average uncertainty of J(x1) conditioned on the previous state x0 is much
less than the unconditional uncertainty of J(x1), i.e., when x1 is distributed according to its prior
distribution, which is the stationary distribution. For such chains, the state of the Markov chain x0

gives significant information about all functionals of the subsequent process state x1 and thus, for
all intents and purposes, significant information about the subsequent state x1 itself. Alternatively,
suppose that λ(P ) ≈ 1. Then, there exists some J such that

Eπ
[
Var

(
J(x1) | x0

)]
≈ Varπ(J).

In this case, knowledge of the state x0 does not meaningfully reduce the uncertainty of J(x1).
Motivated by these cases, we interpret λ(P ) as a measure of predictability, and we will call Markov
chains where λ(P ) ≈ 0 predictable.

Predictability is important because it provides a bound on the operator norm of the martingale
difference operator ∆. When a Markov chain is predictable, it may be possible to approximate a
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particular martingale difference, say ∆J∗, by some other martingale difference, say ∆J , even if J∗

is not particularly well approximated by J . This is captured in the following lemma:

Lemma 4. Given functions J, J ′ ∈ P, define a distance between the martingale differences ∆J , ∆J ′

by ∥∥∆J −∆J ′
∥∥

2,π ,

√
Eπ
[
|∆J(x1, x0)−∆J ′(x1, x0)|2

]
.

Then, ∥∥∆J −∆J ′
∥∥

2,π ≤ λ(P )
√

Varπ(J − J ′).

Proof. Set W , J − J ′, and observe that

‖∆W‖22,π = Eπ
[(
W (x1)− E[W (x1)|x0]

)2] = Eπ
[
Var

(
W (x1) | x0

)]
≤ λ(P )2 Varπ(W ).

The result follows. �

5.3. Example of a Predictable Chain

In this section, we will provide an alternative, spectral characterization of predictability. We will
use this characterization to illustrate a naturally arising example of a predictable Markov chain,
namely, a chain where the calendar time between transitions is short.

To begin, recall that P is the transition kernel of the Markov chain, that we also interpret as a
one-step expectation operator. Define P ∗ to be the adjoint of P with respect to the inner product
〈·, ·〉π. In the case of a finite or countable state space, P ∗ can be written explicitly according to

P ∗(y, x) , π(x)P (x, y)
π(y) , ∀ x, y ∈ X .

Note that P ∗ is the time-reversal of P ; it corresponds to the transition kernel of the Markov chain
running backwards in time.

The following lemma, the proof of which is provided in Section A.3 of the online supplement,
provides a spectral characterization of the predictability of P :

Lemma 5. Suppose that the state space X is finite. Then,

λ(P ) =
√
ρ(I − P ∗P ),

where ρ(·) is the spectral radius. Further, if P is time-reversible (i.e., if P = P ∗), then

λ(P ) =
√
ρ(I − P 2) ≤

√
2ρ(I − P ).

Observe that the matrix P ∗P , known as a multiplicative reversiblization (Fill, 1991), corresponds
to a transition one step backward in time in the original Markov chain, followed by an independent
step forward in time. Suppose for the moment that the Markov chain is reversible, i.e., that P = P ∗.
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Then, by Lemma 5, λ(P ) will be small when I ≈ P , or, the state xt+1 at time t+ 1 in the Markov
chain is approximated well by the current state xt. In other words, the Markov chain is closer to a
deterministic process.

The spectral analysis of I − P ∗P is also important in the study of mixing times, or, the rate of
convergence of a Markov chain to stationarity. In that context, one is typically concerned with the
smallest non-zero eigenvalue (see, e.g., Montenegro and Tetali, 2006); informally, if this is large, the
chain is said to be fast mixing. In the present context, we are interested in the largest eigenvalue,
which is small in the case of a predictable chain. Thus, our predictable chains necessarily mix
slowly.

One class of predictable Markov chains occurs when the calendar time scale between successive
stopping opportunities is small:

Example 1 (Sampled State Dynamics). Suppose that the Markov chain {xt} takes the form xt = ztδ

for all integers t ≥ 0, where δ > 0 and {zs ∈ X , s ∈ R+} is a continuous time Markov chain
with generator Q over a finite state space X . In other words, {xt} are discrete time samples of
an underlying continuous time chain over time scales of length δ. In this case, the transition
probabilities take the form P = eQδ and P ∗ = eQ

∗δ. As δ → 0,

λ(P ) =
√
ρ (I − eQ∗δeQδ) =

√
δρ(Q∗ +Q) + o

(√
δ
)
→ 0.

5.4. Upper Bound Guarantees

Lemma 3 establishes that, given a function J ∈ P, FJ is an upper bound on J∗, and that if J = J∗,
this upper bound is tight. Hence, it seems reasonable to pick J to be a good approximation of the
optimal value function J∗. In this section, we seek to make this intuition precise. In particular,
we will provide a guarantee on the quality of the upper bound, that is, a bound on the distance
between FJ and J∗, as a function of the quality of the value function approximation J and other
structural features of the optimal stopping problem.

The following lemma is provides the key result for our guarantee. It characterizes the difference
between two upper bounds FJ and FJ ′ that arise from two different value function approximations
J, J ′ ∈ P. The proof is provided in Section A.3 of the online supplement.

Lemma 6. For any pair of functions J, J ′ ∈ P,

‖FJ − FJ ′‖2,π ≤
R(α)α√

1− α
λ(P )

√
Varπ(J − J ′),

where R : [0, 1)→
[
1,
√

5/2
]

is a bounded function given by

R(α) , min
{ 1√

1− α
,

2√
1 + α

}
.

Taking J ′ = J∗ in Lemma 6, we immediately have the following:
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Theorem 2. For any function J ∈ P,

(17) ‖FJ − J∗‖2,π ≤
R(α)α√

1− α
λ(P )

√
Varπ(J − J∗).

Theorem 2 provides a guarantee on the upper bound FJ arising from an arbitrary function J .
It is reminiscent of the upper bound guarantee of Chen and Glasserman (2007). In the present
(discounted and infinite horizon) context, their upper bound guarantee can be stated as

(18) ‖FJ − J∗‖∞ ≤
4α√

1− α2
‖J − J∗‖∞.

It what follows, we will compare these two bounds, as well identify the structural features of the
optimal stopping problem and the function J that lead to a tight upper bound FJ . In particular,
notice that the right-hand side of the guarantee in Theorem 2 can be decomposed into three distinct
components:

• Value Function Approximation Quality. Theorem 2 guarantees that the closer the value
function approximation J is to J∗, the tighter the upper bound FJ will be. Importantly, the
distance between J and J∗ is measured in terms of the standard deviation of their difference.
Under this metric, the relative importance of accurately approximating J∗ in two different
states is commensurate to their relative probabilities. On the other hand, the guarantee (18)
requires a uniformly good approximation of J∗. In a large state space, this can be challenging.

