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ABSTRACT
We consider the market microstructure of automated market mak-

ing and, specifically, constant function market makers (CFMMs),

from the economic perspective of passive liquidity providers (LPs).

In a frictionless, continuous-time Black-Scholes setting and in the

absence of trading fees, we decompose the return of an LP into

a instantaneous market risk component and a non-negative, non-

decreasing, and predictable component which we call “loss-versus-

rebalancing” (LVR, pronounced “lever”). Market risk can be fully

hedged, but once eliminated, LVR remains as a running cost that

must be offset by trading fee income in order for liquidity provision

to be profitable. LVR is distinct from the more commonly known

metric of “impermanent loss” or “divergence loss”; this latter metric

is more fundamentally described as “loss-versus-holding” and is

not a true running cost. We express LVR simply and in closed-form:

instantaneously, it is the scaled product of the variance of prices

and the marginal liquidity available in the pool. As such, LVR is

easily calibrated to market data and specific CFMM structure. LVR
provides tradeable insight in both the ex ante and ex post assess-
ment of CFMM LP investment decisions, and can also inform the

design of CFMM protocols. For a more complete version of this

paper, please refer to https://arxiv.org/pdf/2208.06046.pdf.
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1 INTRODUCTION
In recent years, automatedmarket makers (AMMs) and, more specif-

ically, constant function market makers (CFMMs) such as Uniswap

[1, 2], have emerged as the dominant mechanism for decentralized

exchange on blockchains. In this paper, we consider the market

microstructure of CFMMs from the perspective of passive LPs. They

contribute assets to CFMM reserves that are subsequently available

for trade with liquidity takers, at quoted prices that are algorithmi-

cally determined. Our goal is to answer three related questions:

(1) CFMMs hold reserves in risky assets. Therefore, their perfor-

mance is impacted by market risk. If this market exposure is

hedged, what is the residual value for the LP that remains?

(2) In a CFMM, the LPs commit to a particular payoff or risky

asset demand curve. What is the cost to LPs of giving up this

optionality?

(3) LPs are compensated with trading fees. What is the appropri-

ate rate of fee generation for a CFMM to be a fair investment

for LPs?

Our central contribution is the identification of a running cost

component which we call loss-versus-rebalancing (LVR, pronounced
“lever”) that simultaneously addresses all these questions.

Informally, in our framework for reasoning about liquidity pro-

vision on CFMMs, the profit-and-loss (P&L) of a liquidity provider

can be decomposed according to

LP P&L = (Rebalancing P&L) − LVR+ (Trading Fee Income) . (1)

The first term in this decomposition is the P&L of a specific bench-

mark “rebalancing” strategy. The rebalancing strategy buys and

sells the risky asset exactly the same way the CFMM does, but

does so at centralized exchange prices, rather than CFMM prices.

Thus, an arbitrageur trading against the rebalancing strategy makes

zero profits. The rebalancing strategy does not systematically lose

money over time: the strategy is exposed to market risk, but this

risk can be hedged fully (and costlessly) by dynamically trading the

underlying assets.

 

71

https://orcid.org/0000-0002-9460-9559
https://orcid.org/0000-0002-4489-9260
https://orcid.org/0000-0002-7163-8306
https://orcid.org/0000-0002-0320-0150
https://arxiv.org/pdf/2208.06046.pdf
https://doi.org/10.1145/3560832.3563441
https://doi.org/10.1145/3560832.3563441
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3560832.3563441&domain=pdf&date_stamp=2022-11-07


DeFi ’22, November 11, 2022, Los Angeles, CA, USA Jason Milionis, Ciamac C. Moallemi, Tim Roughgarden, & Anthony Lee Zhang

The second term in the decomposition (1) is a cost term which

we call LVR,1 defined as the shortfall in the value of the CFMM

reserves (exclusive of trading fees, which will be discussed shortly)

relative to the value achieved by the dynamic rebalancing strat-

egy. We establish that LVR is a non-negative, non-decreasing, and

predictable process. In other words, we quantify how much worse

a liquidity provider will do versus the alternative of dynamically

trading the underlying assets. We provide a closed-form expression

for LVR in terms of model primitives. Instantaneously, LVR is the

scaled product of the (instantaneous) variance of asset prices, and

the marginal liquidity available in the pool.

The intuition for LVR is as follows: The rebalancing strategy will

sell the risky asset as the price increases, and buy the risky asset as

the price drops, both at centralized exchange prices. An LP in the

CFMM pool, on the other hand, purchases and sells equal amounts

of the risky asset as the rebalancing strategy, but at systematically

worse prices than market prices. In a sense, arbitrageurs monetize

the fact that the CFMM does not know current asset prices, to trade

against the pool in a zero-sum fashion to exploit their superior

information, and their arbitrage profits manifest as LVR losses

for the CFMM LPs. In this way, LVR can be viewed as an adverse
selection or information cost.

