
Optimal Dynamic Fees for Blockchain Resources

Davide Crapis
Robust Incentives Group

Ethereum Foundation
davide@ethereum.org

Ciamac C. Moallemi
Graduate School of Business

Columbia University
ciamac@gsb.columbia.edu

Shouqiao Wang
Graduate School of Business

Columbia University
shwang27@gsb.columbia.edu

Initial version: May 11, 2023
Current version: September 20, 2023

Abstract We develop a general and practical framework to address the problem of the optimal design of
dynamic fee mechanisms for multiple blockchain resources. Our framework allows to compute policies
that optimally trade-off between adjusting resource prices to handle persistent demand shifts versus
being robust to local noise in the observed block demand. In the general case with more than one
resource, our optimal policies correctly handle cross-effects (complementarity and substitutability) in
resource demands. We also show how these cross-effects can be used to inform resource design, i.e.
combining resources into bundles that have low demand-side cross-effects can yield simpler and more
efficient price-update rules. Our framework is also practical, we demonstrate how it can be used to
refine or inform the design of heuristic fee update rules such as EIP-1559 or EIP-4844 with two case
studies. We then estimate a uni-dimensional version of our model using real market data from the
Ethereum blockchain and empirically compare the performance of our optimal policies to EIP-1559.

1. Introduction
Users of public permissionless blockchains can modify the shared state of the network through transactions
that are executed by a set of nodes with limited computational resources. To allocate resources among
competing transactions most blockchains use transaction fees. Initial transaction fee mechanisms in the
Bitcoin and Ethereum blockchains relied on users bidding for transaction inclusion as the main way of pricing
congestion. Moreover, all computational resources were bundled into a unique virtual resource (“gas”) with
fixed relative prices hardcoded in the protocol. Current R&D efforts are focused on improving transaction fee
markets along two directions: (1) setting a minimum dynamic base fee (henceforth also called price) that is
adjusted by the protocol as function of user demand and (2) unbundling resources so that different resources
can be individually priced and their relative prices can also efficiently adjust with demand.

In this paper, we propose a new framework for choosing a resource pricing policy that makes significant
progress across both directions. We consider the practical problem of a blockchain protocol that has to
jointly update the prices of multiple resources at every block. We assume that the type of resources being
metered and priced, as well as the block limits and sustainable targets for each resource, are pre-determined.
These higher level decisions are the outcome of a design process that has interesting political, economic, and
engineering considerations but are outside the current scope of our framework1.

Our framework is both general and practical. Or main results characterize theoretically optimal policies in
a realistic setting with multiple resources and time-varying demand. Our results can be used in two ways: (i)
the policies can be directly implemented as we demonstrate, or (ii) insights from our main results can be used
to construct and refine heuristics that approximate optimal policies. The latter point is particularly important
in the blockchain environment, where, especially at Layer 1, the price computation itself is significantly
resource constrained2. We designed our framework with the following properties in mind:
1 We note that some of our results do offer some insights on the resource design problem that we will briefly discuss.
2 Layer 2s, depending on their architecture, can perhaps implement price policies that require more computation

and are closer to the optimal ones.

1

mailto:davide@ethereum.org
mailto:ciamac@gsb.columbia.edu
mailto:shwang27@gsb.columbia.edu

2

• Simplicity: the price update algorithm should be simple enough that it can potentially be implemented
without error and tested by multiple clients, the price computation should not consume significant
network resources, and the algorithm should be future-proof (it should work with minimal to no upgrades
required).

• Robustness: the price updates should be robust to sudden and substantial shifts in resource demand as
well as fee manipulation attacks (e.g., a full block attack).

• Optimality: the performance of the algorithm should satisfy some criterion of optimality.

Our main theoretical contributions are the design of a flexible modeling framework that satisfies most
of these properties and the characterization of optimal dynamic pricing policies with multiple resources and
time-varying demand under a diverse set of assumptions. In particular:

1. Our framework allows to specify an arbitrary number of resources to be priced, it models the aggregate
resource demand dynamics as a system of linear equations and the realized block resource demand as a
system of linear functions of resource prices. It uses as objective function the quadratic deviation of block
usage from sustainable target at each block plus a regularization term for controlling price fluctuations.
In this way, we cast the blockchain resource pricing problem into the linear-quadratic framework that
has been studied in the optimal control literature and widely used in practical applications, from rocket
control to congestion pricing in ride-sharing networks.

2. We derive the optimal pricing policy for the most generic formulation with n resources and price reg-
ularization. The price update optimally handles the trade-off between adjusting prices in response of
persistent resource demand shifts versus being robust to local noise in the observed block demand. More-
over, it correctly takes into account the cross-effects in the joint price updates – i.e., accounting that the
demand for resource A will be suppressed (increased) as a result of a price increase of resource B when
these resources are complementary (substitutable), and vice-versa.

3. We present a novel decomposition of the resource pricing problem into a set of independent problems,
one for each resource. We use the structure of the demand function to define what are effectively bundles
of resources, whose optimal prices can be computed independently. We call these bundles eigenresources
and their prices eigenprices. Our result shows that when this decomposition is possible, optimal prices
can be constructed from simple independent update rules. Moreover, the result offers actionable insights
to protocol researchers that are thinking about market design for multiple resources.

We also take the optimal policies to real market data. We collect historical data on fourteen days and close
to one hundred thousand blocks of the Ethereum blockchain. We estimate our model parameters using the
EM algorithm and then compute the policies that we characterized in our theoretical results. We introduce
an evaluation framework where we compare our policies to EIP-1559 across a set of performance metrics.
The policies perform well across the set of metrics, with the regularized policy beating the benchmark on
all metrics. We have reason to believe that our framework can perform even better in multi-dimensional
settings with significant cross-effects between resources and we plan to extend this empirical analysis to
two-dimensions as real market data on EIP-4844 becomes available.

On top of providing optimal pricing policies and algorithms to compute them, we also show how they
can be used to inspire or refine simpler heuristics that are used in practice. We present two case studies for
EIP-1559 and EIP-4844. In the case of EIP-1559, we derive a heuristic based on constant price sensitivity
and show how the price update can be efficiently computed as a function of the resource demand estimate.
The former is already computed by most blockchains that use an EIP-1559 type formula to update base fees
at every block, where usually the latest block demand is used as a näıve single point estimate of demand. Our
heuristic only requires to maintain one additional variable, the demand estimate, and both resource demands
and prices can be updated after each block with a simple linear update that only uses local information.

A final thing to clarify is that the linear-quadratic optimization techniques we use to derive our optimal
policy have been widely studied and used. Our contribution is to cast the blockchain resource pricing problem
as a variant of the linear-quadratic framework, and define models for the resource demand dynamics and
demand system that fit in the framework and yet can accommodate for many practical scenarios. We also
note that the relation between EIP-1559 type rules and optimization of dynamical systems has been recently
studied in the literature as we discuss in the next section. The novelty of our framework is to use explicit
models for the time-varying demand dynamics, something that has not been considered before. This allows

3

us to derive dynamic pricing policies in a changing environment that depend on primitives of the demand
system such as price sensitivity/cross-sensitivity and variance.