• Time Horizon. Theorem 2 has dependence on the discount factor α. In typical examples,
α ≈ 1, and hence we are most interested in this regime.

One way to interpret α is as defining an effective time horizon. To be precise, consider an
undiscounted stopping problem with the same state dynamics and reward function, but with
a random finite horizon that is geometrically distributed with parameter α. We assume that
the random time horizon is unknown to the decision maker, and that if the process is not
stopped before the end of this time horizon, the reward is zero. This undiscounted, random
but finite horizon formulation is mathematically equivalent to our discounted, infinite horizon
problem. Hence, we define the effective time horizon Teff to be the expected length of the
random finite time horizon, or

(19) Teff ,
1

1− α.

The guarantee of Theorem 2 is O(
√

Teff), i.e., it grows as the square root of the effective
time horizon. This matches (18), as well as the original finite horizon bound of Chen and
Glasserman (2007).

• Predictability. Theorem 2 isolates the dynamics of the Markov chain through the λ(P ) term;
if λ(P ) is small, then the upper bound FJ will be tight. In other words, all else being equal,
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chains that are more predictable yield better upper bounds. In some sense, optimal stopping
problems on predictable Markov chains are closer to deterministic problems to begin with,
hence less care is needed in relaxing non-anticipativity constraints.

The dependence of Theorem 2 on predictability can be interpreted in the sampled state
dynamics of Example 1. In this case, we assume that the transition probabilities of the
Markov chain take the form P = eQδ, where Q is the generator for a continuous time Markov
chain and δ > 0 is the calendar time between successive stopping opportunities. In this
setting, it is natural that the discount factor also scale as a function of the time interval δ,
taking the form α = e−rδ, where r > 0 is a continuously compounded interest rate. Then, as
δ → 0,

R(α)α√
1− α

λ(P ) =

√
2ρ(Q∗ +Q)

r
+ o(1).

In this way, the pre-multiplying constants on the right-hand side of Theorem 2 remain
bounded as the number of stopping opportunities is increased. This is not the case for
(18).

5.5. Pathwise Optimization Approximation Guarantee

The result of Section 5.4 provides a guarantee on the upper bounds produced by the martingale
duality approach given an arbitrary value function approximation J as input. When the value
function approximation J arises from the PO method, we have the following result:

Theorem 3. Suppose that rPO is an optimal solution for (14). Then,

‖FΦrPO − J∗‖1,π ≤
R(α)α√

1− α
λ(P ) min

r

√
Varπ(Φr − J∗).

Proof. Observe that, for any r ∈ RK , by the optimality of rPO and Lemma 3,

‖FΦrPO − J∗‖1,π = Eπ [FΦrPO(x0)− J∗(x0)] ≤ Eπ [FΦr(x0)− J∗(x0)] = ‖FΦr − J∗‖1,π.

Since π is a probability distribution, ‖ · ‖1,π ≤ ‖ · ‖2,π, thus, applying Theorem 2,

‖FΦrPO − J∗‖1,π ≤ ‖FΦr − J∗‖2,π ≤
R(α)α√

1− α
λ(P )

√
Varπ(Φr − J∗).

The result follows after minimizing the right-hand side over r. �

In order to compare Theorems 2 and 3, observe that Theorem 2 provides a guarantee that is a
function of the distance between the value function approximation J and the optimal value function
J∗. Theorem 3, on the other hand, provides a guarantee relative to the distance between the best
possible approximation given the basis functions Φ and the optimal value function J∗. Note that
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it is not possible, in general, to directly compute this best approximation, which is the projection
of J∗ on to the subspace spanned by Φ, since J∗ is unknown to begin with.

5.6. Comparison to Lower Bound Guarantees

It is instructive to compare the guarantees provided on upper bounds by Theorems 2 and 3 to
guarantees that can be obtained on lower bounds derived from ADP methods. In general, the ADP
approach to lower bounds involve identifying approximations to the optimal continuation value
function C∗, which is related to the optimal value function J∗ via

C∗(x) = αE[J∗(xt+1) | xt = x], J∗(x) = max {g(x), C∗(x)}, ∀ x ∈ X .

Given the optimal continuation function C∗, an optimal policy is defined via

µ∗(x) ,

CONTINUE if g(x) < C∗(x),

STOP otherwise.

In other words, µ∗ stops when g(x) ≥ C∗(x).
Similarly, given an approximate continuation value function C, we can define the policy

µ(x) ,

CONTINUE if g(x) < C(x),

STOP otherwise.

The value function Jµ for this policy can be estimated via Monte Carlo simulation. Since J∗ is the
optimal value function, we have that Jµ(x) ≤ J∗(x) for every state x. In other words, Jµ is a lower
bound to J∗.

Analogous to Theorem 2, Tsitsiklis and Van Roy (1999) establish that

(20) ‖J∗ − Jµ‖2,π ≤
1

1− α‖C − C
∗‖2,π.

Given a set of basis functions Φ, there are a number of ways to select a weight vector r so
that the linear function Φr can be used as an approximate continuation value function. Methods
based on approximate value iteration are distinguished by the availability of theoretical guarantees.
Indeed, Van Roy (2010) establishes a result analogous to Theorem 3 for approximate value iteration,
that

(21) ‖J∗ − Jµ‖1,π ≤ ‖J∗ − Jµ‖2,π ≤
L∗

1− α min
r
‖Φr − C∗‖2,π ,

where L∗ ≈ 2.17.
Comparing (20)–(21) to Theorems 2 and 3, we see broad similarities: both sets of results provide

guarantees on the quality of the lower (resp., upper) bounds produced, as a function of the quality
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of approximation of C∗ (resp., J∗). There are key differences, however. Defining the effective
time horizon Teff , (1 − α)−1 as in Section 5.4, the pre-multiplying constants in the lower bound
guarantees are O(Teff), while the corresponding terms in our upper bound guarantees are O(

√
Teff).

Further, Van Roy (2010) establishes that, for any ADP algorithm, a guarantee of the form (21)
that applies over all problem instances must be linear in the effective time horizon. In this way, the
upper bound guarantees of Theorems 2 and 3 have better dependence on the effective time horizon
than is possible for lower bounds, independent of the choice of ADP algorithm. Further, the upper
bound guarantees highlight the importance of a structural property of the Markov chain, namely,
predictability. There is no analogous term in the lower bound guarantees.

