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Abstract

We consider a finite-horizon multi-armed bandit (MAB) problem in a Bayesian setting, for
which we propose an information relaxation sampling framework. With this framework, we
define an intuitive family of control policies that include Thompson sampling (TS) and the
Bayesian optimal policy as endpoints. Analogous to TS, which, at each decision epoch pulls
an arm that is best with respect to the randomly sampled parameters, our algorithms sample
entire future reward realizations and take the corresponding best action. However, this is done
in the presence of “penalties” that seek to compensate for the availability of future information.

We develop several novel policies and performance bounds for MAB problems that vary
in terms of improving performance and increasing computational complexity between the two
endpoints. Our policies can be viewed as natural generalizations of TS that simultaneously
incorporate knowledge of the time horizon and explicitly consider the exploration-exploitation
trade-off. We prove associated structural results on performance bounds and suboptimality
gaps. Numerical experiments suggest that this new class of policies perform well, in particular
in settings where the finite time horizon introduces significant exploration-exploitation tension
into the problem. Finally, inspired by the finite-horizon Gittins index, we propose an index policy
that builds on our framework that particularly outperforms the state-of-the-art algorithms in
our numerical experiments.

s

1. Introduction

Dating back to the earliest work (Bradt et al., 1956; Gittins, 1979), multi-armed bandit (MAB)
problems have been considered within a Bayesian framework, in which the unknown parameters
are modeled as random variables drawn from a known prior distribution. In this setting, the
problem can be viewed as a Markov decision process (MDP) with a state that is an information

∗The authors wish to thank Daniel Russo, Martin Haugh, David Brown, Jim Smith, and anonymous reviewers for
helpful comments. A preliminary version of this paper appeared in the conference proceedings Advances in Neural
Information Processing Systems 32 (NeurIPS 2019) (Min et al., 2019).
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state describing the beliefs of unknown parameters that evolve stochastically upon each play of an
arm according to Bayes’ rule.

Under the objective of expected performance, where the expectation is taken with respect to the
prior distribution over unknown parameters, the (Bayesian) optimal policy (Opt) is characterized
by Bellman equations immediately following from the MDP formulation. In the discounted infinite-
horizon setting, the celebrated Gittins index (Gittins, 1979) determines an optimal policy, despite
the fact that its computation is still challenging. In the non-discounted finite-horizon setting, which
we consider, the problem becomes more difficult (Berry and Fristedt, 1985), and except for some
special cases, the Bellman equations are neither analytically nor numerically tractable, due to the
curse of dimensionality. In this paper, we focus on the Bayesian setting, and attempt to apply ideas
from dynamic programming (DP) to develop tractable policies with good performance.

To this end, we apply the idea of information relaxation (Brown et al., 2010), a technique that
provides a systematic way of obtaining the performance bounds on the optimal policy. In multi-
period stochastic DP problems, admissible policies are required to make decisions based only on
previously revealed information. The idea of information relaxation is to consider non-anticipativity
as a constraint imposed on the policy space that can be relaxed, while simultaneously introducing
a penalty for this relaxation into the objective, as in the usual Lagrangian relaxations of convex
duality theory. Under such a relaxation, the decision maker (DM) is allowed to access future
information and is asked to solve an optimization problem so as to maximize her total reward,
in the presence of penalties that punish any violation of the non-anticipativity constraint. When
the penalties satisfy a condition (dual feasibility, formally defined in §3), the expected value of the
maximal reward adjusted by the penalties provides an upper bound on the expected performance
of the (non-anticipating) optimal policy.

The idea of relaxing the non-anticipativity constraint has been studied in different contexts
(Rockafellar and Wets, 1991; Davis and Karatzas, 1994; Rogers, 2002; Haugh and Kogan, 2004), and
was later formulated as a formal framework by Brown et al. (2010), upon which our methodology is
developed. This framework has been applied to a variety of applications including optimal stopping
problems (Desai et al., 2012b); linear-quadratic and linear-convex control (Desai et al., 2012a;
Haugh and Lim, 2012); dynamic portfolio execution (Haugh and Wang, 2014); and more (e.g.,
Brown and Haugh, 2017; Haugh and Lacedelli, 2019). Typically, the application of this method to
a specific class of MDPs requires custom analysis. In particular, it is not always easy to determine
penalty functions that (1) yield a relaxation that is tractable to solve, and (2) provide tight upper
bounds on the performance of the optimal policy. Moreover, the established information relaxation
theory focuses on upper bounds and provides no guidance on the development of tractable policies.

Our contribution is to apply the information relaxation techniques to the finite-horizon stochastic
MAB problem, explicitly exploiting the structure of a Bayesian learning process. In particular,

1. we propose a series of information relaxations and penalties of increasing computational
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complexity;
2. we systematically obtain the upper bounds on the best achievable expected performance that

trade off between tightness and computational complexity;
3. and we develop associated (randomized) policies that generalize Thompson sampling (TS) in

the finite-horizon setting.

In our framework, which we call information relaxation sampling, each of the penalty functions
(and information relaxations) determines one policy and one performance bound given a particular
problem instance specified by the time horizon and the prior beliefs. As a base case for our
algorithms, we have TS (Thompson, 1933) and the conventional regret benchmark that has been
used for Bayesian regret analysis since Lai and Robbins (1985). At the other extreme, the optimal
policy Opt and its expected performance follow from the “ideal” penalty (which, not surprisingly,
is intractable to compute). By picking increasingly strict information penalties, we can improve
the policy and the associated bound between the two extremes of TS and Opt.

As an example, one of our algorithms, Irs.FH, is a very simple modification of TS that naturally
incorporates time horizon T . Recalling that TS makes a decision based on sampled parameters for
each arm from the posterior distribution in each epoch, observe that knowledge of the parameters
is essentially (assuming Bayesian consistency) as informative as having an infinite number of future
reward observations from each arm. By contrast, Irs.FH makes a decision based on future Bayesian
estimates, updated with only T − 1 future reward realizations for each arm, where the rewards are
sampled based on the inital posterior belief. When T = 1 (equivalently, at the last decision
epoch), such a policy takes a myopically best action based only on the current estimates, which
is indeed an optimal decision, whereas TS would still explore unnecessarily. While keeping the
recursive structure of the sequential decision-making process of TS, Irs.FH naturally performs
less exploration than TS as the remaining time horizon diminishes. This mitigates a common
practical criticism of TS: it explores too much.

Beyond this, we propose other algorithms that more explicitly quantify the benefit of exploration
and more explicitly trade off between exploration and exploitation, at the cost of additional compu-
tational complexity. As we increase the complexity, we achieve policies that improve performance,
and separately provide tighter tractable computational upper bounds on the expected performance
of any policy for a particular problem instance. By providing natural generalizations of TS, our
work provides both a deeper understanding of TS and improved policies that do not require tuning.
Since TS has been shown to be asymptotically regret optimal in some settings, e.g., by the metric
of growth-rate (Kaufmann et al., 2012b) or by the metric of worst-case regret (Agrawal and Goyal,
2013; Bubeck and Liu, 2013), our improvements can at best be (asymptotically) constant factor
improvements by that metric. On the other hand, TS is extremely popular in practice, and we
demonstrate in numerical examples that the improvements can be significant and are likely to be
of practical interest.

Moreover, we develop upper bounds on performance that are useful in their own right. Suppose
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that a decision maker faces a particular problem instance and is considering any particular MAB
policy (be it one we suggest or otherwise). By simulating the policy, we can find a lower bound
on the performance of the optimal policy. We introduce a series of upper bounds that can also be
evaluated in any problem instance via simulation. Paired with the lower bound, these provide a
computational, simulation-based “confidence interval” that can be helpful to the decision maker.
For example, if the upper bound and lower bound are close, the suboptimality gap of the policy
under consideration is guaranteed to be small, and it is not worth investing in better policies.

2. Finite-horizon Bayesian Multi-armed Bandit

2.1. Problem

We consider a Bayesian MAB problem with K independent arms and a finite time horizon T . More
specifically, we define an MAB instance with a tuple

(
K, T,R, Θ,P,Y, y

)
as follows. In each period

t = 1, . . . , T , the decision maker (DM) selects one among K arms, each of which yields a stochastic
reward whenever selected. We let A ≜ {1, . . . , K} denote the set of arms, and let Ra,n denote the
random variable that represents the reward from the nth pull1 of arm a ∈ A. For each arm a,
the rewards {Ra,n}n∈N are independent and identically distributed according to the distribution
Ra(θa), where θa ∈ Θa is the parameter associated with arm a:

Ra,n ∼ Ra(θa), ∀n ∈ N, ∀a ∈ A. (1)

The parameter θa is unknown to the DM, and is modeled as a random variable for which we have
a family of conjugate priors {Pa(ya)}ya∈Ya , i.e., a space of distributions for θa that is closed under
a Bayesian update with a reward realization Ra,n. Given a hyperparameter ya ∈ Ya (also called
a belief ), consider a probability measure Pya [·] under which the parameter θa follows the prior
distribution Pa(ya):

θa ∼ Pa(ya), ∀a ∈ A. (2)

Let Eya [·] denote the expected value under this probability measure. For brevity, denote the
vector of parameters and hyperparameters across arms by θ ≜ (θ1, . . . , θK) and y ≜ (y1, . . . , yK),
respectively. Define R, Θ, P, Y, Py, and Ey analogously. We will often describe an MAB instance
only with a tuple (T, y) when the other components are clear in context.

Throughout the paper, we assume that the rewards are absolutely integrable for each hyperpa-
rameter ya ∈ Ya:

Eya [|Ra,1|] <∞, ∀ya ∈ Ya, a ∈ A, (3)
1One may consider an alternative stochastic model for the reward realization process in which the rewards are

defined through a time index (e.g., Ra,t denotes the reward from arm a in period t). This would be mathematically
equivalent from the perspective of the DM. However, once the information set is relaxed, such a model is not equivalent
to ours: in our model, the DM is not allowed to skip any future reward realizations, and this is crucial for some of
the algorithms suggested in this paper. See the discussion in §3.3.
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where the expectation is taken with respect to the random realization of the parameter θa and also
with respect to the random realization of the reward Ra,1.

We further define the outcome ω ∈ Ω (also referred to as the future or scenario) as a combination
of the parameters and all future reward realizations, i.e.,

ω ≜
(
θ, (Ra,n)a∈A,n∈N

)
∼ I(y), (4)

that encodes all the uncertainties that the DM encounters in the environment and whose distribution
is denoted by I(y).

Policy. Given an outcome ω, the reward at time t can be represented as a function of the DM’s
action sequence a1:t = (a1, . . . , at) ∈ At, i.e.,

rt(a1:t, ω) ≜ Rat,nt(a1:t,at), (5)

where nt(a1:t, a) ≜
∑t

s=1 1{as = a} counts how many times an arm a has been played up to time t

(inclusive). Consequently, we define the history Ht(a1:t, ω) as the information revealed to the DM
up to time t when taking an action sequence a1:t given the outcome ω:

Ht(a1:t, ω) ≜
(
a1, r1(a1, ω), a2, r2(a1:2, ω), . . . , at, rt(a1:t, ω)

)
. (6)

Let Aπ
1:t be the action sequence taken under the DM’s policy π. We can define the natural filtration

F ≜
(
Ft
)

t=0,1,...,T
where Ft ≜ σ (Ht(Aπ

1:t, ω)) is the σ-field generated by the history Ht.

A policy π is called non-anticipating if every action Aπ
t is measurable with respect to Ft−1; i.e.,

each decision is made based only on the information revealed prior to that time. We denote by ΠF

the set of all non-anticipating policies, including randomized ones. The (Bayesian) performance of
a policy π is measured by the total reward that π earns on average, i.e.,

V (π, T, y) ≜ Ey

[
T∑

t=1
rt(Aπ

1:t, ω)
]

, (7)

where T and y specify, respectively, the length of the time horizon and the prior hyperparameters
of given the MAB instance.

Bayesian update. Whenever the DM observes a reward realization, as a Bayesian learner, she
can update her belief associated with the selected arm according to Bayes’ rule. More formally, we
introduce a Bayesian update function Ua : Ya×R→ Ya so that after observing a reward r ∈ R from
an arm a ∈ A, the hyperparameter associated with arm a is updated from ya to Ua(ya, r) (e.g., if
θa ∼ Pa(ya), then θa|Ra,1 ∼ Pa(Ua(ya, Ra,1))). We will often use U : Y × A × R → Y to denote
the updating of the hyperparameter vector y; i.e., after observing a reward realization r from an
arm a, the hyperparameter vector is updated from y to U(y, a, r), where only the ath component
is updated.
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We further describe the time evolution of the DM’s belief throughout the decision making
process. Given an outcome ω and an action sequence a1:t, the posterior hyperparameter vector at
time t can be recursively expressed as

yt(a1:t, ω; y) ≜ U (yt−1(a1:t−1, ω; y), at, rt(a1:t, ω)) , ∀t ≥ 1, (8)

with y0 ≜ y. We often write [yt(a1:t, ω; y)]a to denote the ath component of yt(a1:t, ω; y). This hy-
perparameter vector yt(a1:t, ω; y) sufficiently describes the DM’s belief given the history Ht(a1:t, ω).

Mean reward. We introduce several notions of mean reward that play a crucial role throughout
the paper. For each arm a ∈ A, we let µa(θa) denote the conditional mean reward given the
parameter θa, and let µ̄a(ya) be the predictive mean reward given the hyperparameter ya:

µa(θa) ≜ E
[
Ra,n

∣∣θa
]
, µ̄a(ya) ≜ Eya [µa(θa)] . (9)

We further define the posterior predictive mean reward process {µ̂a,n}n≥0 by

µ̂a,n(ω; ya) ≜ Eya [µa(θa)|Ra,1, . . . , Ra,n] , (10)

which represents the predictive mean reward (i.e., the finite-sample Bayesian estimate of µa(θa))
after observing first n rewards associated with the arm a.

Remark 1. Fix an arm a ∈ A. The posterior predictive mean reward process {µ̂a,n}n≥0 is a mar-
tingale adapted to the filtration generated by the sequence of rewards (Ra,1, Ra,2, Ra,3, . . .). Fur-
thermore, it starts at the value of the prior predictive mean reward µ̄a(ya) and converges to the
conditional mean reward µa(θa); i.e., µ̂a,0(ω; ya) = µ̄a(ya) and limn→∞ µ̂a,n(ω; ya) = µa(θa) almost
surely (see Proposition 5 in the Electronic Companion).

2.2. Natural Exponential Family

We will often consider the case where the reward distributionRa(θa) belongs to the natural exponen-
tial family. In this case, the closed-form expressions are available for the aforementioned notation.
For any given θa ∈ Θa ⊆ R, the probability measure for a random reward Ra,n is determined by

P [Ra,n ∈ dr | θa] = ha(dr) exp (θar −Aa(θa)) , (11)

where ha(dr) is the reference measure and Aa(·) is the log-partition function that is a logarithm
of the normalization factor. We then have a family of conjugate priors {Pa(ya)}ya∈Ya where Ya ≜

{ya = (ξa, νa)|ξa ∈ R, ν > 0}, so, for any given hyperparameter ya ∈ Ya, the corresponding prior
Pa(ya) is also an exponential family distribution and can be described as

P(ξa,νa) [θa ∈ dθ] = fa(ξa, νa) exp (ξaθ − νaAa(θ)) dθ, (12)
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where fa(ξa, νa) is the normalization factor and νa represents the effective number of observations.
Within this family of conjugate priors, it is well known that the posterior distribution can be
expressed as

P(ξa,νa) [θa ∈ dθ |Ra,1, . . . , Ra,n ] = P(ξa+
∑n

i=1 Ra,i, νa+n) [θa ∈ dθ] . (13)

This property can also be expressed via the Bayesian update function as Ua((ξa, νa), r) = (ξa +
r, νa + 1). We also have the following identities for the mean reward metrics:

µa(θa) = A′
a(θa), µ̄a(ξa, νa) = ξa

νa
, µ̂a,n(ω; ξa, νa) = ξa +

∑n
i=1 Ra,n

νa + n
, (14)

where A′
a ≜ dAa/dθa. We refer the reader to Gutiérrez-Peña and Smith (1995) for further details.

Bernoulli and Gaussian MABs. We briefly illustrate the Bernoulli MAB and Gaussian MAB as
representative examples of the problem instance described by a natural exponential family. In the
Bernoulli MAB, the rewards of an arm are Bernoulli random variables whose success probability
is drawn from a Beta distribution. In the Gaussian MAB, the rewards of an arm are normally
distributed with an unknown mean and a known noise variance where the mean is also normally
distributed. Table 1 summarizes the previously defined notation.

Bernoulli MAB Gaussian MAB

Prior distribution µa ∼ Beta(αa, βa) µa ∼ N (ma, v2
a)

Reward distribution Ra,n ∼ Bernoulli
(
µa

)
Ra,n ∼ N (µa, σ2

a)

Parameter θa θa = log µa

1−µa
θa = µa

σ2
a

Hyperparameters ξa, νa ξa = αa, νa = αa + βa ξa = maσ2
a

v2
a

, νa = σ2
a

v2
a

Reference measure ha ha(dr) = δ0(dr) + δ1(dr) ha(dr) = 1√
2πσ2

a

exp
(
− r2

σ2
a

)
dr

Log-partition function Aa Aa(θa) = log
(
1 + eθa

)
Aa(θa) = σ2

aθ2
a

2

Mean reward µa µa(θa) = eθa

1+eθa
µa(θa) = σ2

aθa

Predictive mean µ̄a µ̄a(αa, βa) = αa

αa+βa
µ̄a(ma, v2

a) = ma

Table 1: Description of a Bernoulli MAB and a Gaussian MAB. Here, δx(dr) denotes a Dirac measure
that has a single atom at x.