1.1. Literature Review
Blockchain transaction fee mechanisms have recently undergone major improvements and are the subject of
current R&D in the Ethereum ecosystem. The first major set of improvements was originally researched by
Buterin [2018] in a seminal paper that proposed a series of ground-breaking ideas, among which justifying
the use of a dynamic base fee that is updated by the protocol to avoid congestion. This and related ideas
such as burning base fees to align incentives were implemented in the Ethereum protocol3 via EIP-1559.
Roughgarden [2020] provides a thorough game-theoretic analysis of this transaction fee mechanism, and also
discusses in depth the base fee update rule focusing on desiderata, potential attack vectors, and alternative
designs. Reijsbergen et al. [2022] provides a performance analysis using on-chain data and explores alternative
designs.

The multi-dimensional transaction fee mechanism is a further upgrade that has recently been proposed
by Buterin [2022] and has led to a new wave of interest on this topic. On the applied R&D side, EIP-4844
implements the first bi-dimensional fee mechanism for blockchains with the creation of the Ethereum datagas
resource and market which is one of the keys to Ethereum scalability, see Crapis [2023] for an analysis and
simulation.

A few recent papers consider the question of designing optimal fee update rules. Perhaps the closest to
our work is that of Diamandis et al. [2022] which focuses on the multi-dimensional case and derives optimal
prices as the solution of a welfare maximization problem and a general class of convex functions for the
network cost. While the above focuses on a static problem with full information, in our present work we
model both demand dynamics and the uncertainty of the protocol, that has to make optimal decisions based
on noisy signals of time-varying demand. Leonardos et al. [2022] study the optimality of the EIP-1559 price
update rule and alternative formulations in the uni-dimensional case through the lens of dynamical systems
analysis. Ferreira et al. [2021] study the stability and welfare optimality of a dynamic posted-price mechanism
that conditions prices on past block utilization and observable bids, they focus on steady state analysis of a
system with one resource and a probabilistic demand distribution that does not change over time.

2. Model
In what follows we describe the main components of our framework. We consider a setting with a realistic
demand process for the general n-dimensional resource pricing problem. We model aggregate resource demand
at every block, in discrete time indexed by k, and describe the protocol decision problem.

Demand dynamics. The aggregate resource demand dk of all user transactions that can potentially be
included in block k is governed by mean-reverting process dynamics with Gaussian noise given by

dk+1 = (I − Ad)µd + Addk + ϵd
k. (1)

Here, dk ∈ Rn is the resource demand vector in block k, ϵd
k ∼ N (0, W d) is i.i.d. Gaussian noise with

covariance matrix W d ∈ Rn×n, and µd ∈ Rn and Ad ∈ Rn×n are parameters of the demand process. This
process captures the essential properties of blockchain resource demand. The long-term mean base load of
resources is given by µd, but demand can spike and deviate to high load and revert to the base load, the
matrix Ad regulates the permanence of demand spikes for different resources.4

Observed demand. The protocol observes the aggregate resource demand yk ∈ Rn of all transactions that
are included into a valid block. We assume that yk is given by the demand model

yk = dk + Bkpk + ϵy
k, (2)

3 It has also been forked and adopted by many other protocols such as Filecoin, NEAR, and Ethereum L2 chains.
4 The more general case in which µd and Ad are time-varying also fit in our framework, we consider the constant

case for a clearer exposition.

4

where pk ∈ Rn are resource prices (determined by the protocol), Bk ∈ Rn×n are price-sensitivity parameters,
and ϵy

k ∼ N (0, W y) is i.i.d. Gaussian noise with covariance matrix W y ∈ Rn×n. That is, the protocol only
observes realized demand for all resources, which we model as a linear decreasing function of resource prices.
We also allow for cross-sensitivity, i.e., if the matrix entry Bk,12 is non-zero, the price of resource 2 can have
a positive (respectively, negative) impact on demand of resource 1, if the the resources are complements
(respectively, substitutes).

Price sensitivity. The price-sensitivity matrix Bk determining the observed demand yk via (2) evolves ac-
cording to

vec(Bk+1) = (I − AB)µB + ABvec(Bk) + ϵB
k , (3)

where vec(·) is a function that reshapes a matrix into a column vector by stacking its columns, AB ∈ Rn2×n2 ,
µB ∈ Rn2 , and ϵB

k ∼ N (0, W B) is i.i.d. Gaussian noise with covariance matrix W B ∈ Rn2×n2 . It follows
a mean-reverting process, where the long-term mean is given by the vector µB , and the parameters AB

quantifies how quickly vec(Bk) reverts to the base µB .

Price update. The resource prices for block k + 1 are decided after observing demand at block k. Charac-
terizing optimal prices is the subject of the following section.

Objective. Our objective function is a weighted sum of two loss functions. First, we aim to find a pricing
policy that minimizes resource demand deviation from the protocol block resource target t ∈ Rn. We choose
the long-term average of infinite-horizon aggregation of a quadratic loss function,

lim
K→∞

1
K

K∑
k=1

∥yk − t∥2
2.

Second, we aim to find a price update policy that minimizes price fluctuations over time. We choose the
long-term average of infinite-horizon quadratic variation of the price process as our second loss function,

lim
K→∞

1
K

K∑
k=1

∥pk − pk−1∥2
2.

We set λ ≥ 0 as the weight for these two loss functions. We can get our objective function to be

lim
K→∞

1
K

K∑
k=1

(
∥yk − t∥2

2 + λ∥pk − pk−1∥2
2
)

.

The total loss assigns increasingly high penalty to higher deviation from target demand and more significant
fluctuations in price process.5 Note that this is a problem that involves uncertainty, in the next section we
show how we can apply stochastic control techniques to find an optimal policy that minimizes the expected
objective function.

3. Optimal Policy
In this section, we delve into a comprehensive analysis of the optimal pricing policy. We first describe the
information structure and belief update techniques that are required to solve the stochastic control problem.
We then present two approaches to solve the problem, under different assumptions.

Information structure. We first define the information structure at every block k. The hidden state is given
by the vector

x⊺
k ≜ [d⊺

k vec(Bk)⊺] .

5 We can also specify weights and penalize deviation of resources differently, but we assume uniform weights or
alternatively that resource measurements are already properly re-scaled to focus on the fundamental trade-offs
between resources.

5

It evolves according to
xk+1 = (I − Ax)µx + Axxk + ϵx

k, ϵx
k ∼ N (0, W x),

where the parameters (Ax, µx, W x) can be determined from the parameters (Ad, µd, W d, AB , µB , W B) based
on equations (1) and (3). Here, we allow the dependencies between ϵd

k and ϵB
k , so that the noise term ϵx

k is
i.i.d. Gaussian noise with covariance matrix W x. The observation equation is

yk = dk + Bkpk + ϵy
k, ϵy

k ∼ N (0, W y), (4)

where ϵy
k is i.i.d. and independent with ϵx

k. The information available to the controller is

Ik ≜ σ(y0, y1, ..., yk, p0, p1, ..., pk).