5.7. Comparison to Linear Programming Methods

We can compare upper bounds derived from the pathwise method directly to upper bounds derived
from two other approximate dynamic programming techniques.

First, we consider the approximate linear programming (ALP) approach. The ALP approach
to ADP was introduced by Schweitzer and Seidmann (1985) and analyzed and further developed
by de Farias and Van Roy (2003, 2004). ALP is based on the exact LP formulation the Bellman
equation due to Manne (1960). A testament to the success of the ALP approach is the number
of applications it has seen in recent years in large scale dynamic optimization problems. In our
discounted, infinite horizon optimal stopping setting, the ALP approach involves finding a value
function approximation within the span of the basis by solving the optimization program

(22)
minimize

r
Ec
[
Φr(x0)

]
subject to Φr(x) ≥ g(x), ∀ x ∈ X ,

Φr(x) ≥ αE [Φr(xt+1) | xt = x] , ∀ x ∈ X .

Here, c is a positive probability distribution over the state space know as the state-relevance dis-
tribution, it is natural (but not necessary) to take c = π. Note that (22) is a linear program, and
that, for each state x, the pair of linear constraints in (22) are equivalent to the Bellman inequality
Φr(x) ≥ TΦr(x). Denote the set of feasible r by CALP ⊂ RK .

As we shall see momentarily, if r ∈ CALP is feasible for ALP (22), then Φr is a pointwise upper
bound to the optimal value function J∗. The following theorem establishes that the martingale
duality upper bound FΦr is at least as good:

Theorem 4. Suppose r ∈ CALP is feasible for the ALP (22). Then, for all x ∈ X ,

J∗(x) ≤ FΦr(x) ≤ Φr(x).
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Proof. Using Lemma 3 and the definition of the constraint set CALP,

J∗(x) ≤ FΦr(x) = E
[

sup
s≥0

αsg(xs)−
s∑
t=1

αt
(
Φr(xt)− E[Φr(xt) | xt−1]

) ∣∣∣∣∣ x0 = x

]

= E
[

sup
s≥0

αs
(
g(xs)− Φr(xs)

)
+ Φr(x0) +

s−1∑
t=0

αt
(
αE[Φr(xt+1) | xt]− Φr(xt)

) ∣∣∣∣∣ x0 = x

]

≤ E
[

sup
s≥0

Φr(x0)
∣∣∣∣∣ x0 = x

]
= Φr(x).

�

We can interpret the ALP (22) as finding an upper bound in the set {Φr, r ∈ CALP} that is
smallest on average, as measured according to the state-relevance distribution c. Alternatively,
consider solving the pathwise optimization problem

(23) minimize
r

Ec [FΦr(x0)] .

Theorem 4 implies that the resulting martingale duality upper bound will be, on average, at least
as good. In this way, the PO method dominates ALP.

Similarly, the smoothed approximate linear programming (SALP) has been recently introduced
by Desai et al. (2011a). In our present context, this seeks to solve the linear program

(24)

minimize
r,s

Eπ
[
Φr(x0) + 1

1− αs(x0)
]

subject to Φr(x) + s(x) ≥ g(x), ∀ x ∈ X ,
Φr(x) + s(x) ≥ αE [Φr(xt+1) | xt = x] , ∀ x ∈ X ,
s(x) ≥ 0, ∀ x ∈ X .

Observe that (24) is a relaxation of (22) when c = π, that is formed by introducing a vector of slack
variables s ∈ RX . Desai et al. (2011a) argue that this relaxation yields a number of theoretical
benefits relative to the ALP, and demonstrate superior practical performance in a computational
study.

The following lemma allows us to interpret the SALP as an unconstrained convex minimization
problem:

Lemma 7. Given J ∈ P, define the operator FSALP : P → P by

(FSALPJ)(x) , E
[
J(x0) +

∞∑
t=0

αt
(
TJ(xt)− J(xt)

)+ ∣∣∣∣∣ x0 = x

]
, ∀ x ∈ X .

Then, the SALP (24) is equivalent to the convex optimization problem

(25) minimize
r

Eπ
[
FSALPΦr(x0)

]
.
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Proof. Suppose (r, s) is feasible for the SALP (24). Then,

Eπ
[
Φr(x0) + 1

1− αs(x0)
]
≥ Eπ

[
Φr(x0) + 1

1− α
(
TΦr(x0)− Φr(x0)

)+ ]
= Eπ

[
Φr(x0) +

∞∑
t=0

αt
(
TΦr(xt)− Φr(xt)

)+]
= Eπ

[
FSALPΦr(x0)

]
,

(26)

where we use the constraints of (24) and the fact that π is the stationary distribution. Hence, r
achieves at least the same objective value in (25). Conversely, for any r, define s , (TΦr − Φr)+

component-wise. Then, (r, s) is feasible for (24), and (26) holds with equality. Thus, (r, s) achieves
same objective value in (24) as r in (25). �

The following theorem shows that the FSALP operator also yields dual upper bounds to the
optimal value function, analogous to the F operator in the pathwise method. Critically, however,
the upper bounds of the pathwise method pointwise dominate that of the SALP, which in turn
pointwise dominate that of the ALP.

Theorem 5. For an arbitrary weight vector r ∈ RK ,

J∗(x) ≤ FΦr(x) ≤ FSALPΦr(x), ∀ x ∈ X .

In addition, if r ∈ CALP, i.e., r is feasible for the ALP (22), then

J∗(x) ≤ FΦr(x) ≤ FSALPΦr(x) = Φr(x), ∀ x ∈ X .

Proof. Given a weight vector r ∈ RK , by Lemma 3,

J∗(x) ≤ FΦr(x) = E
[

sup
s≥0

αsg(xs)−
s∑
t=1

αt
(
Φr(xt)− E[Φr(xt) | xt−1]

) ∣∣∣∣∣ x0 = x

]

= E
[

sup
s≥0

αs
(
g(xs)− Φr(xs)

)
+ Φr(x0) +

s−1∑
t=0

αt
(
αE[Φr(xt+1) | xt]− Φr(xt)

) ∣∣∣∣∣ x0 = x

]

≤ E
[

sup
s≥0

αs
(
g(xs)− Φr(xs)

)+ + Φr(x0) +
s−1∑
t=0

αt
(
αE[Φr(xt+1) | xt]− Φr(xt)

)+ ∣∣∣∣∣ x0 = x

]

≤ E
[

sup
s≥0

Φr(x0) +
s∑
t=0

αt
(
TΦr(xt)− Φr(xt)

)+ ∣∣∣∣∣ x0 = x

]
= FSALPΦr(x),

which completes the first part of the result. If r ∈ CALP, it immediately follows that FSALPΦr(x) =
Φr(x). �

In the context of the ALP and SALP optimization problems (22) and (24), Theorem 5 yields
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that that

minimize
r

Eπ
[
FΦr(x0)

]
≤ minimize

r
Eπ
[
FSALPΦr(x0)

]
≤ minimize

r∈CALP
Eπ
[
Φr(x0)

]
.