2.3. Bayesian Optimal Policy

In a Bayesian framework, the MAB problem can be viewed as a Markov decision process (MDP) in
which a state corresponds to an information state (or belief state) of the DM. It has the following
recursive structure that we will exploit throughout the paper. Given an MAB instance with time
horizon T and prior belief y, suppose that the DM has just earned r by pulling an arm a at
time t = 1. Then the remaining problem for the DM is equivalent to an MAB instance with time
horizon T−1 and prior belief U(y, a, r). Based on this Markovian structure, we obtain the following
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Bellman equations for the MAB problem: for all T ∈ N and y ∈ Y,

Q∗(T, y, a) ≜ Ey [Ra,1 + V ∗(T − 1,U(y, a, Ra,1))] , (15)

V ∗(T, y) ≜ max
a∈A

Q∗(T − 1, y, a), (16)

with V ∗(0, y) ≜ 0 for all y ∈ Y. The value function V ∗(T, y) represents the best possible perfor-
mance that a non-anticipating policy can achieve in the MAB problem specified by the time horizon
T and the prior belief y, or equivalently, the maximum expected future reward that one can earn
during T remaining periods2 when the current belief is y.

While Bellman equations are, in general, intractable to solve and directly apply, they offer a
characterization of the Bayesian optimal policy (Opt). At a certain moment, when the remaining
time horizon is T and the belief is y, Opt takes an action with the largest state-action value (Q-
value), i.e., pulls the arm A∗ = argmaxa Q∗(T, y, a), and this action selection procedure is repeated
while updating T and y according to Bayes’ rule as described in Algorithm 1. Such a policy achieves
the best possible performance among all non-anticipating policies:

V ∗(T, y) = sup
π∈ΠF

V (π, T, y) = V (Opt, T, y), ∀T ∈ N, y ∈ Y. (17)

Algorithm 1: Bayesian optimal policy (Opt)

Function OPT(T, y)
// T:remaining time horizon, y:current belief

1 return argmaxa Q∗(T, y, a)

Procedure OPT-Outer(T, y)
// T:time horizon, y:prior belief

1 y0 ← y
2 for t = 1, 2, . . . , T do
3 Select At ← OPT(T − t + 1, yt−1)
4 Earn and observe a reward rt and update belief yt ← U(yt−1, At, rt)

end

2.4. Thompson Sampling

Thompson sampling (TS) is a simple heuristic that makes decisions based on random sampling.
When the remaining time is T and the current belief is y, it samples the parameters θ̃ from the

2We intentionally refrain from indexing the value function V ∗ by time t, since such a representation conceals the
Markovian structure of the Bayesian MAB problem and leads to complicated expressions for the variables that exploit
this Markovian structure. To avoid confusion, the horizon T will be written as an argument to functions whereas the
time index t will be written as a subscript, throughout the paper.

8



prior3 distribution at that moment, P(y), and pulls the arm that is believed to be best given the
sampled parameters θ̃, i.e., takes action ATS = argmaxa µa(θ̃a). Like Opt, it repeats this procedure
at every decision epoch while updating the belief y whenever a reward realization is observed.

Algorithm 2: Arm selection rule of Thompson sampling when remaining time is T and current
belief is y
Function TS(T, y)

// T:remaining time horizon, y:current belief
1 Sample parameters θ̃ ∼ P(y)
2 return argmaxa{µa(θ̃a)}

Note that TS does not take into account the time information when making a decision. It applies
the identical sampling and selection rule, irrespective of the remaining time periods. This often
leads to the unnecessary explorations near the end of the horizon, which motivates our framework.

3. Information Relaxation Sampling

We apply the information relaxation framework (Brown et al., 2010) to the Bayesian MAB problem
and propose a general framework which we call information relaxation sampling (IRS). The main
idea behind the information relaxation is to relax the information constraint so that the decision
maker (DM) is allowed to exploit some future information that is supposed to be unknown. As in
the usual Lagrangian relaxation, an upper bound on the best possible performance can be obtained
by solving the relaxed problem.

To motivate in detail, let us consider a situation under which the parameters θ are revealed to
the DM when the remaining period is T and the current belief is y. The optimal action for this
DM is to keep playing the arm with the highest mean reward, i.e., argmaxa µa(θa), and by doing
so will earn Ey[T ×maxa µa(θa)] on average, which is indeed an upper bound on the performance
of the optimal policy, V ∗(T, y).

Let us now postulate a situation under which the same kind of DM is informed with sampled
parameters θ̃ that are drawn from the distribution P(y). For this (falsely informed) DM, the
optimal action is again to play the arm with the highest mean reward but now with respect to the
sampled parameters, i.e., argmaxa µa(θ̃a). This procedure effectively describes the arm selection
rule of Thompson sampling in the situation specified by the remaining horizon T and the current
belief y.

Above, we motivated a performance bound, Ey[T ×maxa µa(θa)], and a non-anticipating policy,
TS, from the relaxation of the parameter information. Analogously, we can produce another

3Conventionally, the term “posterior distribution” is used to describe the distribution that TS samples the param-
eters from. We explicitly use “prior distribution” instead: for example, at time t = 1, the parameters are apparently
sampled from the prior, not the posterior, distribution. After observing a reward realization, we will have a posterior
but it will become a prior at the next decision epoch.
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performance bound and another policy by considering a different set of future information to relax:
the performance bound is obtained by computing how much the clairvoyant DM can earn with this
additional information; and the policy is obtained by speculating which action the same kind of
DM will take if the additional information is replaced with sampled (simulated) instance.

We will particularly consider the relaxations of information that are less effective than the
full parameter information for the DM to maximize her future payoff. This will result in tighter
relaxations, in the sense of a better (tighter) performance upper bound as well as a better performing
policy.

In what follows, we formalize this idea utilizing the notion of information relaxation penalties
that allows us to describe and control the benefit from having additional information explicitly. We
will first describe the general framework and then propose a specific family of penalties that are
particularly suitable for Bayesian MAB problems.

Information relaxation penalties and the inner problem. Applying the information re-
laxation framework developed by Brown et al. (2010), we relax the non-anticipativity constraint
imposed on policy space ΠF (i.e., Aπ

t is Ft−1-measurable). Without loss of generality,4 we consider
the perfect information relaxation under which the DM is allowed to first observe all future out-
comes in advance, and then pick an action (i.e., Aπ

t is σ(ω)-measurable). As in any other Lagrangian
relaxation, we impose penalties on the DM for violating the non-anticipativity constraint.

We introduce a penalty function zt(a1:t, ω; T, y) to denote the penalty that the DM incurs at
time t, when taking an action sequence a1:t given an outcome ω for an MAB problem with time
horizon T and prior belief y. The clairvoyant DM can find the best action sequence that is optimal
for this particular outcome ω in the presence of penalties zt, by solving the following (deterministic)
optimization problem, referred to as the inner problem:

maximize
a1:T ∈AT

T∑
t=1

rt(a1:t, ω)− zt(a1:t, ω; T, y). (∗)

Definition 1 (Dual feasibility). Given T and y, a penalty function zt is dual feasible if it is a zero
mean for any non-anticipating policy π ∈ ΠF, i.e.,

Ey

[
T∑

t=1
zt(Aπ

1:t, ω; T, y)
]

= 0, ∀π ∈ ΠF. (18)

We remark that the mapping a1:t 7→ zt(a1:t, ω) is a stochastic function of the action sequence
a1:t since the outcome ω is random. This dual feasibility condition requires that the DM who makes
decisions on the natural filtration will receive zero penalties in expectation.

4Any partial information relaxation can be equivalently described within the perfect information relaxation by
adding additional terms into the penalty function. See the discussion after Theorem 1.
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The complexity of the inner problem depends very much on the penalty function. Assuming
that the penalty function can be evaluated in O(1) computation, an enumerative brute-force opti-
mization of the inner problem may require O(KT ) computations. In what follows, we will illustrate
that for suitably designed penalty functions, the inner problem exhibits a recursive structure and
thus can be solved effectively using dynamic programming techniques.

IRS performance bound. We let W z(T, y) be the expected maximal value of the inner problem
(∗), when the outcome ω is randomly drawn from its prior distribution I(y), i.e., the expected total
payoff that a clairvoyant DM can achieve in the presence of penalties.:

W z(T, y) ≜ Ey

[
max

a1:T ∈AT

{
T∑

t=1
rt(a1:t, ω)− zt(a1:t, ω; T, y)

}]
. (19)

Once we have an algorithm to solve the inner problem, this value can be computed numerically via
simulation: let ω1, ω2, . . . , ωS be the samples independently drawn from I(y), and Ws be the the
maximal value of the inner problem with respect to ωs for each s = 1, . . . , S separately. The bound
W z can be computed by taking the average of these maximal values, i.e., 1

S

∑S
s=1 Ws. The following

theorem shows that W z is indeed a valid performance bound of the stochastic MAB problem.

Theorem 1 (Weak duality and strong duality). If the penalty function zt is dual feasible, W z is an
upper bound on the optimal value V ∗:

(Weak duality) W z(T, y) ≥ V ∗(T, y). (20)

There exists a dual feasible penalty function denoted by zideal
t , such that

(Strong duality) W ideal(T, y) = V ∗(T, y). (21)

The ideal penalty function zideal
t has the following functional form:

zideal
t (a1:t, ω; T, y) ≜ rt(a1:t, ω)− Ey [rt(a1:t, ω) |Ht−1(a1:t−1, ω) ] (22)

+ V ∗ (T − t, yt(a1:t, ω; y))− Ey [V ∗ (T − t, yt(a1:t, ω; y))|Ht−1(a1:t−1, ω)] .

Recall that a dual feasible penalty function does not penalize (in expectation) non-anticipating
policies, which include Opt. Even when the future information is available, the DM can earn V ∗

under the penalties by implementing Opt without taking advantage of future information. When
the DM makes use of future information, she can always outperform Opt, which leads to the weak
duality result. The ideal penalty zideal

t precisely penalizes for the additional profit extracted from
using the future information, thereby removing any incentive to deviate from Opt and resulting in
the strong duality.
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The ideal penalty is, of course, intractable, but its structure highlights what a good penalty may
look like. It implies that there are two sources of additional profit: in DP terminology, one from
knowing future immediate rewards and one from knowing future state transitions, each of which
will be taken into account later in this paper.

As another implication, it also shows that relaxing more the available information can always
be compensated by adding associated terms to the penalty function. That is, a partial information
relaxation (e.g., Aπ

t is measurable w.r.t. Gt−1 such that σ(Ht−1) ⊆ Gt−1 ⊆ σ(ω)) with some penalty
function zGt is equivalent to the perfect information relaxation (i.e., Aπ

t is measurable w.r.t. σ(ω))
with a penalty function zGt + z

σ(ω)\G
t if the additional term z

σ(ω)\G
t exactly penalizes the relative

benefit from having more information σ(ω) than Gt−1. Hence, it is sufficient to consider the perfect
information relaxation, as we do in this paper, and the actual amount of information available for
the DM can be equivalently controlled by adjusting the penalty function.

Before proceeding, we remark that the above results are already well established in Brown et al.
(2010) (see Lemma 2.1 and Theorem 2.3 therein) for a general class of MDP problems, except
for a subtle difference regarding the assumption on the predictability of reward realizations. In
MDP problems, the reward at each state is typically assumed to be deterministic (otherwise, it is
replaced with its expected value), since the stochastic evolution of the state is of a major concern.
By contrast, in MAB problems it is essential to consider the randomness of rewards since learning
from the noisy reward realizations is of a major concern, and therefore, we do not assume that
rt is measurable with respect to σ(Ht−1). As a consequence, our ideal penalty function (22) has
a slightly different functional form than the one formulated in Brown et al. (2010).5 We further
exploit this fact when designing a variety of penalty functions.

IRS policy. Since the true outcome ω is not available in reality, it cannot be used in online decision
making. We derive a non-anticipating policy by leveraging the idea of “posterior sampling,” which
utilizes the sampled outcome ω̃ instead of the true outcome ω.

Given a penalty function zt, we characterize a randomized and non-anticipating IRS policy πz

as follows. Exploiting the recursive structure of a Bayesian MAB problem, the policy πz specifies
“which arm to pull when the remaining time is T and the current belief is y,” i.e., the very first
action that it would take in an MAB instance with horizon T and prior belief y. Given T and y, it
(i) first randomly generates an outcome ω̃ (i.e., sampling from I(y)), (ii) solves the inner problem to
find a best action sequence ã∗

1:T with respect to this randomly generated outcome ω̃ in the presence
of penalties zt, and (iii) takes the first action ã∗

1 that the clairvoyant optimal solution ã∗
1:T suggests.

Analogous to TS and Opt, it repeats steps (i)–(iii) at every decision epoch, while updating
the remaining time T and belief y upon each decision making and reward realization.

5Brown et al. (2010) show that zideal
t = V ∗ (T − t, yt) − E [V ∗ (T − t, yt)| Ht−1], when rt is assumed to be mea-

surable with respect to σ(Ht−1) and so rt − E [rt |Ht−1 ] = 0.
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Algorithm 3: Information relaxation sampling (IRS) policy

Function IRS(T, y; z)
// T:remaining time horizon, y:current belief

1 Sample an outcome ω̃ ∼ I(y): Equivalently, for each a ∈ A,

θ̃a ∼ Pa(ya), R̃a,n ∼ Ra(θ̃a), ∀n ∈ {1, . . . , T}.

2 Find the best action sequence with respect to the sampled outcome ω̃ under penalties zt:

ã∗
1:T ← argmax

a1:T ∈AT

{
T∑

s=1
rs(a1:t, ω̃)− zs(a1:s, ω̃; T, y)

}
.

3 return ã∗
1

Procedure IRS-Outer(T, y; z)
// T:time horizon, y:prior belief

1 y0 ← y
2 for t = 1, 2, . . . , T do
3 Pull At ← IRS(T − t + 1, yt−1; z)
4 Earn and observe a reward rt and update belief yt ← U(yt−1, At, rt)

end

In step (i), the random generation of the outcome ω̃ given the belief y is equivalent to, for each
arm a ∈ A, sampling the parameter from its posterior, θ̃a ∼ Pa(ya), and then sampling the future
reward realizations, R̃a,n ∼ Ra(θ̃a) for n = 1, . . . , T . In other words, the IRS policy πz randomly
generates (simulates) a plausible future scenario within its own probability space specified by T

and y.

The optimization problem in the step (ii) is identical to the inner problem (∗) except that the
true outcome ω is replaced with the sampled one ω̃. Therefore, the dynamic programming algorithm
that solves the inner problem can also be utilized for this online decision-making process, not only
for the computation of performance bound W z. Note that there can be multiple solutions to this
optimization problem and the tie-breaking rule may affect the performance of the policy. We do
not observe that the choice of tie-breaking rule is significance in our numerical experiments. In
some instances that follow, however, we will adopt a specific tie-breaking rule for the purpose of
theoretical analysis.

Also note that in step (iii) only the first action ã∗
1 of the optimal solution ã∗

1:T is utilized, and
at the following decision epoch a new outcome is sampled based on the updated belief. If we
consider an MAB instance with time horizon T , the policy πz solves T different instances of the
inner problem throughout the entire decision-making process, with a decreasing length of time
horizon, from T to 1, and with a stochastically evolving belief state. See the Irs-Outer procedure
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in Algorithm 3, which is in fact identical to that employed in Opt and TS.

Remark 2. The ideal penalty yields the Bayesian optimal policy, i.e., πideal = Opt.

Recall that the ideal penalty (22) yields the performance bound W ideal that is equal to the best
achievable performance V ∗, because the DM under the ideal penalty has no incentive to utilize any
future information. For the same reason, the corresponding IRS policy πideal does not utilize the
(randomly generated) future information in its decision making, and tries to make the best decision
based only on the information revealed so far. Therefore, its decision should always coincide with
the Bayesian optimal policy’s decision.

Choice of penalty functions. We have so far described the general framework that takes a
penalty function zt as input, and yields a performance bound W z and a policy πz as outputs.
While any dual feasible penalty functions can be utilized in general, we propose the following set
of penalty functions that are particularly suitable for the MAB problems:

zTS
t (a1:t, ω) ≜ rt(a1:t, ω)− E [rt(a1:t, ω) |θ ] , (23)

zIrs.FH
t (a1:t, ω) ≜ rt(a1:t, ω)− Ey [rt(a1:t, ω) |µ̂T −1(ω) ] , (24)

zIrs.V-Zero
t (a1:t, ω) ≜ rt(a1:t, ω)− Ey [rt(a1:t, ω) |Ht−1(a1:t−1, ω) ] , (25)

zIrs.V-EMax
t (a1:t, ω) ≜ rt(a1:t, ω)− Ey [rt(a1:t, ω) |Ht−1(a1:t−1, ω) ] (26)

+ W TS (T − t, yt(a1:t, ω))− Ey
[
W TS (T − t, yt(a1:t, ω))

∣∣∣Ht−1(a1:t−1, ω)
]

,

where µ̂T −1(ω; y) ≜
(
µ̂a,T −1(ω; ya)

)
a∈A and the dependency of some expressions on T and y is

suppressed for clarity. Also recall that the ideal penalty is given by

zideal
t (a1:t, ω) ≜ rt(a1:t, ω)− Ey [rt(a1:t, ω) |Ht−1(a1:t−1, ω) ] (27)

+ V ∗ (T − t, yt(a1:t, ω))− Ey [V ∗ (T − t, yt(a1:t, ω))|Ht−1(a1:t−1, ω)] .

We can show that these penalty functions satisfy the dual feasibility condition (Definition 1); see
Electronic Companion C.3 for a formal proof.

Remark 3. All penalty functions (23)–(27) are dual feasible.

This set of penalty functions results in a set of policies that ranges from Thompson sampling
(TS) to the Bayesian optimal policy (Opt) and a set of performance bounds that ranges from the
conventional regret benchmark W TS (= E[T ×maxa µa(θa)]) to the optimal value function W ideal

(= V ∗). More specifically, at one extreme, the simplest penalty function zTS
t yields TS and W TS as

outputs, and at the other extreme, the ideal penalty function zideal
t yields Opt and V ∗ which would

be optimal. The other three penalty functions (zIrs.FH
t , zIrs.V-Zero

t , and zIrs.V-EMax
t ) connect the
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two extremes and are sequentially “better”, where we informally say that a penalty function is better
than another if it is closer to the ideal penalty function and thus yields a better performing policy
and a tighter performance bound. Deferring detailed explanations to §3.1–§3.4, we briefly illustrate
general principles to design “good” penalty functions and motivate these penalty functions.