We require that policies be adapted to the filtration {Ik}.

Belief updates. We use the Kalman filter to derive the formulas for the Bayesian update of beliefs on the
state xk and on future observation yk. The observation equation (4) can also be expressed as

yk = Ckxk + ϵy
k,

for an appropriate choice of the matrix Ck (depending on the price vector pk). Using a conjugate Gaussian
prior, denote the prior at k by

xk−1 ∼ N (x̂k−1, Σ̂k−1).

The predictive distribution of xk is Gaussian N (ak, Sk) with parameters

ak = E(xk|Ik−1) = (I − Ax)µx + Axx̂k−1,

Sk = Var(xk|Ik−1) = AxΣ̂k−1(Ax)⊺ + W x.

The predictive distribution of yk is Gaussian N (fk, Fk) with parameters

fk = E(yk|Ik−1) = Ckak,

Fk = Var(yk|Ik−1) = CkSkC⊺
k + W y.

The posterior distribution of xk is Gaussian N (x̂k, Σ̂k) with parameters

x̂k = E(xk|Ik) = (I − KkCk)ak + Kkyk,

Σ̂k = Var(xk|Ik) = (I − KkCk)Sk.

where Kk ≜ SkC⊺
k (CkSkC⊺

k + W y)−1 is the Kalman gain. This is the standard Kalman filter update which
computes the belief on the current hidden state given the current information.

Optimization problem. In the following results, we will characterize control policies that seek to minimize
the expected long-term average cost, solving the problem

minimize
p

J ≜ lim
K→∞

E
{

1
K

K∑
k=1

(
∥yk − t∥2

2 + λ∥pk − pk−1∥2
2
)}

subject to pk+1 is Ik-adapted.

(5)

3.1. Target Loss Objective
Our first result focuses on the case where we only aim to find a price update policy that minimizes resource
demand deviation from the target t. In particular, we do not add any penalty for fluctuations in the price
process and we make the following assumption.

Assumption 1. λ = 0.

6

The following theorem characterizes the optimal policy under Assumption 1.
Theorem 1. Consider Problem (5) and suppose Assumption 1 holds. Then, the optimal policy updates prices
according to the rule

p∗
k+1 =

[
E

(
B⊺

k+1Bk+1|Ik

)]−1 E
(
B⊺

k+1(t − dk+1)|Ik

)
.

Proof. The proof is provided in Appendix A.

Under Assumption 1, our focus is directed solely towards achieving the primary objective: making the
observed, or realized, demand align as closely as possible with our predefined target t. This approach can be
viewed as a pursuit of optimal demand estimation. We use Kalman filter to facilitate joint updates across
our potential demand dk and the price sensitivity matrix Bk. This dynamic filtering technique enables us to
incorporate new information into our estimation process. The optimal vector of resource prices for block k is
the one that matches the expected demand of each resource to the respective target. Note that in general, the
optimal policy necessarily takes into account the expected demand, price sensitivity, and target of resource
j when updating the price of resource i. Whenever demand-side cross-effects are present the optimal prices
need to be set jointly.

3.2. General Setting: Model Predictive Control
We now turn to the general problem, in which we have a penalty for fluctuations in the price process, with
weight λ > 0. This is important because large pricing fluctuations between adjacent blocks directly degrade
user experience. Thus, controlling the magnitude of price update is a requirement for every policy that can
be adopted in practice and it was one of the main design goals of EIP-1559.

Our framework allows us to flexibly control price fluctuations with the additional regularization term.
However, this increases the computational complexity of the optimal policy. One particular challenge is that
the price-sensitivity matrix Bk is stochastic. Since this multiplies the decision variable pk, our setting does
not fall into the standard framework of linear-quadratic-Gaussian (LQG) control.

This leads us to to the following heuristic procedure: first, we observe that if the evolution of price-
sensitivity matrix Bk is deterministic, then the problem can be optimally solved using standard LQG control
methods. Then, in the stochastic setting, we repeatedly apply the optimal deterministic policy, always using
the then current estimate for Bk, but pretending (for the purpose of control) that the future evolution of Bk

is deterministic — this is the idea of model predictive control.
Optimal policy under deterministic price-sensitivity. For the moment, we will make the following assump-
tion:
Assumption 2. The price-sensitivity matrix Bk is deterministic or, in other words, the noise term ϵB

k ≡ 0,
for all k ≥ 0.
Under this assumption, the dynamics for Bk are given by

vec(Bk+1) = (I − AB)µB + ABvec(Bk). (6)

Using LQG control methods, we are able to derive an optimal policy explicitly, and the following theorem
characterizes the optimal policy:

Theorem 2. Consider problem (5) and suppose Assumption 2 holds. Then, the optimal policy updates prices
according to the rule

p∗
k+1 =

(
I − Qk

λ

)
pk + Qk

λ
aimk. (7)

Here, Qk ∈ Rn×n is a positive definite matrix capturing the quadratic coefficient of the price vector pk the
cost-to-go function (we provide an explicit derivation for this as the solution of a Ricatti equation in the
Appendix A). aimk is the “aim” price defined by

aimk =
∞∑

s=k+1
(I − Zs)Zs−1Zs−2 · · · Zk+1p̄s, (8)

7

where Zs ≜ (Qs + B⊺
s Bs)−1

Qs is a positive definite matrix, and p̄s is the market clearing price that satisfies

E(ys|Ik, ps = p̄s) = t.

The sum of the coefficient matrices of the aim price satisfies

∞∑
s=k+1

(I − Zs)Zs−1Zs−2 · · · Zk+1 = I.

Proof. The proof is provided in Appendix A.

We can understand Theorem 2 through an interpretation analogous to that developed by Gârleanu and
Pedersen [2013], who consider different LQG control problem in a quantitative trading setting. First, observe
that according to (7), the optimal price in block k + 1 can be expressed as the (matrix-weighted) convex
combination of the current price pk and a future “aim” price aimk. This captures a trade-off between the
two objectives of not changing prices much (by staying close to the current price) and ensuring that future
observed demand aligns with the target t (by targeting the aim price).

The aim price aimk, in particular, is a (matrix-weighted) average of future market clearing prices {p̄s}.
Each p̄s is the price for block s that so that the expected demand in block s matches the target t, conditional
on information known up to block k. The matrix weights in (8) specify exactly how much to weight to put
on different future periods. These weights guide the controller in how much to emphasize targeting demand
in different future blocks, when making the pricing decision for the next block. This captures the idea that
one should set immediate prices in a way that not only works well for the next block, but also leaves the
controller in a good position for subsequent blocks downstream.