In other words, given a fixed set of basis functions, the PO method yields an upper bound that is
on average at least as tight as that of the SALP method, which in turn yields an upper bound that
is on average at least as tight at that of the ALP method.

6. Conclusion

We have presented what we believe is a practical scheme for high-dimensional pricing problems
based on the martingale duality approach. In particular, we have attempted to show that the PO
method can be used to compute upper bound on price of a quality comparable with state-of-the-art
methods in a fraction of the time required for those methods. In addition, the approach yields, as
a by-product, exercise policies that yield substantial improvements over policies derived via generic
regression based methods. There are several directions that merit further investigation; we point
out two:

• Implementation. As opposed to solving an LP, one may imagine solving the minimization
problem over weight vectors r in the PO method via a stochastic (sub)-gradient method. In
particular, define

δ`(r) , E

− s∗(r)∑
p=1

αp∆φ`(xp, xp−1)

∣∣∣∣∣∣ x0 = x

 , ∀ 1 ≤ ` ≤ K,

where s∗(r) is a random variable that, along each sample path, is a time that maximizes the
inner optimization problem in the definition of F0Φr(x). It is not difficult to see that the
vector δ(r) is a sub-gradient of F0Φr(x) with respect to r. Thus, very roughly, one might
imagine a method that would update the r vector incrementally with each sampled path, x(i),
according to an update rule of the form r ← r + γiδ

(i)(r). Here, γi > 0 is a step-size and
δ(i)(r) is a point estimate of the sub-gradient δ(x) evaluated over the single sample path x(i).
Such a method has the advantage of not requiring an LP solver in addition to being online
— the approach optimizes the upper bound simultaneously with sampling.

• Policy Generation. The policy used to generate our lower bounds required that we regress
continuation value upper bounds implied by our approach against a set of basis functions.
It is natural to ask whether a more direct method is possible — for instance, the greedy
policy with respect to the ΦrPO. This appears to be a non-trivial question. In particular, it
is not hard to see that if the constant function were a basis function, then the PO method
cannot identify a unique optimal coefficient for this basis function. On the other hand, if one
chose to use a policy that were greedy with respect to ΦrPO, it is clear that the coefficient
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corresponding to this basis function can dramatically alter the nature of the policy.
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A. Proofs

The following elementary fact will be helpful in the proofs that follow:

Fact 1. If y, y′ ∈ RN are two sequences of real numbers, then

maxs ys −maxs y′s ≤ maxs |ys − y′s|.

By symmetry, it holds that

|maxs ys −maxs y′s| ≤ maxs |ys − y′s|.

A.1. Proof of Lemma 1

Lemma 1 (Martingale Duality).

(i) (Weak Duality) For any J ∈ P and all x ∈ X and t ∈ T , J∗t (x) ≤ FtJ(x).

(ii) (Strong Duality) For all x ∈ X and t ∈ T , J∗(x)t = FtJ
∗(x).

Proof. (i) Note that

J∗t (xt) = sup
τt

E
[
ατt−tg(xτt)

∣∣∣ xt](A.1)

= sup
τt

E

ατt−tg(xτt)−
τt∑

p=t+1
αp−t(∆J)(xp, xp−1)

∣∣∣∣∣∣ xt
(A.2)

≤ E

 max
t≤s≤d

αs−tg(xs)−
s∑

p=t+1
αp−t(∆J)(xp, xp−1)

∣∣∣∣∣∣ xt
 .(A.3)

1
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Here, in (A.1), τt is a stopping time that takes values in the set {t, t+ 1, . . . , d}. (A.2) follows from
the optimal sampling theorem for martingales. (A.3) follows from the fact that stopping times
are non-anticipatory, and hence the objective value can only be increased by allowing policies with
access to the entire sample path.

(ii) From (i) we know that FtJ∗(xt) ≥ J∗t (xt). To see the opposite inequality,

FtJ
∗(xt) = E

max
t≤s≤d

αs−tg(xs)−
s∑

p=t+1
αp−t (∆J∗)(xp, xp−1)

∣∣∣∣∣∣ xt


= E

max
t≤s≤d

αs−tg(xs)−
s∑

p=t+1
αp−t

(
J∗p (xp)− E[J∗p (xp)|xp−1]

) ∣∣∣∣∣∣ xt


= E

max
t≤s≤d

αs−tg(xs)− αs−tJ∗s (xs) + J∗t (xt)

+
s∑

p=t+1
αp−t−1

(
αE[J∗p (xp)|xp−1]− J∗p−1(xp−1)

) ∣∣∣∣∣∣ xt


≤ J∗t (xt)

The last inequality follows from the Bellman equation (1). �

A.2. Proof of Theorem 1

Theorem 1. Let N ⊂ RK be a compact set. Fix an initial state x0 and ε > 0. Then, almost surely,
if S is sufficiently large, for all I sufficiently large,∣∣∣∣min

r∈N
F0Φr(x0)−min

r∈N
F̂S,I0 Φr(x0)

∣∣∣∣ ≤ ε.
Proof. Given ε′, δ′ > 0, define a finite set R ⊂ N such that for all r ∈ N , there exists r′ ∈ R with
‖r − r′‖∞ < ε′. The existence of R is guaranteed by the compactness of N .

For any element r ∈ N and let r′ ∈ R be such that ‖r − r′‖∞ < ε′. By triangle inequality, we
have ∣∣∣F0Φr(x0)− F̂S,I0 Φr(x0)

∣∣∣ ≤ ∣∣F0Φr(x0)− F0Φr′(x0)
∣∣+ ∣∣∣F0Φr′(x0)− F̂S,I0 Φr′(x0)

∣∣∣
+
∣∣∣F̂S,I0 Φr′(x0)− F̂S,I0 Φr(x0)

∣∣∣ .(A.4)

We bound each of the quantities on the right by using Lemma 8, which is established below, to
guarantee the choice of (S, I) so that

∣∣∣F0Φr(x0)− F̂S,I0 Φr(x0)
∣∣∣ ≤Lε′ + ε′ + (L+ δ′)ε′.

Since ε′, δ′ > 0 are arbitrary, the result follows. �
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Lemma 8. Fix an initial state x0 ∈ X .