In design of information relaxation penalties, we first need to determine to which information
set we relax the non-anticipativity constraint, i.e., what kind of additional information will be
revealed to the DM in the relaxation. Although we have described our framework based on the
perfect information relaxation (i.e., the relaxation in which the DM perfectly knows the entire
future outcomes ω), any imperfect information relaxation can be equivalently described within the
perfect information relaxation using a properly constructed penalty function.6 Among the sug-
gested penalty functions,7 zTS

t is the one that corresponds to the information relaxation to the
parameter information θ, zIrs.FH

t corresponds to the information relaxation to the posterior pre-
dictive mean rewards µ̂T −1 (i.e., the finite-sample mean-reward estimates), and zideal

t corresponds
to no information relaxation.

One principle to motivate a better penalty function is to choose a smaller set of future informa-
tion for the relaxation. When less additional information is revealed to the DM in the relaxation,
the additional profit that the DM can extract from this information becomes smaller, and hence
the DM has to make more realistic decisions that rely more on the currently available information
rather than the future information that is supposed to be unknown. Comparing zIrs.FH

t with zTS
t ,

one may notice that the finite-sample mean-reward estimates µ̂T −1 are less informative than the
parameters θ for the DM to exploit in her profit maximization because, in terms of mean-reward
estimation, the parameters are informative as much as an infinite number of observations (i.e.,
E[µa(θa)|θ] = limT →∞ E[µa(θa)|Ra,1, . . . , Ra,T −1] = limT →∞ µ̂a,T −1). In this sense, zIrs.FH

t is bet-
ter than zTS

t , and resulting policy πIrs.FH and performance bound W Irs.FH improve upon TS and
W TS toward Opt and V ∗.

Another principle to motivate a better penalty function is to adopt a more precise approximation
of the ideal penalty function zideal

t , particularly regarding the terms containing the optimal value
function V ∗. In the presence of penalties that reflect the value of the additional information more
accurately, the DM has less incentive to exploit this additional information in the relaxed decision
making problem, and similarly to the above argument, this leads to more realistic decisions. Among
our suggestions, zIrs.V-Zero

t approximates the term V ∗ with zero, and zIrs.V-EMax
t approximates the

term V ∗ with a tractable upper bound W TS. By doing so, zIrs.V-EMax
t takes into account the

continuation value of each action explicitly and improves upon zIrs.V-Zero
t .

Consider the inner problem associated with each choice of penalty function (23)–(27). Recall
6In fact, this is the main idea underlying the existence of the ideal penalty function; see the discussion after

Theorem 1.
7We can motivate one more penalty function that corresponds to the perfect information relaxation. Such a

penalty function is simply given by zt ≡ 0, which is illustrated in Electronic Companion A. However, we do not
suggest its use since it is even worse than zTS

t .
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that each inner problem is a deterministic multi-period decision making problem that has a form
of maxa1:T ∈AT

∑T
t=1 rt(a1:t) − zt(a1:t). A penalty function zt effectively redefines what the DM

earns at each time, i.e., rt(a1:t) is replaced with rt(a1:t) − zt(a1:t). More specifically, the penalty
function zTS

t effectively replaces the realized rewards associated with each arm with their expected
value given parameters θ; as does zIrs.FH

t (with their expected value given the finite-sample mean-
reward estimates µ̂T −1); as does zIrs.V-Zero

t (with their expected value conditional on how many
times the arm has previously been selected up to each point in time); as does zIrs.V-EMax

t (with an
approximation of the continuation value in addition to the component employed by zIrs.V-Zero

t ).

Penalty
function Policy Performance

bound Inner problem Run time

zTS
t TS W TS Find a best arm given parameters. O(K)

zIrs.FH
t πIrs.FH W Irs.FH Find a best arm given finite observations. O(K) or

O(KT )
zIrs.V-Zero

t πIrs.V-Zero W Irs.V-Zero Find an optimal allocation of T pulls. O(KT 2)
zIrs.V-EMax

t πIrs.V-EMax W Irs.V-EMax Find an optimal action sequence. O(KT K)
zideal

t Opt V ∗ Solve Bellman equations. –

Table 2: List of algorithms following from penalty functions (23)–(27). TS refers to Thompson sampling
and Opt refers to the Bayesian optimal policy. Run time represents the computational complexity of
solving one instance of the inner problem (∗), that is, the time required to obtain one sample in a
computation of performance bound W z or to decide which arm to select in each period in a run of
policy πz.

Table 2 summarizes these inner problems. As we sequentially increase the computational com-
plexity of a penalty function, from zTS

t to zideal
t , the penalty function more accurately penalizes the

benefit from knowing future outcomes, i.e., more explicitly prevents the DM from exploiting future
information. As a result, the inner problem becomes closer to the original stochastic optimization
problem, which results in a better performing policy and a tighter performance bound. Using this
approach, we achieve a family of algorithms that are intuitive and tractable, exhibiting a trade-off
between quality and computational efficiency. See Electronic Companion §A for an illustrative
example.

The run time in Table 2 represents the computational complexity of solving one instance of the
inner problem, i.e., the time it takes to obtain one sample in a computation of performance bound
W z or to decide which arm to select in each period in a run of policy πz. In this run-time analysis,
performing the Bayesian belief updating and the sampling of a random variable is counted as a
single operation.
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3.1. Thompson Sampling Revisited

With the penalty function zTS
t (a1:t, ω) ≜ rt(a1:t, ω)− µat(θat), the inner problem (∗) reduces to

max
a1:T ∈AT

{
T∑

t=1
rt(a1:t, ω)− zt(a1:t, ω)

}
= max

a1:T ∈AT

{
T∑

t=1
µat(θat)

}
= T ×max

a∈A
µa(θa). (28)

Given an outcome ω, and in the presence of penalties, a hindsight optimal action sequence is to keep
pulling the true best arm, i.e., argmaxa µa(θa), for T times in a row. The resulting performance
bound W TS reduces to the conventional performance benchmark,

W TS(T, y) = Ey

[
T ×max

a∈A
µa(θa)

]
, (29)

which measures how much the DM could have achieved if the parameters had been revealed in
advance.

Remark 4. The performance bound W TS is the conventional benchmark that has been widely used
in the Bayesian regret analysis (Lai and Robbins, 1985; Russo and Van Roy, 2014, 2018). The
Bayesian regret of a policy π is defined as

BayesRegret(π, T, y) ≜ Ey

[
T∑

t=1
max

a
µa(θa)− µAπ

t
(θAπ

t
)
]

= W TS(T, y)− V (π, T, y), (30)

which quantifies the suboptimality of the policy π.

It is trivial to see that the corresponding policy πTS is equivalent to Thompson sampling. The
policy πTS utilizes a sampled outcome ω̃ instead of the true outcome ω; accordingly, it selects an
arm ATS = argmaxa µa(θ̃a), where θ̃ ∼ P(y), which is identical to the procedure described in
Algorithm 2. In order for the policy πTS to make a decision at a certain time, note that it does not
need to sample future rewards, and thus it requires O(K) computations only.

3.2. IRS.FH

Recall that µ̂a,T −1(ω; ya) is the posterior predictive mean reward of an arm a that the DM will
have after observing T − 1 reward realizations Ra,1, . . . , Ra,T −1 given the initial belief ya:

µ̂a,T −1(ω; ya) ≜ Eya [µa(θa) |Ra,1, . . . , Ra,T −1 ] . (31)

Given (24), the optimal solution to the inner problem (∗) is to always pull the arm with the highest
posterior predictive mean reward, i.e., argmaxa µ̂a,T −1(ω; ya):

max
a1:T ∈AT

{
T∑

t=1
rt(a1:t, ω)− zIrs.FH

t (a1:t, ω)
}

= max
a1:T ∈AT

{
T∑

t=1
µ̂at,T −1(ω)

}
= T ×max

a∈A
µ̂a,T −1(ω). (32)
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This inner problem yields the performance bound W Irs.FH, such that

W Irs.FH(T, y) = Ey

[
T ×max

a∈A
µ̂a,T −1(ω; ya)

]
, (33)

and the policy πIrs.FH that is implemented in Algorithm 4.

Algorithm 4: Arm selection rule of πIrs.FH when remaining time is T and current belief is y
Function IRS.FH(T, y)

// T:remaining time horizon, y:current belief
1 Sample parameters θ̃ ∼ P(y) and rewards R̃a,n ∼ Ra(θ̃a), ∀n ∈ {1, . . . , T}, ∀a ∈ A.
2 return argmaxa

{
Eya

[
µa(θa)

∣∣∣Ra,1 = R̃a,1, . . . , Ra,T −1 = R̃a,T −1
]}

Irs.FH (FH stands for finite horizon) is almost identical to TS except that the conditional mean
reward µa(θa) is replaced with the posterior predictive mean reward µ̂a,T −1(ω). As a finite-sample
Bayesian estimate of the conditional mean reward, µ̂a,T −1(ω) is less informative than µa(θa) from
the DM’s perspective. In terms of mean reward estimation, the DM will never be able to identify
µa(θa) perfectly within a finite horizon, i.e., knowing the parameters is equivalent to having an
infinite number of observations. The inner problem of TS requires the DM to “identify the best
arm based on an infinite number of samples,” whereas that of Irs.FH requires the DM to “identify
the best arm based on a finite number of samples” and takes into account the length of the time
horizon explicitly. By restricting the DM’s access to fewer information, Irs.FH requires the DM
to be more realistic, that is, to consider the uncertainties more precisely.

a, n( )

T 1 n

a(ya)
a, T 1( ) a( a)

n =  (TS)
n = T 1 (IRS.FH)

Figure 1: (Left) Sample paths of posterior predictive mean reward process of an arm a,
{

µ̂a,n(ω)
}

n≥0.
This process is a martingale that starts at (prior) predictive mean µ̄a and converges to conditional mean
µa (Remark 1). (Right) The distributions of µ̂a,T −1 and µa: µ̂a,T −1 is more concentrated than µa, while
all have the same mean µ̄a(ya).

To sharpen our comparison between Irs.FH and TS, let us compare the variance of µ̂a,T −1(ω)
and µa(θa) induced by the randomness of outcome ω. As depicted in Figure 1, µa is more widely
distributed than µ̂a,T −1 because a larger (infinite vs. T − 1) number of samples makes it easier
for the posterior to deviate from the initial prior (see also Remark 1). By Jensen’s inequality, we
further have W Irs.FH = E[T × maxa µ̂a,T −1(ω)] ≤ E[T × maxa µa(θa)] = W TS for any problem
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instance, meaning that Irs.FH yields a performance bound that is tighter than the conventional
benchmark. Also note that the same argument holds for the comparison between µ̂a,T −1(ω̃) and
µa(θ̃a) since the synthesized outcome ω̃ is identically distributed with the (true) outcome ω. The
variability of µ̂a,T −1(ω̃) (respectively, µa(θ̃a)) governs the randomness of the action taken by policy
πIrs.FH (resp., πTS), i.e., AIrs.FH = argmaxa µ̂a,T −1(ω̃) (resp., ATS = argmaxa µa(θ̃a)). Given T

and y, the policy πIrs.FH performs fewer random explorations than TS, as it is less likely to deviate
from the myopic decision to play an arm with the largest current estimate µ̄a(ya). More desirably,
the degree of exploration of πIrs.FH is controlled by the remaining time horizon as the variance of
µ̂a,T −1(ω) depends on T . At the last decision epoch (T = 1), πIrs.FH takes a myopic action that is
indeed optimal.

Efficiently sampling µ̂a,T −1(ω̃) for natural exponential families. In order to obtain µ̂a,T −1(ω̃)
for each arm a for a synthesized outcome ω̃, one may apply Bayes’ rule sequentially for each reward
realization, which will take O(T ) computations per arm.

As discussed in §2.2, in an MAB were the reward distribution is a natural exponential family,
the posterior predictive mean reward is given by

µ̂a,T −1(ω̃; ξa, νa) = ξa +
∑T −1

n=1 R̃a,n

νa + T − 1 . (34)

Therefore, it is sufficient to sample the sum of T − 1 future rewards,
∑T −1

n=1 R̃a,n, in order to
sample the posterior predictive mean reward. Observe that the conditional distribution of the
sum given θ̃a also belongs to the natural exponential family, induced by a log-partition function
(T − 1)Aa(θ̃a). This distribution may be tractable to compute: for example, its distribution is
Binomial(T − 1, µa(θ̃a)) for the Beta-Bernoulli case, and N

(
(T − 1) · µa(θ̃a), (T − 1) · σ2

a

)
for the

Gaussian case. In these settings, we can sample the sum
∑T −1

n=1 R̃a,n directly from the tractable
distribution (after sampling θ̃a) using O(1) computation, and then use it to compute µ̂a,T −1(ω̃)
without sequentially updating the belief. In such cases, a single decision of πIrs.FH can be made
within O(K) operations, independent of T , similar in computational complexity to TS.

3.3. IRS.V-Zero

IRS.V-Zero introduces a further complication in that its inner problem requires the DM to con-
sider her causal process in the course of solving the inner problem. Under the penalty zIrs.V-Zero

t

given in (25), the DM at time t earns E [rt(a1:t, ω) |Ht−1(a1:t−1, ω) ], the expected mean reward that
she can infer from observations prior to time t. As we defined Ra,n to be a reward from the nth

pull on arm a (not the pull at time n), the posterior belief associated with each arm is determined
only by the number of past pulls performed on that arm. Recall that µ̂a,n(ω) is the expected mean
reward of arm a that the DM can infer from the first n reward realizations:

µ̂a,n(ω; ya) ≜ Eya [µa(θa) |Ra,1, . . . , Ra,n ] . (35)
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Therefore, the DM earns µ̂a,n−1(ω) from the nth pull on arm a, irrespective of the detailed sequence
of the past actions. More formally, the DM’s earning at time t is

rt(a1:t, ω)− zIrs.V-Zero
t (a1:t, ω) = Ey [µat(θat) |Ht−1(a1:t−1, ω) ] = µ̂at,nt−1(a1:t−1,at)(ω), (36)

where nt−1(a1:t−1, a), defined in (5), denotes the number of pulls conducted on a particular arm a

prior to time t.

Let Sa,n(ω) ≜
∑n

i=1 µ̂a,i−1(ω) be the cumulative payoff from the first n pulls of an arm a. Given
an outcome ω, we observe that the total payoff is determined only by the total number of pulls on
each arm, and not the sequence in which the arms have been pulled. Therefore, solving the inner
problem (∗) is equivalent to “finding the optimal allocation (n∗

1, n∗
2, . . . , n∗

K) among T remaining
opportunities”: more formally,

max
a1:T ∈AT

{
T∑

t=1
µ̂at,nt−1(a1:t−1,at)

}
= max

a1:T ∈AT


K∑

a=1

nT (a1:T ,a)∑
n=1

µ̂a,n−1

 = max
n1:K∈NT

{
K∑

a=1
Sa,na

}
, (37)

where NT ≜ {(n1, . . . , nK) ∈ NK
0 :

∑K
a=1 na = T} is the set of all feasible allocations. Once the

Sa,n’s are computed, we can solve this inner problem within O(KT 2) operations by sequentially
applying the sup convolution K times (more specifically, by recursively computing the maximal
cumulative payoff that can be achieved by optimally allocating n pulls over arms 1, . . . , a, for
n = 1, 2, . . . , T and a = 1, 2, . . . , K). The detailed implementation is provided in §B.1.

The policy πIrs.V-Zero further needs to decide which arm to pull given the optimal allocation
(ñ∗

1, ñ∗
2, . . . , ñ∗

K) that is obtained for the sampled outcome ω̃. In principle, any arm a that was
included in the solution of the inner problem, ñ∗

a > 0, would suffice, but we suggest a selection
rule by which the arm that needs the most pulls is chosen, i.e., AIrs.V-Zero = argmaxa ñ∗

a. This
guarantees that πIrs.V-Zero behaves like TS when T is large, as formally stated in Proposition 1.

Comparison with TS and Irs.FH. Recall that in the inner problems of TS and Irs.FH, the DM
at time t earns E[rt|θ] and E[rt|µ̂T −1], respectively, which are the mean reward estimates that rely
on the information not available at the moment; e.g., µ̂a,T −1 is revealed only after playing the arm
a for T − 1 times. Irs.V-Zero is more restrictive for the DM in the sense that she at time t earns
E[rt|Ht−1], which does not include any information that does not belong to Ht−1. Irs.V-Zero
reflects the fact that the nth reward of an arm will not be revealed unless the arm is pulled n times,
and its inner problem requires the DM to allocate a pull in order to incorporate the next reward
realization into her information set; thus learning about an arm comes at the cost of sacrificing an
opportunity to learn about the other arms.

More specifically, let us focus on the total payoff of a particular allocation (n1, . . . , nK) under
each penalty function zIrs.V-Zero

t and zIrs.FH
t . The allocation yields

∑K
a=1 Sa,na(ω) in the inner

problem of Irs.V-Zero whereas the same allocation yields
∑K

a=1 na × µ̂a,T −1(ω) in the inner
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problem of Irs.FH. In terms of variability originating from the randomness of ω, we observe that
each summand Sa,na(ω) =

∑na
i=1 µ̂a,i−1(ω) is less noisy than its counterpart na × µ̂a,T −1(ω) since

a larger number of observations makes it easier for the posterior to deviate from the initial prior
and hence the variance of individual terms µ̂a,0(ω), . . . , µ̂a,na−1(ω) is smaller than the variance
of µ̂a,T −1(ω) and, therefore,

∑K
a=1 Sa,na(ω) is smaller than

∑K
a=1 na × µ̂a,T −1(ω). Analogous to

the comparison between Irs.FH and TS, we have that Irs.V-Zero yields a performance bound
W Irs.V-Zero that is tighter than W Irs.FH (formally stated in Theorem 2) and a policy πIrs.V-Zero

that performs fewer random explorations than πIrs.FH.

3.4. IRS.V-EMax

Under perfect information relaxation, the DM perfectly knows not only (i) what she will earn
at future times but also (ii) how her belief will evolve as a result of her action sequence. The
previous algorithms focus on the former component by making the DM adjust the future rewards
by conditioning (e.g., E[rt(at)|θ], E[rt(at)|µ̂T −1] and E[rt(at)|Ht−1]). Irs.V-EMax also focuses on
the latter component as well by charging the DM an additional cost for using the information on
her future belief transitions.