Another perspective is that passively investing as an LP in a

CFMM can be thought of as committing to buying the risky asset

in the future if the price decreases, and selling the asset if the price

increases. This strategy thus has payoffs that resemble that of a

short straddle position, that is, a strategy which sells call options

and sells put options. A short straddle position generates a profit if

prices end at the same point where they started, due to the premium

from selling the options, and loses money if prices increase or

decrease substantially, since the strategy loses money on either the

call or the put. A passive LP position, in contrast, makes nothing

if prices end where they started, but loses money if prices diverge.

Holding an LP position is thus analogous to giving away a straddle:

losing from the volatility exposure, without collecting the upfront

premium. LVR measures the forgone value from failing to collect

the premium for selling options.

Of course, CFMMs also have trading fee income, which is the

third term in the decomposition (1). These fees are paid by liquid-

ity seeking agents or “noise traders”, that trade against the pool

for at least partially idiosyncratic reasons. Since the rebalancing

P&L in (1) can be perfectly hedged, our framework suggests that

what remains when evaluating an LP investment in a CFMM is the

comparison between fee income and LVR. By comparing these two

quantities, our framework provides tradeable insight into CFMM LP

investment decisions. To a first order, assuming that the volatility is

fixed and known, investing in a pool is an ex ante assessment as to

the level of the future realized trading volume relative to the break

even quantity of the volume required to obtain commensurate fee

income with LVR.

Similarly, when evaluating LP performance ex post, rather than
measuring raw LP P&L, one should consider only P&L arising from
LVR and fee income, quantities which can be easily computed. This

provides a clearer metric for pool performance since hedgeable

1LVR is distinct from the more commonly known metric of “impermanent loss” or

“divergence loss”. In our framework, this latter metric is more accurately described as

“loss-versus-holding”, and is not a true running cost.

market risk has been eliminated. LVR can also be used by CFMM

protocol designers for guidance to set fees. This is because in a

competitive market for liquidity provision, there should be no ex-

cess profits for LPs, and hence fees should balance with LVR. For
example, since LVR scales with variance, one might imagine fee

mechanisms that also scale with variance. Or, alternatively, pro-

tocols could be constructed that compare LVR versus fee income

in a backward looking window, increasing fees if they are below

LVR, and decreasing fees if they are above LVR. More speculatively,

our results suggest a potential approach to redesign CFMMs to

reduce or eliminate LVR: a CFMM which has access to a reliable

and high-frequency price oracle could in principle quote prices

arbitrarily close to market prices for the risky asset, thus achieving

payoffs arbitrarily close to that of the rebalancing strategy.

To be clear, many of the phenomena discussed above are, to

some degree, known formally or informally in the literature or

by practitioners (e.g., applying options pricing models to specific

CFMMs and observing negative convexity, or analyzing arbitrage

profits). We discuss this in Section 2. The novelty in the present

paper is the careful identification of LVR as a unifying concept and

its crisp characterization in closed-form, in a way that rigorously

generalizes broadly across CFMM designs and asset pricing models.

Beyond this, as described above, our work has simple and direct

empirical consequences, to the analysis of CFMM investment deci-

sions, the design of CFMMs, and the quantification of trading fees,

for example, beyond what has appeared in the literature.

2 LITERATURE REVIEW
Automated market makers have their origin in the classic literature

on prediction markets and market scoring rules; see Pennock and

Sami [14] for a survey of this area. Using AMMs as a decentralized

exchange mechanism was first proposed by Buterin [6] and Lu and

Köppelmann [12]. Angeris and Chitra [3] and Angeris et al. [4, 5]

studied the more general case of constant function market makers.

Angeris et al. [5] also analyze arbitrage profits, but do not relate

them to the rebalancing strategy or express them in closed-form. A

separate line of work seeks to design specific CFMMs with good

properties by identifying good bonding functions [15, 17, 10, 11].

Black-Scholes-style options pricing models have been applied to

weighted geometric mean market makers over a finite time horizon

by Evans [9], who also observes that constant product pool values

are a super-martingale because of negative convexity. Clark [7]

replicates the payoff of a constant product market over a finite

time horizon in terms of a static portfolio of European put and

call options. Tassy and White [16] compute the growth rate of a

constant product market maker with fees.

3 SUMMARY OF RESULTS
For the full details, please refer to Milionis et al. [13].

3.1 Model
Consider a frictionless, continuous-time Black-Scholes setting, where

Q is a risk-neutral or equivalent martingale measure, we have a

risky asset 𝑥 and a numéraire asset 𝑦, and an observable external

market price 𝑃𝑡 at each time 𝑡 , evolving exogenously according to a
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geometric Brownian motion that is a continuous Q-martingale, i.e.,

𝑑𝑃𝑡

𝑃𝑡
= 𝜎 𝑑𝐵

Q
𝑡 , ∀ 𝑡 ≥ 0,

with volatility 𝜎 > 0, and where 𝐵
Q
𝑡 is a Q-Brownian motion.

A trading strategy is a self-financing process (𝑥𝑡 , 𝑦𝑡 ) defining
holdings in the risky asset and numéraire at each time 𝑡 . The state

of a CFMM pool is characterized by the reserves (𝑥,𝑦) ∈ R2+, which
describe the current holdings of the pool in terms of the risky asset

and the numéraire, respectively. Define the feasible set of reserves

C according to

C ≜ {(𝑥,𝑦) ∈ R2+ : 𝑓 (𝑥,𝑦) = 𝐿},
where 𝑓 : R2+ → R is referred to as the bonding function or invariant,
and 𝐿 ∈ R is a constant.