(i) F0Φr(x0) is a Lipschitz function of r ∈ RK , i.e.,

∣∣F0Φr(x0)− F0Φr′(x0)
∣∣ ≤ L‖r − r′‖∞, ∀ r, r′ ∈ RK ,

where we denote the associated Lipschitz constant by L.

(ii) Fix ε, δ > 0 and suppose that R ⊂ RK is a finite set. Then, almost surely, if S is sufficiently
large, for all I sufficiently large, we have:

(a) For all r ∈ R,
∣∣F̂S,I0 Φr(x0)− F0Φr(x0)

∣∣ ≤ ε.
(b) F̂S,I0 Φr(x0) is a Lipschitz function of r ∈ RK with Lipschitz constant L+ δ.

Proof. (i) Using Fact 1, the triangle inequality, and Jensen’s inequality, we have that, for r, r′ ∈ RK ,

∣∣F0Φr(x0)− F0Φr′(x0)
∣∣

≤ E

 max
0≤s≤d

∣∣∣∣∣∣
s∑

p=1
αp
(

(Φr)p(xp)− (Φr′)p(xp) + E
[
(Φr)p(xp)|xp−1

]
− E

[
(Φr′)p(xp)|xp−1

])∣∣∣∣∣∣
∣∣∣∣∣∣ x0


≤ E

 d∑
p=1

αp
(∣∣(Φr)p(xp)− (Φr′)p(xp)

∣∣+ ∣∣E[(Φr)p(xp)|xp−1
]
− E

[
(Φr′)p(xp)|xp−1

]∣∣ ) ∣∣∣∣∣∣ x0


≤ 2E

 d∑
p=1

∣∣(Φr)p(xp)− (Φr′)p(xp)
∣∣ ∣∣∣∣∣∣ x0

 ≤ L‖r − r′‖∞,
where

L , 2
d∑
p=1

K∑
`=1

E
[ ∣∣φ`(xp, p)∣∣ ∣∣ x0

]
<∞.

(ii-a) Fix r ∈ R. By the triangle inequality,

∣∣∣F̂S,I0 Φr(x0)− F0Φr(x0)
∣∣∣ ≤ ∣∣∣F̂S,I0 Φr(x0)− F̂S0 Φr(x0)

∣∣∣+ ∣∣∣F̂S0 Φr(x0)− F0Φr(x0)
∣∣∣ .(A.5)

By the strong law of large numbers, almost surely, for all S sufficiently large, we have that∣∣∣F̂S0 Φr(x0)− F0Φr(x0)
∣∣∣ ≤ ε

2 ,(A.6) ∣∣∣∣∣∣ 1S
S∑
i=1

d∑
p=1

K∑
`=1

∣∣φ`(x(i)
p , p

)∣∣− L

2

∣∣∣∣∣∣ ≤ δ

2 .(A.7)

Now, using Fact 1 and the triangle inequality,

∣∣∣F̂S,I0 Φr(x0)− F̂S0 Φr(x0)
∣∣∣ ≤ 1

S

S∑
i=1

d∑
p=1

∣∣∣∣∣∣E
[
(Φr)p(xp)|x(i)

p−1

]
− 1
I

I∑
j=1

(Φr)p
(
x(i,j)
p

)∣∣∣∣∣∣ .(A.8)
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Suppose that S is sufficiently large so that (A.6)–(A.7) hold. Using the strong law of large numbers,
almost surely, for all I sufficiently large, we have that∣∣∣∣∣∣1I

I∑
j=1

(Φr)p
(
x(i,j)
p

)
− E

[
(Φr)p(xp)|x(i)

p−1

]∣∣∣∣∣∣ ≤ ε

2d, ∀ 1 ≤ i ≤ S,(A.9)

∣∣∣∣∣∣1I
I∑
j=1

d∑
p=1

K∑
`=1

∣∣∣φ`(x(i,j)
p , p

)∣∣∣− L

2

∣∣∣∣∣∣ ≤ δ

2 , ∀ 1 ≤ i ≤ S.(A.10)

Equations (A.8) and (A.9) together imply that

(A.11)
∣∣∣F̂S,I0 Φr(x0)− F̂S0 Φr(x0)

∣∣∣ ≤ ε

2 .

Using (A.5), (A.6) and (A.11), we obtain the result for a fixed r. Since R is a finite set, S and I

can be chosen sufficiently large so that the result holds for all r ∈ R.

(ii-b) The result holds using the same argument as in part (i), along with the choice of (S, I)
from part (ii-a) that guarantees (A.7) and (A.10). �

A.3. Proofs of Section 5

Lemma 5. Suppose that the state space X is finite. Then,

λ(P ) =
√
ρ(I − P ∗P ),

where ρ(·) is the spectral radius. Further, if P is time-reversible (i.e., if P = P ∗), then

λ(P ) =
√
ρ(I − P 2) ≤

√
2ρ(I − P ).

Proof. Note that, from (16),

Eπ
[
Var

(
J(x1) | x0

)]
= Varπ(J)−Varπ(PJ)

= 〈J, J〉π − (Eπ[J(x0)])2 − 〈PJ, PJ〉π + (Eπ[PJ(x0)])2

= 〈J, J〉π − 〈PJ, PJ〉π = 〈J, J〉π − 〈J, P ∗PJ〉π = 〈J, (I − P ∗P )J〉π.

Observe that I−P ∗P is self-adjoint, and hence must have real eigenvalues. Let σmin and σmax be the
smallest and largest eigenvalues, respectively. By the Courant-Fischer variational characterization
of eigenvalues,

σmax = sup
J∈P, ‖J‖2,π=1

〈J, (I − P ∗P )J〉π = sup
J∈P, ‖J‖2,π=1

〈J, J〉π − 〈J, P ∗PJ〉π

= 1− inf
J∈P, ‖J‖2,π=1

〈PJ, PJ〉π = 1− inf
J∈P, ‖J‖2,π=1

‖PJ‖22,π ≤ 1.
(A.12)
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Similarly,

(A.13) σmin = inf
J∈P, ‖J‖2,π=1

〈J, (I − P ∗P )J〉π = 1− sup
J∈P, ‖J‖2,π=1

‖PJ‖2,π.

Now, by Jensen’s inequality and the fact that π is the stationary distribution of P ,

‖PJ‖22,π = Eπ
[
(E [J(x1)|x0])2

]
≤ Eπ

[
J(x1)2

]
= ‖J‖22,π.