Model predictive control. Of course, the original problem (5) allows for stochastic and time-varying price-
sensitivity, and this is an important feature in the empirical analysis of Section 6. Therefore, we will adapt
the policy of Theorem 2 to this more general setting using the idea of model predictive control (MPC):

1. After each block k, we estimate the current price-sensitivity according to B̂k = E(Bk|Ik), using all
available information available at that time, under the original dynamics (3). This can be accomplished
using a standard Kalman filter, as described in the belief updates of Section 2.

2. Given the estimate B̂k, we solve for the optimal policy under Theorem 2, that is, assuming that Bk = B̂k

and that the future evolution of Bk is deterministic as per (6).

While the MPC policy is no longer optimal for the problem (5) under stochastic price-sensitivity, we shall
see in the empirical results of Section 6 that nevertheless this procedure is a powerful heuristic.

4. Resource Design and Separable Eigenresources
In this section, we present a pricing approach which holds significant economic implications. Instead of pricing
individual resources as explicitly specified, we focus on pricing the linear combinations of these resources,
which we refer to as eigenresources. Our main result also has implications for protocol designers thinking
about how to structure supply-side resources and create markets for pricing them. The idea here is that,
in the policies of Section 3, in general resources must be jointly priced. This is because there could be
cross-price elasticities, since some resources can be complements or substitutes. In this section, we discuss
a setting where, through the definition of appropriate resources, the problem nevertheless separates into
different control problems for each resource.

We will derive our result under the assumption that the price-sensitivity parameter Bk can be decomposed
into principal components consistently over time:

Assumption 3. There exist fixed, orthogonal matrices U, V ∈ Rn×n such that, for all k,

Bk = U diag(δk)V ⊺.

8

Here, δk ∈ Rn is the sensitivity vector for eigenresources governed by a mean-reverting process

δk+1 = (I − Aδ)µδ + Aδδk + ϵδ
k. (9)

where Aδ ∈ Rn×n, µδ ∈ Rn, and ϵδ
k ∼ N (0, W δ) represents the i.i.d. Gaussian noise with covariance matrix

W δ ∈ Rn×n.

Given the matrices (U, V), we can change coordinates as follows:

Eigendemand. The eigendemand of the eigenresources ỹk ∈ Rn that are included into a valid block is given
by

ỹk = U−1yk.

Here, the columns of U−1 define linear combinations of the original resources. These new eigenresources are
what will be prices.

Eigenprice. The eigenprice of eigenresources p̃k ∈ Rn is given by

p̃k = V ⊺pk.

Eigentarget. The eigentarget of eigenresources t̃ ∈ Rn is given by

t̃ = U−1t.

The orthogonal property of matrix U ensures the cost for the demand deviation from target t equals to the
cost for the eigendemand deviation from eigentarget t̃, i.e. ∥yk − t∥2

2 = ∥ỹk − t̃∥2
2, which means it is equivalent

for us to minimize the eigendemand deviation from eigentarget t̃.

Eigenprice sensitivity. We can get the eigendemand ỹk satisfies

ỹk = d̃k + diag(δk)p̃k + ϵ̃y
k,

where d̃k ≜ U−1dk and ϵ̃y
k ≜ U−1ϵy

k by yk = dk + Bkpk + ϵy
k. We can see that δk is the eigenprice-sensitivity

vector indicating the price-sensitivity of each eigenresource. Equation (9) shows that the long-term mean
base eigenprice-sensitivity is given by the vector µδ, but it can also fluctuate around the base eigenprice-
sensitivity vector, and the parameters Aδ quantifies how quickly the eigenprice-sensitivity vector reverts to
the base eigenprice-sensitivity vector.

Optimal policy. The following theorem characterizes the optimal policy under Assumption 1 and Assumption
3.

Theorem 3. Consider the objective of minimizing the expected long-term average cost,

minimize
p

J ≜ lim
K→∞

E
{

1
K

K∑
k=1

∥yk − t∥2
2

}
subject to pk is Ik−1-adapted.

Then, the optimal policy updates prices according to the rule

p∗
k+1 ≜ V p̃∗

k+1,

where the ith element of eigenprice p̃k+1 satisfies

p̃∗
k+1,i =

E
(
δk+1,i(t̃i − d̃k+1,i)|Ik

)
E

(
δ2

k+1,i|Ik

) ,

δk+1,i, t̃i, d̃k+1,i are the ith element of δk+1, t̃, d̃k+1 respectively.

Proof. The proof is provided in Appendix A.

9

The optimal price in block k + 1 is the product of orthogonal matrix V and the eigenprice p̃k+1. The
explicit expression of each eigenprice p̃∗

k+1,i shows that optimal prices for eigenresources depend only on
the its own expected demand, price-sensitivity, and target. This implies that when one can leverage this
decomposition, one can devise pricing strategies that are simple yet optimal. In particular, they do not
require the joint determination of all prices that can be more computationally intensive.

Note that Theorem 3 is analogous to Theorem 1, in that they both handle the λ = 0 case (Assumption 1).
There is a similar analogous result for the deterministic price-sensitivity case of Theorem 2: in that case, the
optimal policy will similarly separate across eigenresources. We omit an explicit statement and proof of this
result since it is relatively obvious given the developments thus far.

Beyond pricing, these results also holds implications for resource market design. In particular, if the
protocol designer can define virtual resources that have minimal demand-side interaction between them,
then simple heuristics that implement independent price updates between resources will have a smaller
efficiency loss versus the optimal pricing policy. We further expand on this insight in Section 5 when we
discuss EIP-4844.

5. Implications
In this section we study particular instances of our framework (e.g., uni-dimensional or bi-dimensional
resources) and develop practical implications by comparing optimal policies to heuristics that are used in
practice, such as the EIP-1559 and the EIP-4844 price update rules. For a more direct comparison with these
rules, in this section we consider the optimal policy characterized in Theorem 1 when λ = 0, and we focus
on the special case in which the price sensitivity Bk is deterministic and constant.

5.1. Uni-dimensional Resource and Ethereum Gas
Suppose there is only one resource, for example a virtual resource such as gas in Ethereum. Define β ≜
∂yk/∂pk < 0 to be the (deterministic, constant) price sensitivity of demand in this one dimensional model,
substituting pk+1 = pk + uk in the optimal pricing policy of Theorem 1 yields the following equation for the
optimal price update

uk = −β−1(ak+1 + βpk − t), (10)
where the predictive estimate of demand can be expressed as

ak+1 = (1 − α)µd + α

(
σ2

ϵy

α2σ̂2
k + σ2

ϵd + σ2
ϵy

ak +
α2σ̂2

k + σ2
ϵd

α2σ̂2
k + σ2

ϵd + σ2
ϵy

(yk − βpk)
)

.