To motivate this in detail, recall that the ideal penalty zideal
t (22) is

zideal
t (a1:t, ω) ≜ rt(a1:t, ω)− E [rt(a1:t, ω) |Ht−1(a1:t−1, ω) ] (38)

+ V ∗ (T − t, yt(a1:t, ω))− E [V ∗ (T − t, yt(a1:t, ω))|Ht−1(a1:t−1, ω)] ,

where V ∗ (T − t, yt) measures the value of having a belief yt at a future time t+1. Note that, at the
moment the DM takes an action at, the next belief state yt = U(yt−1, at, rt) is not measurable with
respect to the natural filtration σ(Ht−1) since the next observation rt is unknown. In DP terms,
the conditional expectation E [V ∗ (T − t, yt)|Ht−1] captures the expected value of a (random) next
state given the current state. Accordingly, the gap between its realized value and its expected
value, V ∗ (T − t, yt)−E [V ∗ (T − t, yt)|Ht−1], measures the additional gain from knowing the next
belief state yt. In addition to the term rt−E [rt |Ht−1 ] (= zIrs.V-Zero

t ), which measures the benefit
from knowing which action will yield a large immediate reward, the ideal penalty also penalizes the
long-term benefit from knowing which action will lead to a favorable belief state.

The penalty function zIrs.V-EMax
t is obtained from zideal

t by replacing V ∗(T, y) with W TS(T, y),
which is computable. The use of W TS(T, y) ≜ Ey [T ×maxa µa(θa)], introduced in (29), leads to
a simple expression for its conditional expectation: since θ|Ht−1 is distributed with P(yt−1), we
have

Ey
[
W TS (T − t, yt)

∣∣∣Ht−1
]

= (T − t)× Ey
[
max

a
µa(θa)

∣∣∣Ht−1
]

(39)

= (T − t)× Eyt−1

[
max

a
µa(θa)

]
(40)

= W TS (T − t, yt−1) . (41)
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In the associated inner problem, the payoff that the DM earns at time t is

rt(a1:t, ω)− zIrs.V-EMax
t (a1:t, ω) (42)

= µ̂at,nt−1(a1:t−1,at)(ω)−W TS (T − t, yt(a1:t, ω)) + W TS (T − t, yt−1(a1:t−1, ω)) (43)

= µ̄at([yt−1(a1:t−1, ω)]at)−W TS (T − t, yt(a1:t, ω)) + W TS (T − t, yt−1(a1:t−1, ω)) , (44)

which is completely determined by the prior belief yt−1 and the posterior belief yt.

We further observe that, given ω, the future belief yt(a1:t, ω) depends only on how many times
each arm has been pulled, irrespective of the sequence of the pulls. For example, consider two action
sequences aA

1:t = (1, 1, 2, 1, 2) and aB
1:t = (2, 1, 1, 2, 1). Even though the order of observations would

differ, in both cases the agent would observe (R1,1, R1,2, R1,3) from arm 1 and (R2,1, R2,2) from arm
2 and end up with the same belief yt(aA

1:t, ω) = yt(aB
1:t, ω). We may conclude from this observation

that a belief state can be sufficiently parameterized with the pull counts n1:K = (n1, . . . , nK) instead
of action sequence a1:t.

As a result, the total number of possible future beliefs is O(T K), not O(KT ), and we can come
up with a dynamic programming algorithm that solves the inner problem within O(cW T K +KT K)
computations where cW is the cost of numerically calculating W TS(T, y). We refer the interested
reader to §B.2.

3.5. IRS.Index Policy

Finally, we propose the Irs.Index policy, which does not strictly belong to the IRS framework,
and does not produce a performance bound, but does exhibit strong empirical performance.

Roughly speaking, the Irs.Index is a single-sample approximation of the finite-horizon Gittins
index (Kaufmann et al., 2012a), where the approximation is motivated by Irs.V-EMax algorithm.
It first solves the single-armed bandit problem for each arm in isolation, and makes a decision based
on the results of these subproblems.

Single-armed bandit problem. Consider a special case of an MAB instance in which there is
a single arm a that yields stochastic rewards Ra,n ∼ Ra(θa) with an outside option that yields a
deterministic reward λ. We have a prior distribution Pa(ya) over unknown parameter θa whereas
the deterministic reward λ is known a priori.

Given an outcome ωa = (θa, (Ra,n)n∈N), we can simulate the future belief trajectory (ya,n)n∈{0,...,T },
where ya,n is the belief after n reward realizations are observed:

ya,0 ≜ ya, ya,n ≜ Ua(ya,n−1, Ra,n), ∀n = 1, . . . , T. (45)

Let V ∗(T, ya, λ) be the optimal value function associated with this single-armed bandit problem.
We consider the penalty function zIrs.V-EMax

t in which the value function V ∗(T, ya, λ) is approxi-

22



mated by W TS(T, ya, λ) = Eya [T ×max(µa(θa), λ)]. We define A ≜ {0, 1} such that at = 1 if the
stochastic arm at time t is selected, and at = 0 if the outside option is selected. The associated
inner problem is

maximize
T∑

t=1
µ̂a,nt−1(ωa) · 1{at = 1}+ λ · 1{at = 0} − (T − t)×

(
Γλ

nt
(ωa)− Γλ

nt−1(ωa)
)

(46)

subject to nt =
t∑

s=1
1{at = 1}, at ∈ {0, 1}, ∀t = 1, . . . , T, (47)

where µ̂a,n(ωa) ≜ Eya [µa(θa)|Ra,1, . . . , Ra,n] = µ̄a(ya,n) and

Γλ
n(ωa) ≜ Eya,n [max(µa(θa), λ)] . (48)

With some algebra (Proposition 2 in §B.3), we can reformulate the optimization problem as

max
0≤n≤T

{
T × Γλ

0(ωa) + (T − n)×
(

λ− min
0≤i≤n

Γλ
i (ωa)

)
+

n∑
i=1

(
µ̂a,i−1(ωa)− Γλ

i−1(ωa)
)}

, (49)

where the decision variable n is the total number of pulls on the stochastic arm.

Let φa(λ, ωa) be the (maximal) relative benefit from pulling the stochastic arm against not
pulling at all:

φa(λ, ωa) ≜ max
1≤n≤T

{
T × Γλ

0 + (T − n)×
(

λ− min
0≤i≤n

Γλ
i

)
+

n∑
i=1

(
µ̂a,i−1 − Γλ

i−1

)}
− T × λ. (50)

Note that max{·} was taken over n ≥ 1. We interpret the meaning of the sign of φa(λ, ωa) as
follows: given an outcome ωa, the stochastic arm is worth trying against the deterministic outside
option λ if φa(λ, ωa) ≥ 0, and not worth trying if φa(λ, ωa) < 0.

Given ωa and λ, the value of φa(λ, ωa) can be computed in O(T ) operations by precalculating∑n
i=1 µ̂a,i−1(ωa), min0≤i≤n Γλ

i (ωa), and
∑n

i=1 Γλ
i−1(ωa) over n = 1, . . . , T sequentially. The single-

armed bandit problem has an additional advantage of computational efficiency: in contrast to
the implementation of Irs.V-EMax in the multi-arm setting, the approximate value function
(captured by Γλ

n) often admits a closed-form expression in the single-armed setting. In the cases of
the Beta-Bernoulli MAB and the Gaussian MAB, for example, we have

Eµ∼Beta(α,β) [max (µ, λ)] = λ× F beta
α,β (λ) + α

α + β
×
(
1− F beta

α+1,β (λ)
)

, (51)

Eµ∼N (m,ν2) [max (µ, λ)] = m + (λ−m)× Φ
(
ν−1(λ−m)

)
+ ν × ϕ

(
ν−1(λ−m)

)
, (52)

where F beta
α,β (·) represents the c.d.f. of Beta(α, β) distribution, and Φ(·) and ϕ(·) represent the c.d.f.

and the p.d.f. of the standard normal distribution, respectively. With these expressions, Γλ
n(ωa)’s

can be computed very efficiently without using numerical integration or Monte Carlo sampling.
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Index policy. We now return to the original MAB problem with K arms. Recall that the single-
armed bandit algorithm tells us whether an arm (given an outcome ωa) is worth trying against the
deterministic reward λ. We use this algorithm as a module to compute the index of each arm.

More specifically, consider a certain decision epoch when the remaining time is T and the belief
is y. For each arm a = 1, . . . , K separately, the policy πIrs.Index samples the future outcome ω̃a

(i.e., draws θ̃a ∼ Pa(ya) and R̃a,n ∼ Ra(θ̃a) for n = 1, . . . , T ), and finds a threshold value on the
deterministic outside option that makes the arm barely worth trying:

λ∗
a(ω̃a) ≜ sup {λ ∈ R ; φa(λ, ω̃a) ≥ 0} . (53)

By the definition of φa(λ, ωa), the threshold value λ∗
a(ω̃a) measures the value of arm a as an

opportunity cost of not pulling arm a at all, given a particular outcome ω̃a. We use the value
λ∗

a(ω̃a) as an index of arm a so that the index policy plays the arm with the largest index, i.e.,
AIrs.Index = argmaxa λ∗

a(ω̃a).

Although the monotonicity of the mapping λ 7→ φa(λ, ω̃a) is not theoretically proven, we observe
that the bisection search works sufficiently well in our numerical experiments. Since each instance
of single-armed bandit problems requires O(T ) computations to solve, the entire procedure for arm
selection requires a run time of O(cb × KT ), where cb represents the number of iterations in a
bisection search. See §B.3 for the implementation details.

In addition to the Irs.Index policy described above, some numerical experiments include a
heuristic variation of it, called Irs.Index*, that is obtained by using

φa(λ, ωa) ≜ max
1≤n≤T

{
n∑

i=1

(
µ̂a,i−1(ωa)− λ−

(
Γλ

i (ωa)− Γλ
0(ωa)

))}
, (54)

instead of (50). This alternative formulation yields indices that are relatively stable across the
different samples of outcome ω̃a.

We note that our index, λ∗
a(ω̃a), is a random approximation of the finite-horizon Gittins (FH-

Gittins) index studied in Kaufmann et al. (2012a), Niño-Mora (2011), and Lattimore (2016). The
original FH-Gittins algorithm precisely solves the single-armed bandit problem, which is shown to
be an optimal stopping problem in which one must decide when to stop pulling the stochastic arm
as one’s belief state evolves stochastically. Applying the information relaxation framework to the
single-armed bandit problem, we solve, instead, a simple deterministic problem in which one must
find a deterministic schedule optimized to a particular belief trajectory associated with a randomly
generated outcome ω̃. As in the previous algorithms, the penalties help us to obtain a solution
close to the optimal stopping policy of the original single-armed bandit problem.
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4. Analysis

In this section, we provide theoretical analyses that characterize IRS policies and performance
bounds in particular for TS, Irs.FH, and Irs.V-Zero.

Remark 5 (Single-period optimality). When T = 1, all of the policies πIrs.FH, πIrs.V-Zero, πIrs.V-Emax,
and πIrs.Index take the optimal action; i.e., they pull the myopically best arm A∗ = argmaxa µ̄a(ya).

Proposition 1 (Asymptotic behavior). Assume that µi(θi) ̸= µj(θj) almost surely for any two distinct
arms i ̸= j. As T ↗ ∞, the distribution of the πIrs.FH’s action converges to that of Thompson
sampling:

lim
T →∞

P
[
AIrs.FH(T, y) = a

]
= P

[
ATS(y) = a

]
, ∀a ∈ A. (55)

Similarly, so does the distribution of the πIrs.V-Zero’s action:8

lim
T →∞

P
[
AIrs.V-Zero(T, y) = a

]
= P

[
ATS(y) = a

]
, ∀a ∈ A. (56)

ATS(y), AIrs.FH(T, y) and AIrs.V-Zero(T, y) denote the action taken by policies πTS, πIrs.FH, and
πIrs.V-Zero, respectively, when the remaining time is T and the current belief is y. These actions
are random variables, since each of these policies uses a randomly sampled outcome ω̃ of its own.
Remark 5 can be easily verified by observing that, when T = 1, r1(a, ω) − z1(a, ω; T, y) = µ̄a(ya)
for any a ∈ A for each of the penalty functions. The results in Proposition 1 follow from Remark 1
stating that the posterior predictive mean reward process converges to the conditional mean reward,
i.e., limn→∞ µ̂a,n(ω̃) = µa(θ̃a). The assumption µi(θi) ̸= µj(θj) is made to avoid the ambiguity of
the tie-breaking rule that is used in TS.

Remark 5 and Proposition 1 illustrate that πIrs.FH and πIrs.V-Zero behave like TS during the
initial decision epochs, gradually shift toward the myopic scheme, and end up with the optimal de-
cision; by contrast, TS continues to explore. The transition from exploration to exploitation under
these IRS policies occurs smoothly, without relying on an auxiliary control parameter. While main-
taining their recursive structure, IRS policies take into account the time horizon T , and naturally
balance exploitation and exploration.

Theorem 2 (Monotonicity of performance bounds). Irs.FH and Irs.V-Zero monotonically improve
the performance bound

W TS(T, y) ≥W Irs.FH(T, y) ≥W Irs.V-Zero(T, y), (57)

and also
W TS(T, y) ≥W Irs.V-EMax(T, y). (58)

Recall that W TS(T, y) = Ey [T ×maxa µa(θa)] is the conventional regret benchmark.
8We assume a particular selection rule such that ãIrs.V-Zero = argmaxa ñ∗

a, as discussed in §3.3.
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Empirically (§5), we observe that W Irs.V-Zero ≥W Irs.V-EMax. In addition, we have W Irs.V-EMax ≥
W ideal since W ideal is the lowest attainable upper bound (Theorem 1). The second inequality (58)
holds in a stronger sense: for every outcome ω, the maximal value of the inner problem associated
with W TS is greater than that of the inner problem associated with W Irs.V-EMax.

While the entire proof is provided in §D.3, we highlight here the main ideas. The first result
(57) follows from the monotonicity of the information structure incorporated in each penalty func-
tion: TS, Irs.FH, and Irs.V-Zero replace the realized rewards with E(rt|θ), E(rt|µ̂T −1), and
E(rt|Ht−1), respectively, where θ is more informative than µ̂T −1, and µ̂T −1 is more informative
than Ht−1 for the DM to infer the value of future reward rt. Based on this observation, we use a
variant of Jensen’s inequality to prove the results.9 The second result (58) is proven based on Theo-
rem 4 of Desai et al. (2012a), which says that if an approximate value function V̂ is a supersolution
(Definition 2) to the Bellman equation and a penalty function ẑ approximates the ideal penalty
with V̂ in place of V ∗, the resulting performance bound W ẑ is smaller than V̂ . By showing that
W TS is a supersolution to (15), we prove that W Irs.V-EMax ≤W TS since zIrs.V-EMax

t is constructed
upon W TS.

Although Theorem 2 compares the performance bound among IRS algorithms, we interpret that
its tightness, W z − V ∗, reflects the degree of optimism that its corresponding policy πz possesses.
Recall that W z is the expected value of the best possible payoff when the DM is informed of
some future outcomes in advance. Weak duality W z ≥ V ∗ implies that IRS policies are basically
optimistic: an IRS policy takes an action as if it can earn more than the optimal policy in the
belief that the sampled outcome is the ground truth. In this sense, the gap W z − V ∗ captures how
optimistically the policy πz interprets the sampled outcome. When W z − V ∗ is relatively small
for a certain penalty function zt, we may conclude that the penalty function zt makes the DM less
optimistic and induces a policy πz that performs fewer random explorations.

We further compare the performance of IRS policies using an alternative suboptimality measure.
We define the “suboptimality gap” of an IRS policy πz to be W z(T, y)− V (πz, T, y), and analyze
it instead of the conventional (Bayesian) regret, W TS(T, y)−V (πz, T, y). While its non-negativity
is guaranteed by weak duality (Theorem 1), more desirably, the optimal policy yields a zero sub-
optimality gap (Theorem 1 and Remark 2). This measure coincides with the conventional regret
measure only for TS.

Theorem 3 (Suboptimality gap for natural exponential families). Consider an MAB instance with a
reward distribution that is a natural exponential family distribution, as described in §2.2, in which
each arm a ∈ A is described with a log-partition function Aa(θa) and a hyperparameter ya = (ξa, νa).

9 We remark that W Irs.FH ≥ W Irs.V-Zero is not an immediate consequence of the fact that σ(µ̂T −1) is a stronger
filtration than σ(Ht−1). It further relies on a particular structure of MAB problems: the rewards of an arm are
independent and identically distributed conditionally on the parameter. See §D.3.2 for a further discussion.
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Suppose that all the log-partition functions are L-smooth, i.e.,

d2

dθ2
a

Aa(θa) ≤ L, ∀θa ∈ Θa, a ∈ A. (59)

Further assume that νa = ν for all a ∈ A. Then, for any T ≥ 2, we have

W TS(T, y)− V (πTS, T, y) ≤ 2
√

L

[ 1√
ν

+
√

2 log T ×
(

K√
ν

+ 2
√

KT

)]
, (60)

W Irs.FH(T, y)− V (πIrs.FH, T, y) ≤ 2
√

L

 1√
ν

+
√

2 log T ×

 K√
ν

+ 2
√

KT − 1
3

√
T

K

 ,

(61)

W Irs.V-Zero(T, y)− V (πIrs.V-Zero, T, y) ≤
√

L

 1√
ν

+
√

2 log T ×

 K√
ν

+ 2
√

KT − 1
3

√
T

K

 .

(62)

Remark 6. For a Bernoulli MAB with symmetric arms, each of which has a prior Beta(α, β) for
its mean reward, we have L = 1

2 and
√

ν =
√

α + β.

Remark 7. For a Gaussian MAB with symmetric arms, each of which has a prior N (m, v2) for its
mean reward and a noise variance σ2, we have L = σ and

√
ν = v/σ.

Theorem 3 indirectly shows to the improvements to the suboptimality gaps: although all the
bounds have the same asymptotic order of O(

√
KT log T ), the IRS policies improve the leading

coefficient or the additional term.10 These results hold for a wide range of MAB problems including
the Bernoulli MAB and the Gaussian MAB as stated in Remark 6 and 7. In addition, our numerical
experiments in §5 suggest that such improvements in the suboptimality gaps are roughly equally
attributable to both the improvements in the performance bounds W z and those in the actual
policy performance V (πz).

The proof of Theorem 3, provided in §D.4, relies on an essential property of IRS policies that
generalizes the “probability matching” property of TS, i.e., a matching between nature’s random-

10Recall that W TS − V (πTS) represents the Bayesian regret of TS. It will be worth mentioning some known results
that may be comparable to the bound (60) established in Theorem 3.