Note that we are ignoring any trading fees collected by the pool;

these will be discussed later. To simplify our analysis, we will also

assume that, aside from trading with arriving liquidity demanding

agents, the pool is static otherwise. In particular, we assume that

the liquidity providers do not add (mint) or remove (burn) reserves

over the time scale of our analysis. In other words, LPs are passive.
Further, we ignore the details of the underlying blockchain on

which the pool operates, e.g., any blockchain transaction fees such

as “gas” fees, the discrete-time nature of block updates, etc.

If we assume that there is a population of arbitrageurs, able

to frictionlessly trade at the external market price, continuously

monitoring the CFMM pool, then, to maximize their profits, the

arbitrageurs would, at each time 𝑡 , set the implied price of the pool

to be exactly equal to the exogenously-determined price at time

𝑡 [4]. Based on this, define the value of the reserves of the pool

at time 𝑡 as 𝑉𝑡 , and the pool value function 𝑉 : R+ → R+ by the

optimization problem [see, e.g., 3, 5]

𝑉 (𝑃) ≜ minimize

(𝑥,𝑦) ∈R2+
𝑃𝑥 + 𝑦

subject to 𝑓 (𝑥,𝑦) = 𝐿.
(2)

3.2 Loss-Versus-Rebalancing
To understand the economics of liquidity provision, we’d like to

understand the evolution of the CFMM pool value process 𝑉 (𝑃𝑡 ).
The pool value is clearly subject to market risk, since the pool intrin-

sically holds the risky asset. In order to understand and disentangle

the impact of market risk, consider a rebalancing strategy which

seeks to replicate the risky holdings of the pool in order to mirror

the market risk. Intuitively, the rebalancing strategy buys exactly

the same quantity of the risky asset as the CFMM does, but does so

at the external market price, rather than the CFMM price. Formally,

we define the rebalancing strategy to be the self-financing trad-

ing that starts initially holding

(
𝑥∗ (𝑃0), 𝑦∗ (𝑃0)

)
(the same position

as the CFMM), and continuously and frictionlessly rebalances to

maintain a position in the risky asset given by 𝑥𝑡 ≜ 𝑥∗ (𝑃𝑡 ). Then,
applying the self-financing condition, the rebalancing portfolio has

value

𝑅𝑡 = 𝑉0 +
∫ 𝑡

0

𝑥∗ (𝑃𝑠 ) 𝑑𝑃𝑠 , ∀ 𝑡 ≥ 0. (3)

Define the loss-versus-rebalancing (LVR) to be the difference in

value between the rebalancing portfolio and the CFMM pool, i.e.,

LVR𝑡 ≜ 𝑅𝑡 −𝑉𝑡 .

The following theorem, which is our main result, characterizes

the loss-versus-rebalancing:

Theorem 3.1. Loss-versus-rebalancing takes the form

LVR𝑡 =
∫ 𝑡

0

ℓ (𝑃𝑠 ) 𝑑𝑠, ∀ 𝑡 ≥ 0, (4)

where we define, for 𝑃 ≥ 0, the instantaneous LVR by

ℓ (𝑃) ≜ −𝜎
2𝑃2

2

𝑉 ′′ (𝑃) ≥ 0. (5)

In particular, LVR is a non-negative, non-decreasing, and predictable
process.

3.3 Loss-Versus-Holding
In this section, we show how LVR relates to what is often discussed

among practitioners as “impermanent loss” or “divergence loss”
[e.g., 8]. In our view this is more accurately described as “loss-
versus-holding”. More specifically, consider the strategy that sim-

ply holds the initial position, i.e., 𝑥HODL𝑡 ≜ 𝑥∗ (𝑃0), with value

𝑅HODL𝑡 = 𝑉0 +
∫ 𝑡

0

𝑥∗ (𝑃0) 𝑑𝑃𝑠 = 𝑉0 + 𝑥∗ (𝑃0) (𝑃𝑡 − 𝑃0) , ∀ 𝑡 ≥ 0.

Then, loss-versus-holding is LVH𝑇 ≜ 𝑅HODL𝑡 −𝑉𝑡 . By comparing

the expressions of (3) with the above, we can see that for all 𝑡 ≥ 0,

LVH𝑡 = LVR𝑡 +
∫ 𝑡

0

[
𝑥∗ (𝑃0) − 𝑥∗ (𝑃𝑠 )

]
𝑑𝑃𝑠 .

Here, we see that LVH contains the LVR cost as a component.

The second component, though, has exposure to market risk when-

ever 𝑥∗ (𝑃𝑠 ) ≠ 𝑥∗ (𝑃0). This market risk component represents an

exposure to the risky asset, but is not a loss. It is a zero-mean Q-
martingale, meaning that it has zero expected return if the underly-

ing risky asset has no risk premium. Because of that component,

LVH is not a true “running cost” — it can be positive or negative; it

can revert and is indeed “impermanent”.
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