Here, α is the uni-dimensional entry of the matrix Ad and the variances σ̂2
k, σ2

ϵd , σ2
ϵy are the uni-dimensional

entries of the matrices Σ̂k, W d, W y, respectively. The optimal price update has two main properties:

(i) Maintains the optimal balance between responsiveness to change and robustness to noise. It does this
by using the signal-to-noise ratio σ2

ϵy /(α2σ̂2
k + σ2

ϵd) to optimally weigh in new information – the higher
the idiosyncratic variance σ2

ϵy of block size observation, vis-à-vis a more persistent state change, the less
responsive the optimal controller will be to local deviation from the current estimate.

(ii) Optimally computes the next period price to match predicted and target demand. First computing the
predicted demand at the current price ak+1 + βpk and then adjusting with the price sensitivity. The
optimal price update is increasing in predicted demand and decreasing in price sensitivity — i.e., the
more sensitive users are to prices the lower the update required to control demand.

Optimal Policy vs. EIP-1559. We compare the optimal price update policy to the EIP-1559 update rule and
distill insights that can guide future design and improvements. Consider the generic EIP-1559 style linear
price update rule

pk+1 = pk

(
1 + γk

yk − t

t

)
, (11)

where EIP-1559 has γeip1559
k ≜ 1/8. We can apply a few simple transformations to the optimal policy to

obtain a comparable form. Note that the price elasticity of block k demand at the target point t is ηk = βpk/t.

10

Solving for β, substituting into the scaling factor of the optimal update (10), and substituting the resulting
u∗

k into the full price update equation pk+1 = pk + u∗
k yields

pk+1 = pk

(
1 + 1

|ηk|
ak+1 + βpk − t

t

)
.

Thus, the optimal policy is similar to the EIP-1559 rule (11), with two key differences:

• EIP-1559 uses the current block size yk as a näive estimate for the next period demand, while the optimal
policy uses the predictive estimate;

• EIP-1559 divides the adjustment by a fixed parameter, set to 8, instead of the optimal parameter which
is equal to the absolute value of the current demand elasticity |ηk|.

Another way of comparing is by noting that the optimal policy is actually equivalent to the EIP-1559 style
rule (11) with step-size

γopt
k = 1

|ηk|
ak+1 + βpk − t

yk − t
,

which shows how, while EIP-1559 updates prices with a constant learning rate of γeip1559
k = 1/8, this policy

optimally adapts the learning rate to the predicted demand.

5.2. Bi-dimensional Resource and Ethereum Datagas
Consider now the case of two resources. This is akin to how the Ethereum fee market once EIP-4844 introduces
an additional market for datagas. We expand on this shortly, for now consider the generic bi-dimensional
n = 2 resource case, the optimal update at step k has the form[

uk,1
uk,2

]
= 1

β12β21 − β11β22

[
−β22 β12
β21 −β11

] [
∆k,1
∆k,2

]
,

where ∆k,i = (ak+1 + Bpk − t)i is the predicted deviation of resource i demand from its target and βij the
element in row i and column j of B. The update to price 1 can thus be expressed as

uk,1 = ∆k,1 − β12β−1
22 ∆k,2

β11 − β21β−1
22 β12

,

which computes the optimal joint resource price update taking into account both resource demand balances
and cross-sensitivities. We illustrate how this works by considering three scenarios of increasing sophistication:

(i) if resource 1 is independent of price 2 (β12 = 0) then the optimal update is similar to the uni-dimensional
case, uk,1 = ∆k,1/β11;

(ii) if resource 1 is dependent of price 2 (β12 ̸= 0) but resource 2 is independent of price 1 (β21 = 0)
then the optimal update is uk,1 = (∆k,1 − β12β−1

22 ∆k,2)/β11, where the second term in the numerator
accounts for the joint update of price 2. Suppose ∆k,2 > 0, then the optimal update of price 1 will be
adjusted downwards if the resources are complement (β12 < 0) and upwards if the resources are substitute
(β12 > 0);

(iii) if both cross sensitivities are positive then the optimal update also accounts for the indirect effect of
changing price 1 on resource 1 via its impact on the demand and optimal update of resource 2 (i.e., the
pathway β21 → 1/β22 → β12 in the demand system represented in Figure 1). The denominator in the
full update formula above is the “net sensitivity” of resource 1 to price 1.

Optimal Policy vs. EIP-4844. We now compare the optimal policy to the rule that will be used in Ethereum’s
fee market after EIP-4844 is implemented. As mentioned before, this EIP introduces a new resource called
datagas on top of the standard gas. This new resource is consumed by a particular type of transaction called
BlobTransaction which is likely going to be used by most Layer 2 systems to commit data to Layer 1. The

11

Figure 1: Example of prices-resources relationship in the demand system with cross-sensitivity matrix B (bi-
dimensional case).

EIP also introduces a new fee market for the new resource with a price update rule that mimics EIP-1559.6
Thus at every block the prices of both resources are updated as follows

pk+1,dat = pk,dat

(
1 + 1

8
yk,dat − tdat

tdat

)
, pk+1,gas = pk,gas

(
1 + 1

8
yk,gas − tgas

tgas

)
.

One important thing to note is that the updates calculated via these rules are independent from one another,
while they are coupled in the optimal update policy. For example, consider the first update rule for datagas
above and compare it to the optimal update policy,

pk+1,dat = pk,dat + ak+1,dat + βdat,datpk,dat + βdat,gaspk,gas − tdat

βdat,dat − βgas,datβ
−1
gas,gasβdat,gas

− βdat,gasβ
−1
gas,gas

ak+1,gas + βgas,datpk,dat + βgas,gaspk,gas − tgas

βdat,dat − βgas,datβ
−1
gas,gasβdat,gas

,

which properly accounts for the effect of an update in gas price on the future demand of datagas and,
moreover, it adjusts the datagas price update taking into account the joint update of the gas price. This
difference is important because BlobTransactions consume both resources and thus the demands are not
independent. Failing to take this into account will likely result in cycles of over/under correction of prices.
Inefficiencies of this type will be even more prevalent when moving beyond two resources, so we believe that
future designs for multi-dimensional resource pricing should have some of the good properties of the optimal
pricing policy highlighted here.

6. Empirical Analysis
We now demonstrate how, besides generating theoretical insights and benchmarks, our framework can easily
be used in applied settings and calibrated or estimated using onchain data. We focus on a uni-dimensional
application, for this we can use historical onchain data for gas used and the associated base fees that are
computed via the EIP-1559 rule that is live on Ethereum mainnet. In the future, once the data on other
resources will be available, for example the data market of EIP-4844 we can extend the analysis to the
multi-dimensional case.

6.1. Empirical Setup

Data. We use historical market data for 99,547 blocks that were added to Ethereum in the span of two weeks
(starting on February 24, 2023). The first block is 16,694,514 and the last block is 16,794,061, we rescale the
6 In reality an exponential form is used for datagas instead of the linear form used for gas. Since the two forms are

approximately equal we use the linear form for both resources to make the presentation clearer.