For the cases where the reward distributions have a bounded support in [0, 1], Bubeck and Liu (2013) have shown
that the Bayesian regret of TS is bounded from above by 14

√
KT ; and further shown that its asymptotic order

is unimprovable in the sense that for any policy there exists a prior distribution such that the policy experiences
Bayesian regret no smaller than 1

20

√
KT . However, this does not imply that the regret of the Bayesian optimal policy

is bounded from below by 1
20

√
KT in the context of Theorem 3, since we consider a specific prior and the policy

optimized to that prior.
For Gaussian MAB in the non-Bayesian setting, Agrawal and Goyal (2013) have shown that the regret of TS is

O(
√

KT log T ); and further shown that its asymptotic order is unimprovable in the sense that for any policy there
exists an instance (i.e., the set of true mean values) such that the policy’s regret is at least Ω(

√
KT log K).

While there is no result in the literature that is comparable to the other bounds (61) and (62), we conjecture that
they will be tight just as the bound for TS (60) is, given the fact all three policies exhibit the identical asymptotic
behavior for large T (Proposition 1).
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ness and the decision maker’s randomness. It is well known that TS is randomized in a way that,
conditional on past observations, the probability that an action a is chosen equals the probability
that the action a is chosen by someone who knows the parameters. Analogously, the IRS policy πz

is randomized in a way that, conditional on past observations, the probability that an action a is
chosen equals the probability that the action a is chosen by someone who knows the entire future
but is penalized (Proposition 7). Recall that the penalties are designed to penalize the benefit from
having additional future information. A better choice of penalty function would prevent the policy
πz from picking an action that is overly optimized for a randomly sampled future realization, which
in turn would improve the quality of the decision making.

Given the above observation, our proof utilizes the approach taken by Russo and Van Roy
(2014) that exploits the probability matching property of TS to bound its Bayesian regret. More
specifically, for each penalty function, we carefully construct a sequence of confidence intervals on
the mean reward such that the corresponding policy’s instantaneous suboptimality at each time
(loss against the hindsight solution) is bounded by the width of the confidence interval approxi-
mately. For a better penalty function, the confidence intervals can be made tighter so that the
total suboptimality can also be bounded more effectively. In our analysis, the natural exponential
family is assumed in order to analyze the concentration of posterior distribution in a closed form,
and the smoothness condition on the log-partition function is assumed in order to guarantee that
the reward distribution is sub-Gaussian, whereas Russo and Van Roy (2014) consider an arbitrary
reward distribution with a bounded support.

5. Numerical Experiments

5.1. Experimental Setup

We conduct numerical simulations to evaluate the effectiveness of our framework in comparison to
alternative algorithms. In addition to the IRS algorithms discussed so far, we consider other recently
developed algorithms that are particularly suitable for a Bayesian setting: the Bayesian upper
confidence bound (Kaufmann et al., 2012a) (Bayes-UCB, with a quantile of 1− 1

t ), information-
directed sampling (Russo and Van Roy, 2018) (IDS), the optimistic Gittins index (Gutin and
Farias, 2016) (OGI, one-step look-ahead approximation with a discount factor of γt = 1− 1

t ), and
the Lagrangian index policies suggested in Brown and Smith (2020) (Lagr-RT and Lagr-OT,
with a random and an optimal tie-breaking rule, respectively).

Our numerical experiments include Beta-Bernoulli MABs and Gaussian MABs. Given an MAB
problem instance specified by the prior distribution P(y) and the reward distributionR, we simulate
the policies and calculate the IRS bounds with respect to the different values of time horizon T .

Let S be the number of simulations we perform. For each s ∈ {1, . . . , S}, we first sample the
parameters θ

(s)
a ∼ Pa(ya) and the rewards R

(s)
a,n ∼ Ra(θ(s)

a ) for all n ∈ {1, . . . , Tmax} and a ∈ A,
which is equivalent to sampling an outcome ω(s) ∼ I(y). Given the sth sampled outcome ω(s), for
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each time horizon T ∈ {5, 10, 15, . . . , Tmax}, we simulate each policy π (that may utilize the time
horizon T ); i.e., at each time t = 1, . . . , T , the policy makes a decision11 on which arm to pull,
Aπ

t , and then the associated reward, rt(Aπ
1:t, ω(s)) = R

(s)
Aπ

t ,nt(Aπ
1:t,Aπ

t ), is revealed accordingly. After

simulating one sample path,
∑T

t=1 µAπ
t
(θ(s)

Aπ
t
) is recorded as the performance of π for the sth sample,

and the expected performance V (π, T, y) is measured by its sample average across S samples for
each T .

In order to compute IRS bounds, we use the same set of samples ω(1), . . . , ω(S). For each penalty
function z and for each T ∈ {5, 10, . . . , Tmax}, we solve the associated inner problems with respect
to ω(1), . . . , ω(S), and the IRS bound W z(T, y) is evaluated by taking the average of the maximal
values over S instances.

More explicitly, we use the following sample averages to calculate V (π, T, y) and W z(T, y):

V (π, T, y) ≈ 1
S

S∑
s=1

(
T∑

t=1
µAπ

t
(θ(s)

Aπ
t
)
)

, W z(T, y) ≈ 1
S

S∑
s=1

max
a1:T ∈AT

{
T∑

t=1
rt(a1:t, ω(s))− zt(a1:t, ω(s))

}
.

(63)
Note again that the same outcome ω(s) is used across the different values of time horizon T and
across different algorithms. Sharing the randomness enhances the consistency of the estimates. In
what follows, we use 20,000 samples (i.e., S = 20, 000).

Based on V (π, T, y) and W TS(T, y) measured with the sample averages, we calculate the
Bayesian regret of a policy π:

BayesRegret(π, T, y) ≜ E
[

T∑
t=1

max
a

µa(θa)− µAπ
t
(θAπ

t
)
]

= W TS(T, y)− V (π, T, y), (64)

which is a conventional measure in performance analysis of Bayesian algorithms as discussed in
§3.1. We further calculate the regret (lower) bound obtained from a IRS penalty function zt:

RegretBound(z, T, y) ≜ W TS(T, y)−W z(T, y). (65)

By weak duality (Theorem 1), we have BayesRegret(π, T, y) ≥ RegretBound(z, T, y) for any π ∈
ΠF. By its definition, the regret bound produced by TS is zero.

5.2. Results

Bernoulli MAB with two arms (K = 2). We first provide the results for a Bernoulli MAB in
which

µa ∼ Beta(1, 1), Ra,n ∼ Bernoulli(µa), ∀a ∈ {1, 2}. (66)
11Recall that IRS policies are randomized policies that perform their own simulations at each time along the sample

path. This posterior sampling procedure is independent of the random generation of true outcomes.
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We consider relatively short time horizons (≤ Tmax = 200) since we are focusing on a finite-horizon
regime rather than an asymptotic regime. In this particular case, since the state (belief) space is
discrete and small in size, O(T 4), we are able to solve the Bellman equations (15) numerically, and
thus we can implement the Bayesian optimal policy, which is labeled as Opt in what follows.

Figure 2 shows the regrets (solid lines) of all the policies discussed above and the regret bounds
(dashed lines) produced by the IRS algorithms.12 Table 3 provides further details including the
percentage improvement in regret over TS, i.e.,

RegretImprovement(π, T, y) ≜ 1− BayesRegret(π, T, y)
BayesRegret(TS, T, y) ,

and the improvement in regret bound over TS benchmarked to the regret of the best performing
algorithm, i.e.,

BoundImprovement(π, T, y) ≜ RegretBound(z, T, y)− RegretBound(zTS, T, y)
minπ′ BayesRegret(π′, T, y) .

In Figure 2, note that lower regret curves are better, and higher bound curves are better.

Comparing the IRS algorithms (TS, Irs.FH, Irs.V-Zero, Irs.V-Emax, and Opt), we first
observe a clear improvement in both the performance of policies and the tightness of bounds, as
we adopt a more complicated penalty function, albeit one that requires a longer run time: as
visualized in Figure 2, the regret curve approaches the Opt curve from above and the bound curve
approaches it from below, where the Opt curve represents the lowest attainable regret that is the
highest attainable regret bound at the same time. The suboptimality gap (the gap between a regret
curve and its corresponding bound curve) becomes smaller, which is consistent with the implication
of Theorem 3.

Finally, we note that the Irs.Index policy is outperforming all the other policies; i.e., the
regret curve of Irs.Index is surprisingly close to the Opt curve. Although it is developed based
on Irs.V-EMax, it performs better than Irs.V-EMax, and the reasons for that still need to be
researched.

12There also exists a performance bound induced by the Lagrangian index policies. We omit it from Figure 2,
however, since that bound is not so tight and thus not informative to be displayed in the same plot; e.g., when
T = 200, the associated regret bound is −12.54, which is far below the current x-axis.
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Figure 2: Regret plot for a Bernoulli MAB with two arms. The solid lines represent the (Bayesian)
regret of algorithms, W TS(T, y) − V (π, T, y), and the dashed lines represent the regret bounds that
IRS algorithms produce, W TS(T, y) − W z(T, y). Each data point reports the average across 20,000
simulations.
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Algorithm Bayesian regret
(s.e.)

Regret
improvement

Regret lower
bound (s.e.)

Bound
improvement

Policy
run time

TS 3.45 (0.021) 0.0% 0.00 (–) 0.0% 17 ms
Irs.FH 3.17 (0.020) 8.1% 0.08 (0.040) 3.8% 37 ms

Irs.V-Zero 2.87 (0.021) 17.0% 0.90 (0.055) 40.0% 527 ms
Irs.V-EMax 2.70 (0.020) 21.8% 1.42 (0.326) 63.6% 29.5 sec

Irs.Index 2.29 (0.023) 33.6% – – 3.6 sec
Bayes-UCB 2.72 (0.020) 21.2% – – 44 ms

IDS 2.43 (0.028) 29.6% – – 3.7 sec
OGI 2.43 (0.028) 29.5% – – 262 ms

Lagr-RT 2.64 (0.046) 23.5% -12.54 – 19 ms*
Lagr-OT 2.64 (0.046) 23.6% -12.54 – 14 ms*

Opt 2.24 (–) 35.1% 2.24 (–) 100.0% –

Table 3: Simulation results for a Bernoulli MAB with two arms when T = 200. The best results are
emphasized with bold letters. The third and fifth columns show the percentage improvements over TS
in regret and in bound respectively; e.g., Irs.V-EMax achieves a regret that is 21.8% better than that
of TS, and yields a regret bound that accounts for 63.7% of the lowest regret observed empirically.
The last column shows the average time required for a policy to make decisions along one sample path
including the time required posterior sampling for the case of IRS policies. ∗Lagr-RT and Lagr-OT
require substantial offline computation prior to simulation. This takes around 20 hours in the setting
of this simulation.

Bernoulli MAB with ten arms (K = 10). We next consider a Bernoulli MAB with ten arms and
Tmax = 500. Irs.V-EMax and Opt are omitted from this simulation due to their computational
cost, and so are Lagr-RT and Lagr-OT for long horizons13 (T > 350). Figure 3 and Table 4 show
the simulation results. We again observe a monotonic improvement in the performance of policies
and the tightness of bounds among IRS algorithms, and the Irs.Index policy still performs best.

13 Lagr-RT and Lagr-OT require substantial offline pre-computation. This involves a convex optimization prob-
lem with T decision variables, where a single evaluation of the objective function requires Θ(T 3) operations. As
recommended by Brown and Smith (2020), we have implemented a cutting-plane method using a commercial opti-
mization software (Gurobi), but it takes over a week to complete the pre-computation when T = 350.
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Figure 3: Regret plot for a Bernoulli MAB with ten arms. Lagr-RT and Lagr-OT are simulated only
for T ≤ 350 due to the computational cost (see Footnote 13).

Algorithm Bayesian regret
(s.e.)

Regret
improvement

Regret lower
bound (s.e.)

Bound
improvement

Policy
run time

TS 23.59 (0.078) 0.0% 0.00 (–) 0.0% 50 ms
Irs.FH 22.08 (0.076) 6.4% 0.43 (0.042) 4.0% 300 ms

Irs.V-Zero 19.54 (0.074) 17.2% 3.82 (0.058) 35.6% 17.0 sec
Irs.Index 13.62 (0.080) 42.2% – – 56.2 sec

Bayes-UCB 17.77 (0.077) 24.7% – – 140 ms
IDS 14.67 (0.093) 37.8% – – 16.4 sec
OGI 15.04 (0.092) 36.2% – – 2.6 sec

Table 4: Simulation results for a Bernoulli MAB with ten arms when T = 500.
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Gaussian MABs (K = 2 or 10). We next consider Gaussian MABs in which

µa ∼ N (0, 12), Ra,n ∼ N (µa, 12), ∀a ∈ {1, . . . , K}. (67)

Figure 4 and Table 5 show the case of two arms (K = 2), and Figure 5 and Table 6 show the
case of ten arms (K = 10). The algorithms Lagr-RT and Lagr-OT are not implemented for
Gaussian MABs since they require either discrete belief states or some form of state discretization.
The results are similar to those of Bernoulli MABs.
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Figure 4: Regret plot for a Gaussian MAB with two arms.

Algorithm Bayesian regret
(s.e.)

Regret
improvement

Regret lower
bound (s.e.)

Bound
improvement

Policy
run time

TS 7.47 (0.047) 0.0% 0.00 (–) 0.0% 17 ms
Irs.FH 6.94 (0.045) 7.1% 0.38 (0.100) 7.4% 37 ms

Irs.V-Zero 6.38 (0.048) 14.7% 2.48 (0.133) 48.5% 625 ms
Irs.V-EMax 5.97 (0.044) 20.2% 3.48 (1.154) 68.0% 13.3 sec

Irs.Index 5.12 (0.054) 31.5% – – 2.2 sec
Bayes-UCB 6.16 (0.045) 17.5% – – 38 ms

IDS 5.58 (0.068) 25.3% – – 679 ms
OGI 5.57 (0.067) 25.5% – – 196 ms

Table 5: Simulation results for a Gaussian MAB with two arms when T = 200.
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Figure 5: Regret plot for a Gaussian MAB with ten arms.

Algorithm Bayesian regret
(s.e.)

Regret
improvement

Regret lower
bound (s.e.)

Bound
improvement

Policy
run time

TS 58.28 (0.180) 0.0% 0.00 (–) 0.0% 35 ms
Irs.FH 56.20 (0.180) 3.6% 0.48 (0.156) 1.2% 215 ms

Irs.V-Zero 52.46 (0.188) 10.0% 8.04 (0.216) 20.4% 13.7 sec
Irs.Index 39.40 (0.244) 32.4% – – 30.4 sec

Bayes-UCB 51.40 (0.178) 11.8% – – 77 ms
IDS 46.41 (0.324) 20.4% – – 4.0 sec
OGI 49.63 (0.335) 14.8% – – 1.6 sec

Table 6: Simultion results for a Gaussian MAB with ten arms when T = 500.

Gaussian MAB with different noise variances (K = 5). We next consider a problem where

µa ∼ N (0, 12), Ra,n ∼ N (µa, σ2
a), ∀a ∈ {1, . . . , 5} (68)

and (σ1, σ2, σ3, σ4, σ5) = (0.1, 0.4, 1, 4, 10). In this MAB instance, it is particularly crucial for the
algorithms to consider how much the DM can learn about each of the arms during the remaining
time periods, since the difficulty of estimating the mean reward of an arm a heavily depends on
the noise level σa that varies across the arms.14

14In order for the posterior distribution to be concentrated so as to have a standard deviation of 0.1, for example, one
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As shown in Figure 6, Bayes-UCB shows a particularly poor performance, as it keeps pulling
arm 5 without considering the fact that arm 5 is too noisy to be learnt within such a short period of
time (i.e., T ≤ 500). By contrast, we observe that our IRS policies and IDS algorithm outperform
the Bayes-UCB, OGI, and TS algorithms, since they explicitly take into account the value of
exploration by quantifying the informativeness of a new observation for each arm (more specifically,
by considering how the belief will change as a new reward realization is revealed). Notably, the
Irs.FH policy, which is a very simple modification of TS, significantly improves the performance
of TS without degrading its computational efficiency.

The example also illustrates the significance of having a tighter performance bound. If the bench-
mark is set to W Irs.V-Zero, when T = 500, the Irs.Index* policy15 achieves 94%

(
= V (πIrs.Index*,T,y)

W Irs.V-Zero(T,y)

)
of the benchmark. If the benchmark is set to W TS instead, as in a conventional regret analysis, we
might have concluded that the Irs.Index* policy achieves only 88%

(
= V (πIrs.Index*,T,y)

W TS(T,y)

)
of that

(looser) bound, which would suggest a larger margin of possible improvement.
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Figure 6: Regret plot for a Gaussian MAB with five arms with different noise variances.

observation is enough for arm 1 whereas 100 and 10,000 observations are required for arm 3 and arm 5, respectively.
15The Irs.Index* policy is a heuristic modification of the Irs.Index policy. See §B.3.
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Algorithm Bayesian regret
(s.e.)

Regret
improvement

Regret lower
bound (s.e.)

Bound
improvement

Policy
run time

TS 121.99 (0.615) 0.0% 0.00 (–) 0.0% 34 ms
Irs.FH 103.03 (0.628) 15.5% 11.75 (0.656) 16.2% 128 ms

Irs.V-Zero 89.59 (0.690) 26.6% 38.47 (0.827) 53.1% 7.4 sec
Irs.Index 100.20 (0.657) 17.9% – – 12.8 sec
Irs.Index* 72.43 (0.866) 40.6% – – 12.3 sec
Bayes-UCB 220.66 (1.285) -80.9% – – 88 ms

IDS 94.63 (0.817) 22.4% – – 2.9 sec
OGI 151.61 (1.030) -24.3% – – 829 ms

Table 7: Simulation results for a Gaussian MAB with five arms with different noise variances when
T = 500.

6. Extensions

Below, we describe several natural generalizations of the methods developed in this paper beyond
the setting of Section 2:

MAB with unknown time horizon. This paper studies finite-time horizon MABs for which we
suggest algorithms that exploit the knowledge of the time horizon T and we focus on a relatively
small T such that the time horizon becomes an important ingredient in optimally balancing explo-
ration and exploitation. We briefly illustrate how to relax our framework’s dependency on T , i.e.,
how to extend to the setting with an unknown horizon and the setting with an indefinitely long
horizon.