That is, P is a non-expansive under the ‖ · ‖2,π norm. Combining this fact with (A.12)–(A.13),
we have that 0 ≤ σmin ≤ σmax ≤ 1. Then, ρ(I − P ∗P ) = max

(
|σmin|, |σmax|

)
= σmax. However,

observe that from (A.12), λ(P )2 = σmax. The result follows.
For the second part, suppose that ζ1 ≤ ζ2 ≤ · · · ≤ ζ|X | are the eigenvalues of the self-adjoint

matrix P . By the same arguments as in before, 0 ≤ ζi ≤ 1 for each i. Then,

ρ(I − P 2) = max
i

1− ζ2
i = max

i
(1− ζi)(1 + ζi) ≤ max

i
2(1− ζi) = 2ρ(I − P ).

�

Lemma 6. For any pair of functions J, J ′ ∈ P,

‖FJ − FJ ′‖2,π ≤
R(α)α√

1− α
λ(P )

√
Varπ(J − J ′),

where R : [0, 1)→
[
1,
√

5/2
]

is a bounded function given by

R(α) , min
{ 1√

1− α
,

2√
1 + α

}
.

Proof. We can apply Fact 1 and the monotone convergence theorem to the pathwise maximization
in the F operator to obtain that, for all x0 ∈ X ,

FJ(x0)− FJ ′(x0) ≤ E
[

sup
s≥0

∣∣∣∣∣
s∑
t=1

αt
(
∆J(xt, xt−1)−∆J ′(xt, xt−1)

)∣∣∣∣∣
∣∣∣∣∣ x0

]
.

By symmetry,

|FJ(x0)− FJ ′(x0)| ≤ E
[

sup
s≥0

∣∣∣∣∣
s∑
t=1

αt
(
∆J(xt, xt−1)−∆J ′(xt, xt−1)

)∣∣∣∣∣
∣∣∣∣∣ x0

]
.
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Using Jensen’s inequality,

∣∣FJ(x0)− FJ ′(x0)
∣∣2 ≤ E

sup
s≥0

∣∣∣∣∣
s∑
t=1

αt
(
∆J(xt, xt−1)−∆J ′(xt, xt−1)

)∣∣∣∣∣
2
∣∣∣∣∣∣ x0


≤ E

( ∞∑
t=1

αt
∣∣∆J(xt, xt−1)−∆J ′(xt, xt−1)

∣∣)2
∣∣∣∣∣∣ x0

 .
(A.14)

Taking an expectation over x0 and again applying Jensen’s inequality,

∥∥FJ − FJ ′∥∥2
2,π ≤

(
α

1− α

)2
Eπ

(1− α
α

∞∑
t=1

αt
∣∣∆J(xt, xt−1)−∆J ′(xt, xt−1)

∣∣)2


≤
(

α

1− α

)2
Eπ
[

1− α
α

∞∑
t=1

αt
∣∣∆J(xt, xt−1)−∆J ′(xt, xt−1)

∣∣2]

=
(

α

1− α

)2 ∥∥∆J −∆J ′
∥∥2

2,π .

(A.15)

Here, the norm in the final equality is defined in Lemma 4, and we have used the fact that π is the
stationary distribution.

On the other hand, following Chen and Glasserman (2007), Doob’s maximal quadratic inequality
and the orthogonality of martingale differences imply that, for every time T ≥ 1,

Eπ

 sup
0≤s≤T

∣∣∣∣∣
s∑
t=1

αt
(
∆J(xt, xt−1)−∆J ′(xt, xt−1)

)∣∣∣∣∣
2


≤ 4Eπ

∣∣∣∣∣
T∑
t=1

αt
(
∆J(xt, xt−1)−∆J ′(xt, xt−1)

)∣∣∣∣∣
2 

≤ 4Eπ
[
T∑
t=1

α2t ∣∣∆J(xt, xt−1)−∆J ′(xt, xt−1)
∣∣2 ]

= 4α2 1− α2T−1

1− α2
∥∥∆J −∆J ′

∥∥2
2,π .

Using the monotone convergence theorem to take the limit as T →∞ and comparing with (A.14),
we have that

(A.16)
∥∥FJ − FJ ′∥∥2

2,π ≤
4α2

1− α2
∥∥∆J −∆J ′

∥∥2
2,π .

Combining the upper bounds of (A.15) and (A.16), we have that

(A.17)
∥∥FJ − FJ ′∥∥2,π ≤

R(α)α√
1− α

∥∥∆J −∆J ′
∥∥

2,π .

Applying Lemma 4, the result follows. �
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B. The Non-stationary Case

In this section, we will outline a finite horizon and non-stationary version of the theoretical results
presented in Section 5. Our setting here follows that of Section 2: Assume a state space X ⊂ Rn.
Consider a discrete-time Markov chain with state xt ∈ X at each time t ∈ T , {0, 1, . . . , d}.
Without loss of generality, assume that the transition probabilities are time-invariant, and denote
by P the transition kernel of the chain. Let F , {Ft} be the natural filtration generated by the
process, i.e., for each time t, Ft , σ(x0, x1, . . . , xt).

For this section, we assume a fixed initial state x0 ∈ X , we are interested in the stopping
problem over the finite time horizon T with payoff function g : X → R. Further, without loss of
generality, we will assume that α = 1, i.e., that the problem is finite-horizon and undiscounted.

For each t ∈ T , define St to be the set of measurable functions Jt : X → R with E[Jt(xt)2 | x0] <
∞. Assume that g ∈ St, for all t. Define P to be the set of functions J : X × T → R such that,
for each t ∈ T , Jt , J(·, t) is contained in the set St. In other words, P is the set of Markovian
processes (i.e., time-dependent functionals of the state) that possess second moments.

Given J ∈ P, define

(∆J)t ,

0 if t = 0,

Jt(xt)− E[Jt(xt)|xt−1] otherwise,

for all t ∈ T . Note that ∆J is a martingale difference process.
Define the predictability of the Markov chain by

(B.1) λ(P ) , max
1≤t≤d

sup
Jt∈St,Jt 6=0

(
E
[
Var

(
Jt(xt) | xt−1

) ∣∣ x0
]

Var
(
Jt(xt) | x0

) )1/2

.

Applying the law of total variance as in (16), it is easy to see that λ(P ) ∈ [0, 1]. Analogous to (15),
λ(P ) captures the worst case uncertainty in J(xt) conditioned on the previous state xt, relative
to the prior uncertainty (i.e., the uncertainty conditioned only on the initial state x0), over all
functionals Jt ∈ St and all times 1 ≤ t ≤ d. As before, when λ(P ) ≈ 0, the previous state reveals
significant information on the subsequent value of any functional, hence we interpret the Markov
chain as predictable.