12

first block number in our dataset to 0 for clarity. We also note that this is a generic 14-day period that does
not represent any particular market conditions. For every block we observe the prevailing EIP-1559 base fee
and we compute the total gas consumed aggregating over all the transactions included in the block.

Parameter Estimation. We estimate the uni-dimensional version of our model using the Expectation-
maximization (EM) method on the observed sample. In particular, given the sample observations and the
full unobserved state, respectively

IT ≜ {(y0, p0), (y1, p1), · · · , (yT , pT)} and ST ≜ {(d0, β0), (d1, β1), · · · , (dT , βT)} ,

we want an estimator for our model θ ≜
(
µd, µβ , αd, αβ , σϵd , σϵβ , ρϵd,ϵβ , σϵy , d0, β0, σd0 , σβ0 , ρd0,β0

)
, where

αd and αβ are the one dimensional entries of the respective matrices Ad and Aβ , σ denotes the standard
deviation and ρ the correlation coefficient of the respective noise terms, and the last five parameters are the
prior means, standard deviations, and correlation of the state variables at time 0. The EM algorithm finds
the MLE of the marginal likelihood by iteratively applying two steps:

E step. Compute conditional likelihood p (ST |IT ; θt).
M step. Compute θt+1 = argmaxθ E [log p (ST , IT ; θ)| p (ST |IT ; θt)].

In particular we use the Kalman smooth to compute the likelihood in the E step and then compute
optimal solution of the M step where we have a convex objective function (Appendix B reports a detailed
description of the algorithm). The result is the following MLE of our model parameters:

Parameter Value

µd 7.30 × 107

µβ −2.38 × 10−3

αd 9.97 × 10−1

αβ 9.98 × 10−1

σϵd 1.04 × 106

σϵβ 5.35 × 10−5

ρϵd,ϵβ −5.48 × 10−1

σw 7.21 × 106

d0 4.47 × 107

β0 −9.62 × 10−4

σd0 1.47 × 106

σβ0 3.05 × 10−4

ρd0,β0 −2.57 × 10−1

Table 1: MLE Estimates of Model Parameters via EM Algorithm with Kalman smoother.

Simulation. We now use our model to simulate the optimal policy and then compare to the EIP-1559 policy
for our main results. The main outcome of our simulation is the state estimates that, together with the model
parameters, fully characterize our optimal policy. We use the Kalman filter to update state estimates online
and then compute the optimal policies as characterized in Section 3. The following figure reports the state
estimates. We can see how the state estimates vary during the day, adapting to the patterns of observed
demand. The mean for the demand sensitivity is β̄ = −0.0025, we can use the prevailing price to compute
the implied demand elasticity ηk = βkpk/t at the target for every block. The mean implied elasticity over
the entire sample is η̄ ≈ −4.

6.2. Empirical Results
We compute performance metrics for three policies and summarize them in the following table. The first
policy is the optimal policy for the problem without price regularization (λ = 0) that we charachterized in

13

Figure 2: State estimates using the Kalman filter, potential demand d̂k (left) and demand sensitivity β̂k (right),
for the first 7,080 blocks in our sample. The orange line reports the mean for the respective parameter estimate
computed over all blocks in our sample.

Theorem 1, we call this policy LINDY(0). The second policy is the policy with price regularization (λ > 0),
computed according to the MPC method that we derived from Theorem 2, we call this policy LINDY(λ)
with λ = 10−7 in this case. The last row reports the benchmark EIP-1559 policy. The main results are
reported in Table 2, for each policy we compute the following metrics:

• Gas Used Bias: Bias(y, t). Average deviation of gas used from target t over all blocks in our sample.
Unit: gas.

• Gas Used Standard Deviation: SD(y). Sample standard deviation of gas used. Unit: gas.
• Root Mean Squared Deviation (of gas used from target): RMSD(y, t). Square root of sum of

squared difference between gas used and 15M gas target over all blocks. It can also be expressed as
function of bias and standard deviation as follows

RMSD(y, t) =

√√√√ 1
T

T∑
k=1

(yk − t)2 =
√

Bias(y, t)2 + SD(y)2.

Unit: gas.
• Fraction of near-full blocks: ϕ0.95(y). Fraction of blocks that are more than 95% full, i.e. blocks that

use more than 28.5M gas. Unit: percent.
• Root Mean Squared Update: RMSU(p). Square root of sum of squared updates, i.e. the difference

between pk+1 and pk, for every block k in our sample, i.e.,

RMSU(p) =

√√√√ 1
T

T∑
k=1

(pk − pk−1)2.

Unit: gweis.

The first column shows that the EIP-1559 policy overshoots the fifteen million gas target by 1% on
average in our sample while the LINDY policies are both extremely accurate, overshooting by fraction of a
percent. Using column two, we can compute the RMSD which shows that while the average deviation for the
EIP-1559 policy is about 5.75M the LINDY policies deviate on average by about 5.4M, a 6% improvement.

Moreover, EIP-1559 results in 2.65 times more near-full blocks compared to the LINDY policies, suggesting
that the performance improvement at times of high demand might be higher than the average. Finally, note
that adding a bit of regularization yields a policy, LINDY(λ), that is much smoother on average than EIP-
1559 with an average update of only 1.1 gweis, a 28% improvement in the RMSU. In what follows we analyze
these properties with additional analyses on the performance of LINDY(λ) versus the benchmark.

Figure 3 reports two histograms to visualize the observed and simulated values for gas used (left) and
fee updates (right) for all 99,547 blocks in our sample, comparing the EIP-1559 with the LINDY(λ) policy.

14

Bias(y, t) SD(y) RMSD(y, t) ϕ0.95(y) RMSU(p)

LINDY(0) 102 5,404,967 5,404,967 2.0% 1.9
(99.9%) (5.9%) (6.0%) (62%) (-35.7%)

LINDY(λ) 3,932 5,404,474 5,404,476 2.0% 1.1
(97.2%) (5.9%) (6.0%) (62%) (21.4%)

EIP-1559 140,495 5,745,604 5,747,321 5.3% 1.4

Table 2: Performance metrics for the LINDY policies and EIP-1559, the regularized policy has λ = 10−7. In
parethesis below each metric the percentage improvement of the respective LINDY policy versus the EIP-1559
benchmark. The unit of the first three columns is Ethereum gas and the unit of the last column is gweis.

Note that we plot the fee update uk = pk+1 − pk instead of the absolute fee. The plot on the left shows how
our policy is able to achieve a distribution of gas used that is much less concentrated around the limit of
30M gas and closer to the gas target in general. At the same time, our policy shows lower variability in fees
in aggregate, the distribution of updates is concentrated around the value of 0 in the right plot.

Figure 3: Histogram of gas used (left) and update size (right); comparing LINDY(λ) policy to EIP-1559.