First, our framework (penalties, policies, and upper bounds) can naturally incorporate the
unknown T within the Bayesian setting; i.e., the horizon T is also a random variable whose prior
distribution is known. As a simple case, if T is independent of the DM’s actions, we can reformulate
the objective function of the inner problem as

∑∞
t=1 γt (rt(a1:t, ω)− zt(a1:t, ω)) where the discount

factor γt ≜ P[T ≥ t] is the survivor probability, and rt(·) and zt(·) are the reward and penalty
terms used in the paper. Alternatively, we can treat the random variable T like the random
reward realizations by sampling T from its prior distribution while a penalty function (additionally)
penalizes for the gain from knowing T (one can imagine that the outcome ω now includes the
realization of T and not only the future reward realizations). Structural results such as weak
duality and strong duality will continue to hold.

Second, we can consider a practical modification of IRS policies when T is large or infinite. We
can construct a dual feasible penalty function that mixes Irs.FH and Irs.V-Zero,16 which induces
an algorithm whose complexity is O

(
K min{T, T0}2

)
for some predefined constant T0. Alternatively,

we can convert the Irs.V-EMax or Irs.Index policy into an anytime policy by setting the inner
16In its inner problem, Irs.V-Zero-like penalties are applied for the initial ⌊T0/K⌋ pulls and then Irs.FH-like

penalties are applied for the later pulls.
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problem’s horizon large enough, despite that the performance bound will no longer be obtainable.

MAB in more complicated settings. Even though this paper develops a framework for the
stochastic MAB with independent arms, which would be the simplest and oldest problem in the
MAB literature, we believe that our framework applies to more complicated settings. Consider the
following examples:

• A finite-horizon MAB with correlated arms (e.g., Ra,n ∼ N (x⊤
a θ, σ2

a) where θ ∈ Rd is shared
across the arms, and xa ∈ Rd is an arm’s feature vector): Irs.V-Zero can be immediately
implemented by adopting the DP algorithm discussed in §B.2.

• MAB with the delayed reward realization: Irs.FH can be immediately implemented by sim-
ulating the DM’s learning process in the presence of delay.

• MAB with a budget constraint (in which each arm consumes a certain amount of budget and
the DM wants to maximize the total reward within a limited budget. See Ding et al. (2013)):
all IRS algorithms can be implemented by solving a budget-constrained optimization problem
instead of a horizon-constrained optimization problem.

In these extensions, we obtain not only the online decision-making policies but also their perfor-
mance bounds as in this paper. Generally speaking, our framework provides a systematic way of
improving TS by taking into account the exploitation-exploration trade-off more carefully, par-
ticularly in the presence of some constraint that induces incomplete learning; the main challenge
would be to design a suitable penalty function that is tractable yet captures the problem-specific
exploration-exploitation trade-off precisely.

7. Conclusion

Contribution to MAB literature. We first highlight that our IRS framework generalizes
Thompson sampling to the finite-horizon MAB setting. As pointed out in Russo et al. (2017),
TS may perform poorly in time-sensitive learning problems in which exploitation is rather more
encouraged than exploration. Interpreted as a special case of IRS policies, it is clear that TS is
implicitly assuming an infinite time horizon in the sense that its associated inner problem solves a
best-arm identification problem with an infinite number of observations. As summarized in Table
2, IRS algorithms consider more complicated inner problems in which the benefit from exploration
is limited by the time-horizon constraint. While maintaining the Bayesian recursive structure of its
sequential decision-making process, we improve TS within a unified framework that also includes
the Bayesian optimal policy as another special case.

Furthermore, the IRS framework provides a set of (Bayesian) performance bounds that are
tighter than the conventional benchmark that has been widely used since Lai and Robbins (1985).
We believe that these benchmarks would be useful, in a Bayesian setting, in measuring the opti-
mality of an algorithm or in assessing the intrinsic difficulty of an MAB problem instance.
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Contribution to information relaxation literature. The information relaxation framework
is certainly a powerful tool to obtain performance bounds in a general class of decision-making
problems. Although there have been several studies (Desai et al., 2012b) that elicit a decision-
making policy based on this framework, they are limited to using a performance bound as a proxy
for the value function. Instead of approximating the value function explicitly, the IRS framework
considers simulation-based randomized policies that make each decision that is optimized to a
single instance of a simulated environment, and our results show that this scheme is very powerful
in online learning problems where random exploration is required.

In applying the information relaxation framework to a particular application, the most chal-
lenging task is to find a suitable penalty function that is tractable yet yields a tight performance
bound. In this paper, by exploiting the recursive structures embedded in the Bayesian learning
process, we derive a series of penalty functions so that users themselves can find a balance between
the quality of policies/bounds and the computational cost. We also provide theoretical analyses
of the tightness of performance bounds and the suboptimality of associated policies by leveraging
the existing analysis developed in the MAB literature. These analytic results would be rare in the
information relaxation literature due to the complex nature of the performance bound produced
by the information relaxation framework.
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A. An Illustrative Example

Let us consider a Bernoulli MAB with eight periods (T = 8) and three arms (K = 3) with the
following priors:

µ1 ∼ Beta(3, 1), µ2 ∼ Beta(1, 1), µ3 ∼ Beta(1, 3), (69)

where Ra,n ∼ Bernoulli(µa) for each a ∈ {1, 2, 3} and n ∈ {1, 2, · · · , 8}. Given this prior belief, the
predictive mean reward of each arm is µ̄1 = Eµ1∼Beta(3,1)[µ1] = 3

4 , µ̄2 = 1
2 , and µ̄3 = 1

4 , respectively.
As an illustrative example, we examine a particular instance where the true outcome ω is given as
follows:

True means µa(θa) Rewards Ra,n

n = 1 2 3 4 5 6 7 8
Arm 1 (a = 1) 0.235 0 1 1 1 0 0 0 0
Arm 2 (a = 2) 0.443 1 0 0 1 1 1 1 0
Arm 3 (a = 3) 0.787 1 1 1 1 0 0 1 1

Table 8: An example of the outcome in a Bernoulli MAB with K = 3 and T = 8.

If we consider only the priors, arm 1 is best since µ̄1 is largest among (µ̄1, µ̄2, µ̄3). If, however,
∗The authors wish to thank Daniel Russo, Martin Haugh, David Brown, Jim Smith, and anonymous reviewers for

helpful comments. A preliminary version of this paper appeared in the conference proceedings Advances in Neural
Information Processing Systems 32 (NeurIPS 2019) (Min et al., 2019).
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we have full information about the parameter values, arm 3 is best since µ3 is largest among
(µ1, µ2, µ3).

A.1. Inner Problems Induced by Different Penalty Functions

No penalty. To clarify the role of penalties, we first consider the case of zero penalty, i.e., zt ≡ 0,
which was not discussed in §3. With zero penalty, the DM at any time earns the current realized
reward without adjustment. The clairvoyant DM, who is informed of the outcome ω, can find the
best action sequence for this particular outcome ω. Recall that Ra,n is defined to be the reward
from the nth pull of arm a, not the reward from arm a at time n, and so the DM is not allowed to
skip any of the reward realizations and the total reward does not depend on the order of pulls. As
depicted in the table below, the optimal solution is to pull arm 1 four times, arm 2 once, and arm
3 three times, which yields a total reward of 7.

Payoffs under zero penalty Maximal payoff
n = 1 2 3 4 5 6 7 8

Arm 1 0 1 1 1 0 0 0 0
7Arm 2 1 0 0 1 1 1 1 0

Arm 3 1 1 1 1 0 0 1 1

TS penalty. Next, let us examine the penalty zTS
t (a1:t, ω) ≜ rt(a1:t, ω)−µat(θat) under which the

DM earns µa whenever playing arm a. The hindsight optimal action sequence is to pull arm 3 (the
arm with the largest mean reward µa) eight times in a row and the DM can earn a total reward of
T × µ3 = 6.296 at most.

Payoffs under zTS
t Maximal payoff

n = 1 2 3 4 5 6 7 8
Arm 1 .235 .235 .235 .235 .235 .235 .235 .235

6.296Arm 2 .443 .443 .443 .443 .443 .443 .443 .443
Arm 3 .787 .787 .787 .787 .787 .787 .787 .787

IRS.FH penalty. When the penalties are given by zIrs.FH
t (a1:t, ω) ≜ rt(a1:t, ω) − µ̂at,T −1(ω),

the DM earns µ̂a,T −1(ω) whenever playing arm a. Recall that µ̂a,T −1(ω) is the Bayesian estimate
on mean reward of arm a after observing reward realizations Ra,1, · · · , Ra,T −1. In this particular
example, we have (µ̂1,T −1, µ̂2,T −1, µ̂3,T −1) =

(
6
11 , 6

9 , 6
11

)
and the maximal payoff is T × µ̂2,T −1 =

5.333, which can be obtained by playing arm 2 throughout the entire time horizon.

IRS.V-Zero penalty. Finally, let us focus on zIrs.V-Zero
t (a1:t, ω) ≜ rt(a1:t, ω) − µ̂at,nt−1(a1:t−1,at)

under which the DM earns µ̂a,n−1(ω) from the nth pull of arm a. Since the payoff from an arm
changes over time as the Bayesian estimate evolves, playing only one arm is no longer optimal,
unlike in the previous two cases. It can be easily verified that the optimal allocation is to play arm
1 six times and arm 2 two times, as visualized in the table below.
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Payoffs under zIrs.FH
t Maximal payoff

n = 1 2 3 4 5 6 7 8
Arm 1 6/11 6/11 6/11 6/11 6/11 6/11 6/11 6/11

5.333Arm 2 6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9
Arm 3 6/11 6/11 6/11 6/11 6/11 6/11 6/11 6/11

Payoffs under zIrs.V-Zero
t Maximal payoff

n = 1 2 3 4 5 6 7 8
Arm 1 3/4 3/5 4/6 5/7 6/8 6/9 6/10 6/11

5.314Arm 2 1/2 2/3 2/4 2/5 3/6 4/7 5/8 6/9
Arm 3 1/4 2/5 3/6 4/7 5/8 5/9 5/10 6/11

IRS.V-EMax and the ideal penalty. Regarding the penalty functions zIrs.V-EMax
t and zideal

t ,
we cannot visualize the optimal solution with a table since the total payoff depends on the detailed
sequence of pulls and not only the number of pulls. While omitting the visual proof of optimality,
we have that the action sequence a∗

1:8 = (1, 2, 2, 1, 1, 1, 1, 1) achieves the maximal payoff of 5.806
under zIrs.V-EMax

t , and a∗
1:8 = (1, 1, 1, 1, 1, 1, 1, 1) achieves the maximal payoff of 6.063 under zideal

t .
In particular for zideal

t , the maximal payoff depends only on the prior belief y and the time horizon
T , irrespective of the outcome1 ω.

We have so far illustrated how the different penalty functions induce the different inner prob-
lems and the different best actions given the same outcome ω. The readers may notice from the
above examples that, as the penalty function becomes more complicated, the hindsight best ac-
tion sequence becomes less dependent on a particular realization of ω. Instead, it becomes more
dependent on the prior belief.

A.2. IRS Performance Bounds

The maximal payoffs above are calculated for a particular outcome given by Table 8. Recall that
the IRS performance bound W z is defined as the expected value of the maximal payoff where
the expectation is taken with respect to the randomness of outcome ω over its prior distribution
I(T, y). We can obtain this value by simulation, i.e., by solving a bunch of inner problems with
respect to the randomly generated outcomes ω(1), ω(2), · · · , ω(S) and taking the average of the
maximal values. For this particular Bernoulli MAB setting (T = 8 with given priors), we obtain
the following performance bounds:

W 0 W TS W Irs.FH W Irs.V-Zero W Irs.V-EMax W ideal = V ∗

6.805 6.429 6.279 6.111 6.075 6.063

1For details, see the proof of the strong duality theorem in §C.1. While the maximal value does not depend
on ω, the optimal action sequence still depends on ω. More specifically, it is the sequence of actions that the
(non-anticipating) Bayesian optimal policy will take when ω is sequentially revealed.
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We observe that the performance bounds are monotone, i.e., W 0 > W TS > W Irs.FH > W Irs.V-Zero >

W Irs.V-EMax > W ideal = V ∗, which is consistent with Theorem 2.

A.3. Illustration of the IRS Policy (IRS.V-Zero)

We illustrate how the policy πIrs.V-Zero makes decisions sequentially when the true outcome ω is
the one specified in Table 8. At t = 1, it first synthesizes a future scenario based on the prior
belief (i.e., sampling ω̃1 ∼ I(y0)) and finds the best action sequence in the presence of penalties
zIrs.V-Zero

t in the belief that the sampled outcome ω̃1 is the ground truth. The following table
shows an example in which πIrs.V-Zero plays arm 1.

t = 1 Priors y0
Payoffs with respect to ω̃1 ∼ I(y0) Action

n = 1 2 3 4 5 6 7 8
Arm 1 Beta(3, 1) 3/4 4/5 5/6 6/7 7/8 7/9 8/10 9/11

a1 = 1Arm 2 Beta(1, 1) 1/2 1/3 1/4 1/5 1/6 1/7 2/8 3/9
Arm 3 Beta(1, 3) 1/4 1/5 1/6 1/7 1/8 1/9 1/10 2/11

As a result of the first action (a1 = 1), we observe that R1,1 = 0 (encoded in the true outcome ω)
and the associated belief is updated from Beta(3, 1) to Beta(3, 2) according to Bayes’ rule. In order
to make the next decision a2 at time t = 2, πIrs.V-Zero simulates an outcome for the remaining time
horizon, i.e., ω̃2 ∼ I(y1), independently of the outcome ω̃1 used at t = 1. Again, πIrs.V-Zero finds
the best action sequence for this new scenario and takes its first action.2 The table below shows
an instance of ω̃2 in which the policy will pull arm 2.

t = 2 Priors y1
Payoffs with respect to ω̃2 ∼ I(y1) Action

n = 1 2 3 4 5 6 7
Arm 1 Beta(3, 2) 3/5 4/6 4/7 4/8 4/9 5/10 5/11

a2 = 2Arm 2 Beta(1, 1) 1/2 2/3 3/4 3/5 4/6 4/7 5/8
Arm 3 Beta(1, 3) 1/4 1/5 1/6 1/7 1/8 1/9 1/10

We can update the prior of arm 2 as a new reward realization R2,1 = 1 is revealed. In the
following decision epochs t = 3, 4, · · · , the policy repeats the same decision-making procedure –
(i) samples ω̃t ∼ I(yt−1), (ii) solves the inner problem, and (iii) plays the best arm that the
optimal solution suggests – while updating the priors as the true reward realizations are revealed
sequentially.

The following table illustrates the last decision epoch. As there remains one time period only,
the policy πIrs.V-Zero tries to maximize µ̂a,0(ω̃7) = µ̄a(y7), which is the expected mean reward
given the prior at that moment. Such a decision is totally myopic, but it is Bayesian optimal.

2In case of Irs.V-Zero, we select the arm with the largest pull allocation as a first action.
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t = 8 Priors y7
Payoffs with respect to ω̃7 ∼ I(y7) Action

n = 1
Arm 1 Beta(6, 3) 6/9

a8 = 1Arm 2 Beta(2, 2) 2/4
Arm 3 Beta(1, 3) 1/4

B. Algorithms in Detail

B.1. Implementation of IRS.V-Zero

We provide a pseudo-code of the policy πIrs.V-Zero introduced in §3.3. The same logic can be
directly used to compute the performance bound W Irs.V-Zero if the sampled outcome ω̃ is replaced
with the true outcome ω.

Algorithm 5: Arm selection rule of πIrs.V-Zero when remaining time is T and current belief
is y
Function IRS.V-Zero(T, y)

1 θ̃a ∼ Pa(ya), R̃a,n ∼ Ra(θ̃), ∀n ∈ {1, . . . , T}, ∀a ∈ {1, . . . , K}
2 for a = 1, · · · , K do
3 ỹa,0 ← ya, S̃a,0 ← 0
4 for n = 1, · · · , T do
5 S̃a,n ← S̃a,n−1 + µ̄a(ỹa,n−1)
6 ỹa,n ← Ua(ỹa,n−1, R̃a,n)

end
end

7 M̃0,0 ← 0, M̃0,n ← −∞,∀n ∈ {1, . . . , T}
8 for a = 1, · · · , K do
9 for n = 0, · · · , T do

10 M̃a,n ← max0≤m≤n{M̃a−1,n−m + S̃a,m}
11 L̃a,n ← argmax0≤m≤n{M̃a−1,n−m + S̃a,m}

end
end

12 τ ← T

13 for a = K, · · · , 1 do
14 ñ∗

a ← L̃a,τ

15 τ ← τ − ñ∗
a

end
16 return argmaxa ñ∗

a

46



B.2. Implementation of IRS.V-EMax

We use the notation yt(n1:K , ω) to denote the belief as a function of pull counts n1:K ≜ (n1, · · · , nK) ∈
NK

0 , based on the observation that the belief is completely determined by how many times each
of the arms has been pulled, n1:K , irrespective of the specific sequence in which the arms have
been pulled. Given the pull counts n1:K , we define the payoff of pulling arm a one more time after
pulling the individual arms n1, · · · , nK times respectively: with t =

∑K
a=1 na, the effective payoff

associated with arm a at time t is

rz(n1:K , a, ω) ≜ µ̂a,na(ω)−W TS (T − t− 1, yt+1(n1:K + ea, ω)) + W TS (T − t− 1, yt(n1:K , ω)) ,

(70)
where ea ∈ NK

0 is a basis vector such that the ath component is one and the others are zero. Note
that we used the fact that E

[
W TS (T − t, yt)

∣∣∣Ht−1
]

= W TS (T − t, yt−1).