The following lemma is analogous to Lemma 4, and provides a bound on the operator norm of
the martingale difference operator ∆:

Lemma 9. Given functions J, J ′ ∈ P, define a distance between the martingale differences ∆J , ∆J ′

by ∥∥∆J −∆J ′
∥∥

2,x0
,

√√√√1
d

E
[

d∑
t=1
|∆Jt −∆J ′t|

2
∣∣∣∣∣ x0

]
.

Then, ∥∥∆J −∆J ′
∥∥

2,x0
≤ λ(P )

√
Varx0(J − J ′),
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where

Varx0(J − J ′) , 1
d

d∑
t=1

Var
(
Jt(xt)− J ′t(xt) | x0

)
is the average variance between the processes J and J ′ over the time horizon d.

Proof. Set W , J − J ′, and observe that

‖∆W‖22,x0
= 1
d

E
[

d∑
t=1

∣∣Wt(xt)− E[Wt(xt) | xt−1]
∣∣2 ∣∣∣∣∣ x0

]
= 1
d

E
[

d∑
t=1

Var
(
Wt(xt) | xt−1

) ∣∣∣∣∣ x0

]

≤ λ(P )2

d

d∑
t=1

Var
(
Wt(xt) | x0

)
= λ(P )2Varx0(W ).

The result follows. �

Now, given a function J ∈ P, define the martingale upper bound F0J(x0) by

(F0J)(x0) , E
[

max
0≤s≤d

g(xs)−
s∑
t=1

∆Jt

∣∣∣∣∣ x0

]
.

Consider the following analog of Lemma 6:

Lemma 10. For any pair of functions J, J ′ ∈ P,

∣∣F0J(x0)− F0J
′(x0)

∣∣ ≤ 2
√
dλ(P )

√
Varx0(J − J ′).

Proof. Following (A.14) in the proof of Lemma 6, observe that, using Fact 1 and Jensen’s inequality,

∣∣F0J(x0)− F0J
′(x0)

∣∣2 ≤ E

 max
0≤s≤d

∣∣∣∣∣
s∑
t=1

(
∆Jt −∆J ′t

)∣∣∣∣∣
2
∣∣∣∣∣∣ x0

 .
Using Doob’s maximal quadratic inequality and the orthogonality of martingale differences,

∣∣F0J(x0)− F0J
′(x0)

∣∣2 ≤ 4E

∣∣∣∣∣
d∑
t=1

(
∆Jt −∆J ′t

)∣∣∣∣∣
2 ∣∣∣∣∣∣ x0

 = 4E
[

d∑
t=1

∣∣∆Jt −∆J ′t
∣∣2 ∣∣∣∣∣ x0

]

= 4d ‖∆J −∆J ′‖22,x0 .

The result follows by applying Lemma 9. �

Taking J ′ = J∗ to be the optimal value function in Lemma 10, we immediately obtain the
following analog of Theorem 2:

Theorem 6. For any function J ∈ P,

(B.2)
∣∣F0J(x0)− J∗(x0)

∣∣ ≤ 2
√
dλ(P )

√
Varx0(J − J∗).
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Theorem 6 provides approximation guarantee for martingale duality upper bounds in the finite
horizon, non-stationary case. Comparing with the bound of Theorem 2 in the infinite horizon,
stationary case, we see that the bounds have qualitatively similar dependence on the structural
features of the optimal stopping problem:

• Value Function Approximation Quality. The bounds in both (17) and (B.2) depend on the
quality of the function J as an approximation to J∗, measured in a root mean squared sense.

• Time Horizon. The bounds in both (17) and (B.2) have a square root dependence on the
time horizon. In the case of (B.2) this is explicit, in the case of (17) the dependence is on
the square root of the effective time horizon (19).

• Predictability. The bounds in both (17) and (B.2) depend linearly on the predictability of
the underlying Markov chain.

Finally, the following theorem, an analog of Theorem 3, provides an approximation guarantee
for the upper bound produced by the pathwise method in the finite horizon, non-stationary case:

Theorem 7. Suppose that rPO is an optimal solution to pathwise optimization problem

inf
r

F0Φr(x0).

Then, ∣∣F0ΦrPO(x0)− J∗(x0)
∣∣ ≤ 2

√
dλ(P ) min

r

√
Varx0(Φr − J∗).

Proof. Observe that, for any r ∈ RK , by the optimality of rPO and Lemma 1,

∣∣F0ΦrPO(x0)− J∗(x0)
∣∣ = F0ΦrPO(x0)− J∗(x0) ≤ F0Φr(x0)− J∗(x0) =

∣∣F0Φr(x0)− J∗(x0)
∣∣.

The result follows by applying Theorem 6, and minimizing over r. �

C. Additional Computational Results

In this section, we provide additional computational results for the optimal stopping problem of
Section 4. Tables 3 and 4 show the upper and lower bounds computed as, respectively, the number
of exercise opportunities d and the common asset price correlation ρjj′ = ρ̄ is varied. We also
experiment with random correlation matrices. In Table 5, we report results of experiments where
the correlation matrix was chosen randomly. Our setup used a random correlation matrix obtained
by sampling a positive semidefinite matrix from the Wishart distribution and rescaling it so that
the diagonal is identity.
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(a) Upper and lower bounds, with standard errors.

n LS-LB S.E. PO-LB S.E. DP-UB S.E. PO-UB S.E. DVF-UB S.E.
d = 36 exercise opportunities

4 40.315 (0.004) 41.073 (0.008) 42.723 (0.016) 43.006 (0.021) 43.199 (0.009)
8 48.283 (0.004) 49.114 (0.006) 50.425 (0.019) 50.721 (0.027) 51.011 (0.008)

16 51.835 (0.003) 52.289 (0.004) 53.231 (0.009) 53.517 (0.020) 53.741 (0.006)
d = 54 exercise opportunities

4 40.797 (0.003) 41.541 (0.009) 43.587 (0.016) 43.853 (0.027) 44.017 (0.011)
8 49.090 (0.004) 50.252 (0.006) 51.814 (0.023) 52.053 (0.027) 52.406 (0.014)

16 52.879 (0.001) 53.638 (0.004) 54.883 (0.020) 55.094 (0.016) 55.450 (0.013)
d = 81 exercise opportunities

4 41.229 (0.004) 41.644 (0.017) 44.264 (0.023) 44.511 (0.030) 44.662 (0.006)
8 49.788 (0.003) 51.249 (0.004) 52.978 (0.018) 53.178 (0.027) 53.523 (0.013)

16 53.699 (0.003) 54.825 (0.005) 56.398 (0.024) 56.464 (0.007) 56.948 (0.008)

(b) Relative values of bounds.

n (PO-LB)− (LS-LB) (%) (PO-UB)− (DP-UB) (%) (DVF-UB)− (PO-UB) (%)
d = 36 exercise opportunities