Finally, we look at how our policy performs in different market regimes. In particular, we identify intervals
of blocks that are in a demand spike and blocks that are in a stable demand regime. We use a heuristic that
is solely based on the observed gas used. We compute a symmetric moving average of 25 blocks (roughly 5
minutes) for every block in our sample, then we classify as demand spikes the blocks that have a moving
average of more than 20 million gas used (or 2/3 of the block limit) and stable demand the blocks that have
a moving average between 13.5 and 16.5 million gas used (or within 1/10 of the block target).

Figure 4 shows an example of a demand spike and an example of stable and slightly increasing demand.
We can appreciate how the LINDY(λ) policy is more responsive to demand spikes, with fees surging more
quickly than EIP-1559 and also going down more quickly after the demand spike (left). Also, computing
the RMSD over demand spike blocks only shows that the optimal policy performs significantly better than
EIP-1559, with an improvement of almost 12%. At the same time, our policy is less variable and less reactive
to noise during the many periods of stable demand (right).

15

Figure 4: Base fee for EIP-1559 vs LINDY(λ) policy during a demand spike (left, blocks 120 to 200) and a stable
period with increasing demand (right, blocks 4300 to 4600).

Bibliography

Vitalik Buterin. Blockchain resource pricing. https://ethresear.ch/uploads/default/original/2X/1/
197884012ada193318b67c4b777441e4a1830f49.pdf, August 2018.

Vitalik Buterin. Multidimensional eip-1559. https://ethresear.ch/t/multidimensional-eip-1559/
11651, 2022.

Davide Crapis. Eip-4844 fee market analysis. https://ethresear.ch/t/eip-4844-fee-market-analysis/
15078, March 2023.

Theo Diamandis, Alex Evans, Tarun Chitra, and Guillermo Angeris. Dynamic pricing for non-fungible
resources: Designing multidimensional blockchain fee markets, 2022. URL https://arxiv.org/abs/2208.
07919.

Matheus V. X. Ferreira, Daniel J. Moroz, David C. Parkes, and Mitchell Stern. Dynamic posted-price mech-
anisms for the blockchain transaction-fee market. Proceedings of the 3rd ACM Conference on Advances in
Financial Technologies, 2021. URL https://doi.org/10.1145%2F3479722.3480991.

Nicolae Gârleanu and Lasse Heje Pedersen. Dynamic trading with predictable returns and transaction costs.
https://onlinelibrary.wiley.com/doi/epdf/10.1111/jofi.12080, 2013.

Stefanos Leonardos, Daniël Reijsbergen, Barnabé Monnot, and Georgios Piliouras. Optimality despite chaos
in fee markets, 2022. URL https://arxiv.org/abs/2212.07175.

Daniël Reijsbergen, Shyam Sridhar, Barnabé Monnot, Stefanos Leonardos, Stratis Skoulakis, and Georgios
Piliouras. Transaction fees on a honeymoon: Ethereum’s eip-1559 one month later, 2022. URL https:
//arxiv.org/abs/2110.04753.

Tim Roughgarden. Transaction fee mechanism design for the ethereum blockchain: An economic analysis of
eip-1559. https://timroughgarden.org/papers/eip1559.pdf, 2020.

https://ethresear.ch/uploads/default/original/2X/1/197884012ada193318b67c4b777441e4a1830f49.pdf
https://ethresear.ch/uploads/default/original/2X/1/197884012ada193318b67c4b777441e4a1830f49.pdf
https://ethresear.ch/t/multidimensional-eip-1559/11651
https://ethresear.ch/t/multidimensional-eip-1559/11651
https://ethresear.ch/t/eip-4844-fee-market-analysis/15078
https://ethresear.ch/t/eip-4844-fee-market-analysis/15078
https://arxiv.org/abs/2208.07919
https://arxiv.org/abs/2208.07919
https://doi.org/10.1145%2F3479722.3480991
https://onlinelibrary.wiley.com/doi/epdf/10.1111/jofi.12080
https://arxiv.org/abs/2212.07175
https://arxiv.org/abs/2110.04753
https://arxiv.org/abs/2110.04753
https://timroughgarden.org/papers/eip1559.pdf

17

A. Proofs
Proof of Theorem 1. We consider the objective function as a finite sum

JK ≜ E
{

K∑
k=1

∥yk − t∥2
2

}

=
K∑

k=1
E

{
E

[
∥dk + Bkpk + ϵy

k − t∥2
2|Ik

]}
to calculate the optimal policy p∗

k+1,K . Note that the objective JK separates into a sum of quadratic terms.
Equating the first-order conditions for pk+1 to 0 for every k yields the control policy

p∗
k+1,K =

[
E

(
B⊺

k+1Bk+1|Ik

)]−1 E
(
B⊺

k+1(t − dk+1)|Ik

)
.

Then we let K goes to infinity, and we can get

p∗
k+1 = lim

K→∞
p∗

k+1,K

=
[
E

(
B⊺

k+1Bk+1|Ik

)]−1 E
(
B⊺

k+1(t − dk+1)|Ik

)
.

⊓⊔

Proof of Theorem 2. We consider the objective function as a finite sum

JK = min
p

E
{

K∑
k=1

(
∥yk − t∥2

2 + λ∥pk − pk−1∥2
2
)}

to calculate the optimal policy p∗
k+1,K . Using the techniques in dynamic programming, we further suppose

Jk,K ≜ min
p

E

{
K∑

s=k+1

(
∥ys − t∥2

2 + λ ∥ps − ps−1∥2
2

)∣∣∣∣∣ Ik

}
.

Lemma 1. We can use induction to show that there exists matrices Qk,K , Rk,K ∈ Rn×n and vector τk,K ∈
Rn such that

Jk,K = p⊺kQk,Kpk − 2τ⊺
k,Kpk + 2(ad

k+1)⊺Rk,Kpk + Hk,K ,

where ad
k+1 ≜ E (dk+1|Ik) and Hk,K is independent with the choice of decision variables p. Moreover,

Qk,K , Rk,K , τk,K satisfy
Qk−1,K = λI − λ2(λI + Qk,K + B⊺

k Bk)−1,

R⊺
k−1,K = λ(λI + Qk,K + B⊺

k Bk)−1(B⊺
k + R⊺

k,KAd),

τk−1,K = λ(λI + Qk,K + B⊺
k Bk)−1

(
B⊺

k t + τk,K − R⊺
k,K(I − Ad)µd

)
.

Proof. For k = K, JK,K = 0, we can let QK,K = 0, RK,K = 0, and τK,K = 0. Suppose for k = s, we have

Js,K = p⊺s Qs,Kps − 2τ⊺
s,Kps + 2(ad

s+1)⊺Rs,Kps + Hs,K .