Consider a subproblem of (∗) that maximizes the total payoff given the number of pulls n1:K

across all the arms: with t =
∑K

a=1 na, we get

M(n1:K , ω) ≜ max
a1:t∈At

{
t∑

s=1
rs(a1:s, ω)− zIrs.V-EMax

s (a1:s, ω);
t∑

s=1
1{as = a} = na,∀a

}
. (71)

Consequently, the maximal value M(n1:K , ω) should satisfy the following Bellman equation:

M(n1:K , ω) = max
a∈A:na≥1

{M(n1:K − ea, ω) + rz(n1:K − ea, a, ω)} , (72)

i.e., when letting a∗ be the maximizer of (72), it is optimal to play arm a∗ after making the best
effort within the allocation n1:K −ea. For all feasible counts n1:K ’s such that

∑K
a=1 na ≤ T , we can

compute M(n1:K , ω)’s by sequentially solving (72) in an appropriate order. By doing so, we can
obtain the maximal value of the original inner problem (∗) by evaluating

max
n1:K∈NT

{M(n1:K , ω)} , (73)

where NT ≜ {(n1, · · · , nK) ∈ NK
0 :

∑K
a=1 na = T}, and the performance bound W Irs.V-EMax is the

expected value of (73) with respect to the random realization of ω. The optimal action sequence
a∗

1:T can be obtained by tracking M(n1:K , ω)’s backward.
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Algorithm 6: Arm selection rule of πIrs.V-Zero when remaining time is T and current belief
is y
Function IRS.V-EMax(T, y)

1 θ̃a ∼ Pa(ya), R̃a,n ∼ Ra(θ̃), ∀n ∈ {1, . . . , T}, ∀a ∈ {1, . . . , K}
2 ỹa,0 ← ya, ỹa,n ← Ua(ỹa,n−1, R̃a,n), ∀n ∈ {1, . . . , T}, ∀a ∈ {1, . . . , K}
3 for each n1:K ∈ N≤T do
4 Γ̃[n1:K ]← Eỹ(n1:K) [maxa µa(θa)]

end
5 for each n1:K ∈ N<T do
6 r̃z[n1:K , a]← µ̄a(ỹa,na−1) +

(
T −

∑K
a=1 na − 1

)
×
(
Γ̃[n1:K ]− Γ̃[n1:K + ea]

)
, ∀a ∈

{1, . . . , K}
end

7 M̃ [0]← 0
8 for each n1:K ∈ N≤T \ {0} in order with increasing

∑K
a=1 na do

9 M̃ [n1:K ]← maxa:na>0
{

M̃ [n1:K − ea] + r̃z[n1:K − ea, a]
}

10 Ã[n1:K ]← argmaxa:na>0

{
M̃ [n1:K − ea] + r̃z[n1:K − ea, a]

}
end

11 m1:K ← argmaxn1:K∈NT

{
M̃ [n1:K ]

}
12 for t = T, · · · , 1 do
13 ã∗

t ← Ã[m1:K ]
14 mã∗

t
← mã∗

t
− 1

end
15 return ã∗

1

Here, ỹ(n1:K) ≜ (ỹ1,n1 , · · · , ỹK,nK
), N≤T ≜ {n1:K ;

∑
a na ≤ T}, N<T ≜ {n1:K ;

∑
a na < T}, and

in line 8, n1:K iterates over N≤T \ {0} in an order in which
∑K

a=1 na is non-decreasing.

Since |N≤T | = O(T K), it requires O(KT K) operations to compute all M(n1:K , ω)’s. However,
another practical issue is the cost of computing W TS(T, y) = T × Ey [maxa µa(θa)] which has to
be evaluated O(T K) times in total. There is no simple closed-form expression in general, and it
should be evaluated with numerical integration or Monte Carlo sampling.

B.3. Implementation of IRS.Index

We first prove the identity that was utilized in §3.5, and then provide the pseudo code for Irs.Index
policy.

Proposition 2. The optimization problem (46) can be reformulated as

max
0≤n≤T

{
T × Γλ

0 + (T − n)×
(

λ− min
0≤i≤n

Γλ
i

)
+

n∑
i=1

(
µ̂a,i−1 − Γλ

i−1

)}
. (74)
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Here, the decision variable n is the total number of pulls of a stochastic arm.

Proof. Fix m ≜ nT , i.e., the total number of pulls on the stochastic arm. Note that if at = 0, then
(T − t)× (Γλ

nt
− Γλ

nt−1) = 0 since nt = nt−1. The objective function can be represented as

m∑
n=1

µ̂a,n−1 + (T −m)× λ−
m∑

n=1
(T − tn)×

(
Γλ

n − Γλ
n−1

)
, (75)

where tn ≜ inf{t; nt ≥ n} represents the time at which the nth pull on the stochastic arm is made.
It suffices to find the optimal pulling times (t1, · · · , tm) with 1 ≤ t1 < t2 < · · · < tm ≤ T by which∑m

n=1(T − tn)×
(
Γλ

n − Γλ
n−1

)
is minimized. With t0 ≜ 0 and tm+1 ≜ T + 1, we have

m∑
n=1

(T − tn)×
(
Γλ

n − Γλ
n−1

)
(76)

=
m∑

n=1
(T − tn)× Γλ

n −
m∑

n=1
(T − tn)× Γλ

n−1 (77)

=
m∑

n=1
(T − tn)× Γλ

n −
m−1∑
n=0

(T − tn+1)× Γλ
n (78)

=
m∑

n=0
(T − tn)× Γλ

n − (T − t0)× Γλ
0 −

m∑
n=0

(T − tn+1)× Γλ
n + (T − tm+1)× Γλ

m (79)

= −Γλ
m − T × Γλ

0 +
m∑

n=0
(tn+1 − tn)× Γλ

n. (80)

Consider the minimum value among Γλ
0 , . . . , Γλ

m and let n∗ ≜ argmin0≤n≤m Γλ
n. In order to minimize

(80), it should satisfy that tn+1 − tn = T −m + 1 for n = n∗ and tn+1 − tn = 1 for n ̸= n∗. For
such tn’s, (75) reduces to

m∑
n=1

µ̂a,n−1 + (T −m)× λ−
(
−Γλ

m − T × Γλ
0 +

m∑
n=0

Γλ
n + (T −m)× min

0≤n≤m
Γλ

m

)
(81)

=
m∑

n=1
µ̂a,n−1 + (T −m)×

(
λ− min

0≤n≤m
Γλ

m

)
+ T × Γλ

0 −
m−1∑
n=0

Γλ
n. (82)

By taking its maximum value over m = 0, · · · , T , we obtain (49). ■

The following pseudo code implements the arm selection rule of the Irs.Index policy when
remaining time is T and current belief is y. In line 14, the infimum can be found via the bisection
method, and ỹa,0:T ≜ (ỹa,0, . . . , ỹa,T ) represents the sequence of beliefs under the sampled outcome.
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Algorithm 7: Arm selection rule of Irs.Index policy when remaining time is T and current
belief is y
Function IRS.Single.Worth-Trying(a, T, λ, ỹa,0:T )

1 Γ̃λ
n ← Eỹa,n [max(µa(θa), λ)] ,∀n ∈ {0, . . . , T}

2 S̃µ
a,0 ← 0, S̃Γ

0 ← 0, m̃Γ
0 ← Γ̃λ

0
3 for n = 1, · · · , T do
4 S̃µ

a,n ← S̃µ
a,n−1 + µ̄a(ỹa,n−1)

5 S̃Γ
n ← S̃Γ

a,n−1 + Γ̃λ
n

6 m̃Γ
n ← min

(
m̃Γ

n−1, Γ̃λ
n−1

)
end

7 φ̃a ← max1≤n≤T

{
S̃µ

a,n + T × Γ̃λ
0 + (T − n)×

(
λ− m̃Γ

n

)
− S̃Γ

n

}
− T × λ

8 if φ̃a ≥ 0 then
9 return true

else
10 return false

end

Function IRS.Index(T, y)
11 θ̃a ∼ Pa(ya), R̃a,n ∼ Ra(θ̃), ∀n ∈ {1, . . . , T}, ∀a ∈ {1, . . . , K}
12 ỹa,0 ← ya, ỹa,n ← Ua(ỹa,n−1, R̃a,n), ∀n ∈ {1, . . . , T}, ∀a ∈ {1, . . . , K}
13 for a = 1, · · · , K do
14 λ̃∗

a ← inf {λ; IRS.Single.Worth-Trying(a, T, λ, ỹa,0:T ) = true}
end

15 return argmaxa λ̃∗
a

C. Proofs for §3

Proposition 3 (Mean equivalence). If the penalty function zt is dual feasible, the presence of penalties
does not affect the performance of a non-anticipating policy π: i.e.,

Eπ
y

[
T∑

t=1
rt(Aπ

1:t, ω)− zt(Aπ
1:t, ω)

]
= Eπ

y

[
T∑

t=1
rt(Aπ

1:t, ω)
]

=: V (π, T, y). (83)

Proof. The claim immediately follows from the definition of dual feasibility and the linearity of the
expectation operator. ■
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C.1. Proof of Theorem 1

Despite that the results of Theorem 1 were already well established in Brown et al. (2010), we
provide the detailed proof as our context is slightly different from that of Brown et al. (2010)
regarding the measurability of rt. We define an appending operator ⊕ that concatenates an element
into a vector so that a1:t = a1:t−1 ⊕ at.

Weak duality. Define the filtration for the perfect information relaxation Gt ≜ Ft ∪ σ(ω) and
consider a relaxed policy space ΠG ≜ {π : Aπ

t is Gt−1-measurable, ∀t}. Then, we have

V ∗(T, y) ≜ sup
π∈ΠF

E
[

T∑
t=1

rt(Aπ
1:t)
]

Prop 3= sup
π∈ΠF

E
[

T∑
t=1

rt(Aπ
1:t)− zt(Aπ

1:t)
]

(84)

≤ sup
π∈ΠG

E
[

T∑
t=1

rt(Aπ
1:t)− zt(Aπ

1:t)
]

= E
[

max
a1:T ∈AT

T∑
t=1

rt(a1:t)− zt(a1:t)
]

(85)

= W z(T, y), (86)

where the inequality holds since ΠF ⊆ ΠG. ■

Strong duality. Fix T and y. Let V in
t (a1:t−1, ω) and Qin

t (a1:t−1, a, ω) be, respectively, the value
function and the state-action value (Q-value) function that are associated with the inner problem
(∗) given a particular outcome ω under the ideal penalty (22). With V in

T +1 ≡ 0, we have the
following Bellman equation for the inner problem:

Qin
t (a1:t−1, a, ω) ≜ rt(a1:t−1 ⊕ a, ω)− zideal

t (a1:t−1 ⊕ a, ω) + V in
t+1(a1:t−1 ⊕ a, ω), (87)

V in
t (a1:t−1, ω) = max

a∈A

{
Qin

t (a1:t−1, a, ω)
}

. (88)

We argue by induction to show that

V in
t (a1:t−1, ω) = V ∗(T − t + 1, yt−1(a1:t−1, ω)), (89)

Qin
t (a1:t−1, a, ω) = Q∗(T − t + 1, yt−1(a1:t−1, ω), a), (90)

for all a1:t−1 ∈ At−1, a ∈ A and t ∈ {1, . . . , T + 1}.

As a terminal case, when t = T + 1, the claim holds trivially, since V in
T +1(a1:T , ω) = 0 =

V ∗(0, yT (a1:T , ω)). Now assume that the claim holds for t + 1: i.e., V in
t+1(a1:t, ω) = V ∗(T −
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t, yt(a1:t, ω)) for all a1:t ∈ At. For any a1:t−1 ∈ At−1 and a ∈ A, then,

Qin
t (a1:t−1, a, ω) = rt(a1:t−1 ⊕ a, ω)− zideal

t (a1:t−1 ⊕ a, ω) + V in
t+1(a1:t−1 ⊕ a, ω) (91)

= E [rt(a1:t−1 ⊕ a, ω) + V ∗ (T − t, yt(a1:t−1 ⊕ a, ω))|Ht−1(a1:t−1, ω)] (92)

−V ∗ (T − t, yt(a1:t−1 ⊕ a, ω)) + V in
t+1(a1:t−1 ⊕ a, ω)︸ ︷︷ ︸

=0

(93)

= E [rt(a1:t−1 ⊕ a, ω) + V ∗ (T − t, yt(a1:t−1 ⊕ a, ω))|Ht−1(a1:t−1, ω)] (94)

= Eyt−1(a1:t−1,ω) [Ra + V ∗ (T − t,U(yt−1(a1:t−1, ω), a, Ra))] (95)

= Q∗(T − t, yt−1(a1:t−1, ω), a), (96)

where the last equality follows from the original Bellman equation (15). Consequently, we obtain

V in
t (a1:t−1, ω) = max

a∈A

{
Qin

t (a1:t−1, a, ω)
}

(97)

= max
a∈A
{Q∗(T − t, yt−1(a1:t−1, ω), a)} (98)

= V ∗(T − t, yt−1(a1:t−1, ω)). (99)

Therefore the claim holds for all t = 1, · · · , T . In particular for t = 1, we have

V in
1 (∅, ω) = V ∗(T, y), Qin

1 (∅, a, ω) = Q∗(T, y, a), ∀ω. (100)

Note that the maximal value of the inner problem does not depend on the outcome ω, i.e., it is
deterministic with respect to the randomness of ω. As its expected value, W ideal(T, y) = V ∗(T, y).

■

C.2. Proof of Remark 2

We proceed on the proof of strong duality. The policy πideal solves the same inner problem with
respect to a randomly sampled outcome ω̃. When the remaining time is T and the current belief
is y, it takes an action with the largest Q-value: together with (100), it yields

aπideal = argmax
a

Qin
1 (∅, a, ω̃) = argmax

a
Q∗(T, y, a). (101)

Therefore, at each moment, irrespective of the sampled outcome ω̃, the policy πideal always takes
the same action that the Bayesian optimal policy would take. Although there might be some
ambiguity regarding tie breaking in argmax, it does not affect the expected performance. Therefore,
V (πideal, T, y) = V ∗(T, y). ■
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C.3. Proof of Remark 3

First observe that for any non-anticipating policy π ∈ ΠF, since Aπ
t is Ft−1-measurable, we have

Ey

[
T∑

t=1
rt(Aπ

1:t, ω)
]

= Ey

[
T∑

t=1
E (rt(Aπ

1:t, ω)| Ft−1, θ)
]

= Ey

[
T∑

t=1
µAπ

t
(θAπ

t
)
]

. (102)

Since E[rt(a1:t, ω)|θ] = µat(θat) for any a1:t ∈ At, we further deduce that

Ey

[
T∑

t=1
zTS

t (Aπ
1:t, ω)

]
= Ey

[
T∑

t=1
rt(Aπ

1:t, ω)
]
− Ey

[
T∑

t=1
µAπ

t
(θAπ

t
)
]

= 0, (103)

and thus zTS
t is dual feasible.

Also observe that E[rt(a1:t)|µ̂T −1] = E[µat |µ̂T −1] = E[µat |µ̂T −1, Ht−1] and E[rt(a1:t)|Ht−1] =
E[µat |Ht−1] for any a1:t ∈ At. We can easily verify that each of penalty functions (22)–(26) has a
form of

zt(a1:t, ω) = zTS
t (a1:t, ω) + wt(a1:t, ω)− E[wt(a1:t, ω)|Gt−1(a1:t−1, ω)], (104)

for some deterministic function wt and some relaxed information set Gt−1 ⊇ Ht−1. By invoking
Proposition 2.3 (iii) of Brown et al. (2010), we have that zIrs.FH

t −zTS
t , zIrs.V-Zero

t −zTS
t , zIrs.V-EMax

t −
zTS

t , and zideal
t − zTS

t are dual feasible, and therefore so are zIrs.FH
t , zIrs.V-Zero

t , zIrs.V-EMax
t , and

zideal
t . ■

D. Proofs for §4

D.1. Notes on Regularity

Proposition 4. If Ey|Ra,n| <∞ for all a,

Ey|µa(θa)| <∞, and W TS(T, y) <∞, ∀T ∈ N. (105)

Proof. By Jensen’s inequality,

Ey|µa(θa)| = Ey [|E (Ra,n|θa)|] ≤ Ey [E ( |Ra,n|| θa)] = Ey|Ra,n| <∞. (106)

Consequently,

Ey
[
max

a
µa(θa)

]
≤ Ey

[
K∑

a=1
|µa(θa)|

]
=

K∑
a=1

Ey|µa(θa)| <∞. (107)

The claim holds since W TS(T, y) = T × Ey[maxa µa(θa)]. ■
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Proposition 5. If Ey|Ra,n| <∞,

lim
n→∞

µ̂a,n(ω; ya) = lim
n→∞

1
n

n∑
i=1

Ra,i = µa(θa) almost surely, (108)

where µ̂a,n(ω; ya) ≜ Eya [µa(θa)|Ra,1, · · · , Ra,n].

Proof. Fix a and let Hn ≜ σ (Ra,1, · · · , Ra,n). First note that, by the strong law of large numbers,
limn→∞

1
n

∑n
i=1 Ra,i = µa(θa) almost surely. Therefore, µa(θa) is measurable with respect to H∞ ≜⋃

nHn. Also note that µ̂a,n = E (µa(θa)|Hn) is a Doob martingale adapted to Hn. By Levy’s
upward theorem, since µa(θa) ∈ L1 by Proposition 4, µ̂a,n converges to E (µa(θa)|H∞) = µa(θa)
almost surely as n→∞. ■

D.2. Proof of Proposition 1

Asymptotic behavior of πIrs.FH. Let ω̃ be the sampled outcome used by πIrs.FH. By Proposition
5, we have limn→∞ µ̂a,n(ω̃) = µa(θ̃a) for almost all ω̃. This, together with the assumption that
µi(θi) ̸= µj(θj) for i ̸= j, since argmaxa µa(θ̃a) is uniquely defined for almost all ω̃, yields

argmax
a

µa(θ̃a) = argmax
a

lim
n→∞

µ̂a,n(ω̃) = lim
n→∞

argmax
a

µ̂a,n(ω̃) a.s. (109)

Since almost-sure convergence guarantees convergence in distribution, for any a ∈ A,

lim
T →∞

P
[
AIrs.FH(T, y) = a

]
= lim

T →∞
P
[
argmax

a′
µ̂a′,T −1(ω̃) = a

]
(110)

= P
[
argmax

a′
µa′(θ̃a′) = a

]
(111)

= P
[
ATS(y) = a

]
. (112)

Note that we are not assuming that πIrs.FH and πTS share the randomness. The sampled parameters
used in πTS are not necessarily the ones used in πIrs.FH, but their distributions are identical since
they are drawn from the same prior. ■

Asymptotic behavior of πIrs.V-Zero. To simplify notation, let A◦
T ≜ AIrs.V-Zero(T, y). As above,

it suffices to show that limT →∞ A◦
T = argmaxa∈A µa(θ̃a) := ATS for almost all sampled outcome ω̃.