4 0.759 1.88% 0.284 0.70% 0.192 0.48%
8 0.831 1.72% 0.297 0.61% 0.289 0.60%

16 0.454 0.88% 0.286 0.55% 0.224 0.43%
d = 54 exercise opportunities

4 0.744 1.82% 0.266 0.65% 0.164 0.40%
8 1.162 2.37% 0.239 0.49% 0.353 0.72%

16 0.759 1.43% 0.210 0.40% 0.356 0.67%
d = 81 exercise opportunities

4 0.415 1.01% 0.247 0.60% 0.151 0.37%
8 1.460 2.93% 0.201 0.40% 0.345 0.69%

16 1.126 2.10% 0.066 0.12% 0.484 0.90%

Table 3: A comparison of the lower and upper bound estimates of the PO and benchmarking methods,
as a function of the number of exercise opportunities d and the number of assets n. For each algorithm,
the mean and standard error (over 10 independent trials) is reported. The common initial asset price
was pj

0 = p̄0 = 100 and the common correlation was ρjj′ = ρ̄ = 0. Percentage relative values are
expressed relative to the LS-LB lower bound.
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(a) Upper and lower bounds, with standard errors.

n LS-LB S.E. PO-LB S.E. DP-UB S.E. PO-UB S.E. DVF-UB S.E.
ρ̄ = −0.05 correlation

4 41.649 (0.004) 42.443 (0.009) 44.402 (0.023) 44.644 (0.019) 44.846 (0.013)
8 50.077 (0.005) 51.136 (0.005) 52.581 (0.031) 52.799 (0.018) 53.163 (0.011)

16 53.478 (0.004) 54.076 (0.004) 55.146 (0.013) 55.360 (0.010) 55.708 (0.010)
ρ̄ = 0 correlation

4 40.797 (0.003) 41.541 (0.009) 43.587 (0.016) 43.853 (0.027) 44.017 (0.011)
8 49.090 (0.004) 50.252 (0.006) 51.814 (0.023) 52.053 (0.027) 52.406 (0.014)

16 52.879 (0.001) 53.638 (0.004) 54.883 (0.020) 55.094 (0.016) 55.450 (0.013)
ρ̄ = 0.1 correlation

4 39.180 (0.006) 39.859 (0.011) 42.001 (0.037) 42.187 (0.029) 42.425 (0.010)
8 47.117 (0.005) 48.371 (0.005) 50.139 (0.029) 50.362 (0.035) 50.700 (0.014)

16 51.414 (0.005) 52.498 (0.008) 54.141 (0.032) 54.217 (0.018) 54.654 (0.010)

(b) Relative values of bounds.

n (PO-LB)− (LS-LB) (%) (PO-UB)− (DP-UB) (%) (DVF-UB)− (PO-UB) (%)
ρ̄ = −0.05 correlation

4 0.794 1.91% 0.242 0.58% 0.202 0.49%
8 1.059 2.11% 0.218 0.44% 0.364 0.73%

16 0.598 1.12% 0.214 0.40% 0.349 0.65%
ρ̄ = 0 correlation

4 0.744 1.82% 0.266 0.65% 0.164 0.40%
8 1.162 2.37% 0.239 0.49% 0.353 0.72%

16 0.759 1.43% 0.210 0.40% 0.356 0.67%
ρ̄ = 0.1 correlation

4 0.679 1.73% 0.187 0.48% 0.238 0.61%
8 1.255 2.66% 0.224 0.47% 0.338 0.72%

16 1.084 2.11% 0.076 0.15% 0.437 0.85%

Table 4: A comparison of the lower and upper bound estimates of the PO and benchmarking methods,
as a function of the common correlation ρjj′ = ρ̄ and the number of assets n. For each algorithm,
the mean and standard error (over 10 independent trials) is reported. The common initial price was
pj

0 = p̄0 = 100 and the number of exercise opportunities was d = 54. Percentage relative values are
expressed relative to the LS-LB lower bound.
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(a) Upper and lower bounds, with standard errors.

p̄0 LS-LB S.E. PO-LB S.E. DP-UB S.E. PO-UB S.E. DVF-UB S.E.
n = 4 assets

90 30.532 (0.554) 30.944 (0.574) 32.494 (0.570) 32.589 (0.575) 32.755 (0.570)
100 39.088 (0.624) 39.791 (0.648) 41.523 (0.618) 41.801 (0.631) 41.973 (0.613)
110 45.892 (0.575) 46.969 (0.572) 48.599 (0.519) 48.916 (0.546) 49.151 (0.534)

n = 8 assets
90 42.486 (0.287) 43.392 (0.290) 44.923 (0.277) 45.205 (0.266) 45.304 (0.275)

100 48.971 (0.212) 50.027 (0.194) 51.483 (0.178) 51.772 (0.169) 52.035 (0.178)
110 52.618 (0.124) 53.491 (0.097) 54.835 (0.081) 55.029 (0.076) 55.420 (0.072)

n = 16 assets
90 48.784 (0.146) 49.825 (0.135) 51.270 (0.130) 51.513 (0.123) 51.812 (0.123)

100 52.376 (0.085) 53.214 (0.069) 54.568 (0.058) 54.726 (0.053) 55.127 (0.054)
110 54.292 (0.048) 54.888 (0.035) 56.034 (0.021) 56.244 (0.029) 56.600 (0.017)

(b) Relative values of bounds.

p̄0 (PO-LB)− (LS-LB) (%) (PO-UB)− (DP-UB) (%) (DVF-UB)− (PO-UB) (%)
n = 4 assets

90 0.412 1.35% 0.095 0.31% 0.166 0.54%
100 0.703 1.80% 0.278 0.71% 0.172 0.44%
110 1.077 2.35% 0.317 0.69% 0.235 0.51%

n = 8 assets
90 0.906 2.13% 0.282 0.66% 0.099 0.23%

100 1.056 2.16% 0.289 0.59% 0.263 0.54%
110 0.873 1.66% 0.194 0.37% 0.391 0.74%

n = 16 assets
90 1.041 2.13% 0.243 0.50% 0.299 0.61%

100 0.838 1.60% 0.158 0.30% 0.401 0.77%
110 0.596 1.10% 0.210 0.39% 0.356 0.66%

Table 5: A comparison of the lower and upper bound estimates of the PO and benchmarking methods,
as a function of the common initial asset price pj

0 = p̄0 and the number of assets n. For each algorithm,
the mean and standard error (over 10 independent trials) is reported. For each trial the correlation
matrix was sampled randomly and the number of exercise opportunities was d = 54. Percentage relative
values are expressed relative to the LS-LB lower bound.
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