For k = s − 1, we can first get the optimal policy

p∗
s,K = argmin

ps

E
{

∥ys − t∥2
2 + λ∥ps − ps−1∥2

2 + Js,K |Is−1
}

= argmin
ps

E
{

∥ds + Bsps + ϵy
s − t∥2

2 + λ∥ps − ps−1∥2
2 + p⊺s Qs,Kps − 2τ⊺

s,Kps + 2(ad
s+1)⊺Rs,Kps|Is−1

}
,

18

by the expression of Js,K . It is a quadratic function with respect to the decision variable ps. We can get the
optimal policy

p∗
s,K = −(λI + Qs,K + B⊺

s Bs)−1
(

B⊺
s ad

s − B⊺
s t − λps−1 − τs,K + R⊺

s,K

[
(I − Ad)µd + Adad

s

])
,

by equating its first-order condition to 0. After plugging in and comparing the coefficient, the optimal value

Js−1,K = p⊺s−1Qs−1,Kps−1 − 2τ⊺
s−1,Kps−1 + 2(ad

s)⊺Rs−1,Kps−1 + Hs−1,K ,

where
Qs−1,K = λI − λ2(λI + Qs,K + B⊺

s Bs)−1,

R⊺
s−1,K = λ(λI + Qs,K + B⊺

s Bs)−1(B⊺
s + R⊺

s,KAd),

τs−1,K = λ(λI + Qs,K + B⊺
s Bs)−1

(
B⊺

s t + τs,K − R⊺
s,K(I − Ad)µd

)
.

⊓⊔

Suppose Qk = limK→∞ QK
k , Rk = limK→∞ RK

k , τk = limK→∞ τK
k , Hk = limK→∞(Hk,K − H0,K), and

J̃k = p⊺kQkpk − 2τ⊺
k pk + 2(ad

k+1)⊺Rkpk + Hk. Taking limit in Lemma 1, we have

p∗
k+1 = argmin

pk+1

E
{

∥yk+1 − t∥2
2 + λ∥pk+1 − pk∥2

2 + J̃k+1|Ik

}
,

J̃k = min
pk+1

E
{

∥yk+1 − t∥2
2 + λ∥pk+1 − pk∥2

2 + J̃k+1|Ik

}
. (12)

We take the partial derivative with respect to pk on both sides of the equation 12. Then we have

2Qkpk − 2τk + 2R⊺
kad

k+1 = −2λ(p∗
k+1 − pk),

which means that
p∗

k+1 =
(

I − Qk

λ

)
pk + Qk

λ
aimk,

where aimk = Q−1
k (τk − R⊺

kad
k+1).

We can also get
Qk = λI − λ2(λI + Qk+1 + B⊺

k+1Bk+1)−1,

R⊺
k = λ(λI + Qk+1 + B⊺

k+1Bk+1)−1(B⊺
k+1 + R⊺

k+1Ad),

τk = λ(λI + Qk+1 + B⊺
k+1Bk+1)−1 (

B⊺
k+1t + τk+1 − R⊺

k+1(I − Ad)µd
)

,

after taking limit. By some algebraic manipulations, we can get

Q−1
k = λ−1(Qk+1 + B⊺

k+1Bk+1)−1(λI + Qk+1 + B⊺
k+1Bk+1),

τk − R⊺
kad

k+1 = λ(λI + Qk+1 + B⊺
k+1Bk+1)−1 (

B⊺
k+1(t − ad

k+1) + τk+1 − R⊺
k+1

(
(I − Ad)µd + Adad

k+1
))

.

Thus, we can get

aimk = Q−1
k (τk − R⊺

kad
k+1)

= (Qk+1 + B⊺
k+1Bk+1)−1 (

B⊺
k+1(t − ad

k+1) + τk+1 − R⊺
k+1

(
(I − Ad)µd + Adad

k+1
))

= (B⊺
k+1Bk+1 + Qk+1)−1 (

B⊺
k+1Bk+1p̄k+1 + Qk+1E(aimk+1|Ik)

)
,

where p̄k+1 ≜ B−1
k+1(t − ad

k+1) satisfying E(yk+1|Ik, pk+1 = p̄k+1) = t. is the market clearing price at block
k + 1. We can obtain the result stated in Theorem 2 by employing the same technique to represent αk+1 and
iterating this process repeatedly. ⊓⊔

19

Proof of Theorem 3. By Theorem 1, the optimal policy

p∗
k+1 =

[
E

(
B⊺

k+1Bk+1|Ik

)]−1 E
(
B⊺

k+1(t − dk+1)|Ik

)
.

= [E (V diag(δk+1)U⊺U diag(δk+1)V ⊺|Ik)]−1 E
(
V diag(δk+1)U⊺(Ut̃ − Ud̃k+1)|Ik

)
= V

[
E

(
diag(δk+1)2|Ik

)]−1 E
(
diag(δk+1)(t̃ − d̃k+1)|Ik

)
.

By the eigenprice p̃∗
k+1 = V ⊺p∗

k+1, we can obtain

p̃∗
k+1 =

[
E

(
diag(δk+1)2|Ik

)]−1 E
(
diag(δk+1)(t̃ − d̃k+1)|Ik

)
,

which is equivalent to Theroem 3. ⊓⊔

B. Empirical Models
We introduce the Expectation-Maximization (EM) algorithm to estimate the parameters in our model using
real data. The EM algorithm is a two-step iterative method designed for finding maximum likelihood esti-
mates of parameters in probabilistic models with incomplete data. It is especially useful in situations where
direct optimization of the likelihood is computationally challenging or not feasible.

In our study, the EM algorithm is applicable to both our baseline model and eigenresources model. For
clarity and brevity, we will take the baseline model as an illustrative example to introduce how the EM
algorithm works.

Model review. Demand dynamics

dk+1 = (I − Ad)µd + Addk + ϵd
k.

Price-sensitivity matrix
vec(Bk+1) = (I − AB)µB + ABvec(Bk) + ϵB

k .

Observed demand
yk = dk + Bkpk + ϵy

k.

Hidden state and observed state. The hidden state in our model is x⊺
k = [d⊺

k vec(Bk)⊺] . It evolves according
to

xk+1 = (I − Ax)µx + Axxk + ϵx
k, ϵx

k ∼ N (0, W x).

The observed state in our model is yk. It satisfies

yk = Ckxk + ϵy
k, ϵy

k ∼ N (0, W y).

Parameters. The parameter that need to be estimated in our model is

θ ≜ (µx, Ax, W x, W y, a0, S0),

where x0 and S0 represent the normal-mean and normal-variance for the initial hidden state respectively.

EM algorithm.

1. Initialization: Choose initial values θ0 for the parameters.
2. E-Step (Expectation): Given the current parameters θt, compute the expectation of the log likelihood

l(θ|θt) ≜ E {log(x0:T , y0:T ; θ)|x0:T , y0:T ∼ p(θt), IT }

with respect to the hidden state and observed state.
3. M-Step (Maximization): Maximize the expected log likelihood found in the E-step with respect to

the parameter θ, and update the parameter to this new value, i.e., θt+1 = argmaxθ l(θ|θt).

Repeat the E-Step and M-Step until the algorithm converges.