We hide ω̃ and θ̃a from the notation for the further simplification.

Define
∆ ≜ min

a̸=ATS
|µATS − µa| and M ≜ sup

a∈A,n≥0
|µ̂a,n| . (113)

We have 0 < ∆ < 2M <∞ almost surely since µi(θ̃i) ̸= µj(θ̃j) for i ̸= j and limn→∞ µ̂a,n = µa <∞
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almost surely for all a. In addition, there exists N ∈ N such that

|µ̂a,n − µa| <
∆
4 , ∀n ≥ N, ∀a ∈ A. (114)

For such N , we have
inf

n≥N
µ̂aTS,n ≥ sup

n≥N
µ̂a,n + ∆

2 , ∀a ̸= ATS. (115)

Note that ATS, ∆, M , and N do not have the dependency on T .

To argue by contradiction, suppose that A◦
T ̸= ATS for some large T such that T ≥ 2N + 8MN

∆ +2.
Define the optimal allocation to the inner problem of Irs.V-Zero for such T :

n◦
1:K ≜ argmax

n1:K∈NT

{
K∑

a=1

na∑
s=1

µ̂a,s−1

}
, (116)

where the ties are broken arbitrarily in argmax{}. We let n◦(a) be the ath component of n◦
1:K .

According to the specified arm selection rule, we have A◦
T = argmaxa n◦(a) and hence n◦(A◦

T ) ≥ ⌊T
2 ⌋

(> N). We prove the claim for the following two cases:

Case 1: If n◦(aTS) ≥ N , consider an allocation n†
1:K that is a deviation from the given optimal

allocation n◦
1:K such that arm aTS gets one pull whereas arm A◦

T gets one less pull: i.e., n†(ATS) =
n◦(ATS) + 1, n†(A◦

T ) = n◦(A◦
T )− 1, and n†(a) = n◦(a) for any a /∈ {ATS, A◦

T }. The change in the
total payoff from this deviation is

K∑
a=1

n†(a)∑
i=1

µ̂a,i−1 −
K∑

a=1

n◦(a)∑
i=1

µ̂a,i−1 = µ̂ATS,n◦(ATS) − µ̂A◦
T ,n◦(A◦

T )−1 ≥
∆
2 > 0, (117)

where the inequality follows from (115) and that n◦(ATS) ≥ N and n◦(A◦
T ) ≥ N . The alloca-

tion n†
1:K is strictly better than n◦

1:K , which contradicts the assumption that n◦
1:K is an optimal

allocation.

Case 2: If n◦(ATS) < N , consider an allocation n†
1:K that is a deviation from the given optimal

allocation n◦
1:K such that arm A◦

T gets no more than N pulls whereas arm ATS gets the remains:
i.e.,

n†(a) ≜


n◦(ATS) + (n◦(A◦

T )−N) if a = ATS,

N if a = A◦
T ,

n◦(a) if a /∈ {ATS, A◦
T }.

(118)
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By making this the deviation, the total payoff should increase by

K∑
a=1

n†(a)∑
i=1

µ̂a,i−1 −
K∑

a=1

n◦(a)∑
i=1

µ̂a,i−1 (119)

=
n◦(ATS)+(n◦(A◦

T )−N)∑
i=n◦(ATS)+1

µ̂ATS,i−1 −
n◦(A◦

T )∑
i=N+1

µ̂A◦
T ,i−1 (120)

≥ −(N − n◦(ATS)) · 2M +
n◦(A◦

T )∑
i=N+1

µ̂ATS,i−1 −
n◦(A◦

T )∑
i=N+1

µ̂A◦
T ,i−1 (121)

≥ −(N − n◦(ATS)) · 2M + (n◦(A◦
T )−N) · ∆

2 (122)

≥ (n◦(A◦
T )−N) · ∆

2 − 2NM. (123)

Since T ≥ 2N + 8MN
∆ + 2 and n◦(A◦

T ) ≥ ⌊T
2 ⌋, the last term is strictly positive, which is a contra-

diction.

We’ve shown that for almost all ω̃, when T is large enough, the optimal allocation n◦
1:K must

allocate more than a half of the pulls on arm ATS = argmaxa µa(θ̃a). This concludes the proof.

D.3. Proof of Theorem 2

D.3.1. Proof of “W TS(T, y) ≥W Irs.FH(T, y)”

Proof. It immediately follows from Jensen’s inequality: since max(· · · ) is a convex function,

W TS(T, y) = T × Ey
[
max

a
µa(θa)

]
≥ T × Ey

[
max

a
E (µa(θa)| µ̂T −1)

]
= W Irs.FH(T, y). (124)

■

D.3.2. Proof of “W Irs.FH(T, y) ≥W Irs.V-Zero(T, y)”

Lemma 1 (Variant of Jensen’s inequality). Suppose that φ : R→ R is an increasing (deterministic)
function. Then, for any real-valued random variable X such that E|X| <∞,

E [max {X + φ(X), 0}] ≥ E [max {E(X) + φ(X), 0}] . (125)

Proof. Define µ ≜ E(X) and fx(t) ≜ max{t + φ(x), 0}. Since fx(·) is a convex function for each x ∈ R,

fx(t) ≥ fx(µ) + (t− µ) · f ′
x(µ) = max{µ + φ(x), 0}+ (t− µ) · 1{µ + φ(x) ≥ 0}, ∀t, ∀x. (126)

By setting t = x, we get

max{x + φ(x), 0} = fx(x) ≥ max{µ + φ(x), 0}+ (x− µ) · 1{µ + φ(x) ≥ 0}, ∀x. (127)
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Note that, since 1{µ + φ(x) ≥ 0} is increasing in x, (i) for any x ≥ µ, (x − µ) ≥ 0 and 1{µ + φ(x)} ≥
1{µ + φ(µ)}, and (ii) for any x < µ, (x− µ) < 0 and 1{µ + φ(x)} ≤ 1{µ + φ(µ)}. Therefore,

(x− µ) · 1{µ + φ(x) ≥ 0} ≥ (x− µ) · 1{µ + φ(µ) ≥ 0}, ∀x ∈ R. (128)

Combining this with (127), we get

max{x + φ(x), 0} ≥ max{µ + φ(x), 0}+ (x− µ) · 1{µ + φ(µ) ≥ 0}, ∀x ∈ R. (129)

For random variable X, by taking expectation, we get

E [max{X + φ(X), 0}] ≥ E [max{µ + φ(X), 0}+ (X − µ) · 1{µ + φ(µ) ≥ 0}] (130)

≥ E [max{µ + φ(X), 0}] + E(X − µ) · 1{µ + φ(µ) ≥ 0} (131)

= E [max{µ + φ(X), 0}] . (132)

■

Corollary 1. On a probability space (Ω,F ,P), let φ(x, ω) : R × Ω → R be a function such that (i)
the mapping x 7→ φ(x, ω) is increasing for each ω ∈ Ω and (ii) for some sub-σ-field H ⊆ F , the
mapping ω 7→ φ(x, ω) is H-measurable for each x ∈ R (i.e., φ(·, ω) is a deterministic function
conditioned on H). Then

E [max {X(ω) + φ(X(ω), ω), 0}] ≥ E [max {E(X|H)(ω) + φ(X(ω), ω), 0}] . (133)

Proof. Define
µ(ω) ≜ E(X|H)(ω), I(ω) ≜ 1{µ(ω) + φ(µ(ω), ω) ≥ 0}. (134)

By (129), we have

max{x + φ(x, ω), 0} ≥ max{µ(ω) + φ(x, ω), 0}+ (x− µ(ω)) · I(ω), ∀x ∈ R, for each ω ∈ Ω. (135)

Since µ(ω) and I(ω) are H-measurable,

E [max{X(ω) + φ(X(ω), ω), 0}] ≥ E [max{µ(ω) + φ(X(ω), ω), 0}+ (X(ω)− µ(ω)) · I(ω)] (136)

= E [E (max{µ(ω) + φ(X(ω), ω), 0}+ (X(ω)− µ(ω)) · I(ω)|H)] (137)

= E [max{µ(ω) + φ(X(ω), ω), 0}] + E [E ( (X(ω)− µ(ω)) · I(ω)|H)] (138)

= E [max{E (X|H) (ω) + φ(X(ω), ω), 0}] (139)

+ E

(E(X|H)(ω)− µ(ω))︸ ︷︷ ︸
=0

·I(ω)

 (140)

= E [max{E (X|H) (ω) + φ(X(ω), ω), 0}] . (141)

■

Corollary 2. On a probability space (Ω,F ,P), let (C0, · · · , CT ) be H-measurable real-valued ran-
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dom variables for some sub-σ-field H ⊆ F (i.e., Ci’s are constants conditioned on H). Then

E
[

max
0≤i≤T

{
(i− n)+ ×X + Ci

}]
≥ E

[
max

0≤i≤T

{
E (X|H) · 1{i ≥ n + 1}+ (i− n− 1)+ ×X + Ci

}]
(142)

for any n = 0, 1, · · · , T .

Proof. When n = T , both sides become E [max0≤i≤T {Ci}], which makes the claim true. Fix n < T and
define

φ(x, ω) ≜ max
n+1≤i≤T

{(i− n− 1)× x + Ci(ω)} − max
0≤i≤n

{Ci(ω)} . (143)

Note that φ(x, ω) satisfies the conditions in Corollary 1. By Corollary 1,

E
[

max
0≤i≤T

{
(i− n)+ ×X + Ci

}]
(144)

= E
[
max

{
max

n+1≤i≤T
{(i− n)×X + Ci} , max

0≤i≤n
Ci

}]
(145)

= E
[
max

{
X + max

n+1≤i≤T
{(i− n− 1)×X + Ci} , max

0≤i≤n
Ci

}]
(146)

= E

max

X(ω) + max
n+1≤i≤T

{(i− n− 1)×X(ω) + Ci(ω)} − max
0≤i≤n

Ci(ω)︸ ︷︷ ︸
=φ(X(ω),ω)

, 0

+ max
0≤i≤n

Ci(ω)

 (147)

≥ E
[
max

{
E (X|H) (ω) + max

n+1≤i≤T
{(i− n− 1)×X(ω) + Ci(ω)} − max

0≤i≤n
Ci(ω), 0

}
+ max

0≤i≤n
Ci(ω)

]
(148)

= E
[
max

{
max

n+1≤i≤T
{E (X|H) + (i− n− 1)×X + Ci} , max

0≤i≤n
Ci

}]
(149)

= E
[

max
0≤i≤T

{
E (X|H) · 1{i ≥ n + 1}+ (i− n− 1)+ ×X + Ci

}]
. (150)

■

Proof of “W Irs.FH(T, y) ≥W Irs.V-Zero(T, y).” Define

NT ≜

{
n1:K ∈ NK

0 :
K∑

a=1
na = T

}
and Sa(na) ≜

na∑
i=1

µ̂a,i−1. (151)

What we want to show is

W Irs.FH ≡ E
[
T ×max

a
{µ̂a,T −1}

]
= E

[
max

n1:K ∈NT

{
K∑

a=1
na × µ̂a,T −1

}]
(152)

≥ E

[
max

n1:K ∈NT

{
K∑

a=1
Sa(na)

}]
≡W Irs.V-Zero. (153)
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Further define

Uk,n ≜ E

[
max

n1:K∈NT

{(
k−1∑
a=1

Sa(na)
)

+
(
Sk(nk ∧ n) + (nk − n)+ × µ̂a,T −1

)
+
(

K∑
a=k+1

na × µ̂a,T −1

)}]
,

(154)
where a ∧ b ≜ min(a, b). Observe that W Irs.FH = U1,0, W Irs.V-Zero = UK,T , and Uk+1,0 = Uk,T . Therefore,
it suffices to show that

Uk,n ≥ Uk,n+1, ∀k = 1, · · · , K, ∀n = 0, · · · , T − 1. (155)

Fix k and n. Define a sub-σ-field

H ≜ σ ({Ra,s}a=k,1≤s≤n ∪ {Ra,s}a̸=k,1≤s≤T −1) . (156)

For each i = 0, · · · , T , define

Ci ≜ max
{(

k−1∑
a=1

Sa(na)
)

+ Sk(i ∧ n) +
(

K∑
a=k+1

na × µ̂a,T −1

)
: n1:K ∈ NT , nk = i

}
. (157)

Note that Ci’s are H-measurable and

Uk,n = E
[

max
0≤i≤T

{
(i− n)+ × µ̂k,T −1 + Ci

}]
. (158)

With X ≜ µ̂a,T −1,

Uk,n = E
[

max
0≤i≤T

{
(i− n)+ ×X + Ci

}]
(159)

Corollary 2
≥ E

[
max

0≤i≤T

{
E (X|H) · 1{i ≥ n + 1}+ (i− n− 1)+ ×X + Ci

}]
(160)

(a)= E
[

max
0≤i≤T

{
µ̂k,n · 1{i ≥ n + 1}+ (i− n− 1)+ × µ̂a,T −1 + Ci

}]
(161)

(b)= Uk,n+1. (162)

Equation (a) holds since E (X|H) = E (µ̂k,T −1|H) = E (µ̂k,T −1|Rk,1, · · · , Rk,n) = µ̂a,n, and equation (b)
holds since Sk(i∧n)+ µ̂k,n ·1{i ≥ n+1} =

∑n
s=1 µ̂k,s−1 ·1{i ≥ s}+ µ̂k,n ·1{i ≥ n+1} =

∑n+1
s=1 µ̂k,s−1 ·1{i ≥

s} = Sk(i ∧ (n + 1)). ■

A note on the proof. One may wonder if the above result can be derived in a simpler way by
exploiting the properties of nested filtration (e.g., Proposition 2.3 of Brown et al., 2010). Unlike
the proof of W TS ≥ W Irs.FH, however, the proof of W Irs.FH ≥ W Irs.V-Zero does not simply follow
from the fact that σ(µ̂T −1) is larger than σ(Ht−1).

Consider a Bernoulli MAB with K = 2, T = 2, and a prior distribution Beta(1, 1), and let us
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introduce its variation whose reward function is given by r′
t(·) as follows:

r′
1(a1) = r1(a1), r′

2(a1:2) = −κr2(a1:2), (163)

where rt(·) is the reward function of the original Bernoulli MAB. When κ > 0, one can show that

W Irs.FH = E
[
max
a1:T

{
T∑

t=1
E(r′

t(a1:t)|µ̂T −1)
}]

= 7
12 −

5
12κ, (164)

W Irs.V-Zero = E
[
max
a1:T

{
T∑

t=1
E(r′

t(a1:t)|Ht−1)
}]

= 1
2 −

3
8κ. (165)

If κ is large enough, we obtain W Irs.FH < W Irs.V-Zero, which is opposite to the above result.

Recall that the additional gain from knowing the future information can be decomposed into
two components; the gain from knowing the immediate reward and the gain from knowing the next
belief state, where Irs.V-Zero considers the former component only. When those two components
are not aligned as in this example (i.e., a higher r′

1 leads to a worse next belief state), the DM can
exploit the penalties if they penalize only for the first component (e.g., when r′

1 is smaller than
expected, the DM will get compensated for this difference but she can still earn the larger reward
in the next period).

This is also related to the fact that zIrs.V-Zero
t does not correspond to zero penalty under the

some (partial) information relaxation, but should be understood as an approximation of zideal
t

under the perfect information relaxation. As opposed to TS and Irs.FH, the optimal solution to
the Irs.V-Zero’s inner problem may depend on the entire outcome ω. With the terminology of
Brown et al. (2010), there is a mismatch between the filtration that generates the penalties and
the filtration that characterizes the relaxed policy space.

D.3.3. Proof of “W TS(T, y) ≥W Irs.V-EMax(T, y)”

To show that W TS ≥W Irs.V-EMax, we take a completely different approach that utilizes Theorem 4
in Desai et al. (2012a). We here rephrase the definition and the theorem therein using our notation.

Definition 2 (Supersolution). An approximate value function V̂ : N0 × Y → R is a supersolution
to the Bellman equation (15) if

V̂ (T, y) ≥ max
a∈A

{
Eya

[
Ra,1 + V̂ (T − 1,U(y, Ra,1, r))

]}
, ∀y ∈ Y, ∀T ≥ 1, (166)

with V̂ (0, y) = 0 for all y ∈ Y.
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Remark 8. If V̂ (·, ·) is a supersolution, then for any given ω, T , and y,

V̂ (T−t+1, yt−1(a1:t−1, ω; y)) ≥ Ey
[
rt(a1:t−1 ⊕ a, ω; y) + V̂ (T − t, yt(a1:t−1 ⊕ a, ω; y))

∣∣∣Ht−1(a1:t−1, ω)
]

,

(167)
for all a ∈ A, a1:t−1 ∈ At−1 and t ∈ {1, . . . , T}.

Lemma 2 (Theorem 4 of Desai et al. (2012a), rephrased). Consider a penalty function ẑt generated
by V̂ (·, ·):

ẑt(a1:t, ω; T, y) ≜ rt(a1:t, ω)− Ey [rt(a1:t, ω) |Ht−1(a1:t−1, ω) ] (168)

+ V̂ (T − t, yt(a1:t, ω; y))− Ey
[
V̂ (T − t, yt(a1:t, ω; y))

∣∣∣Ht−1(a1:t−1, ω)
]

.

If V̂ (·, ·) is a supersolution, then the performance bound induced by penalty function ẑt is tighter
than V̂ : i.e.,

W ẑ(T, y) ≤ V̂ (T, y). (169)

And this holds in a stronger sense: for each outcome ω, the maximal value of the inner problem
with respect to ω (denoted by V ẑ,in

1 (∅, ω; T, y) in the proof) is smaller than or equal to V̂ (T, y).

Proof. Let V ẑ,in
t (·) be the DP solution of inner problem (∗) for a given penalty ẑt with respect to

a particular outcome ω:

V ẑ,in
t (a1:t−1, ω; T, y) = max

a∈A

{
rt(a1:t−1 ⊕ a, ω)− ẑt(a1:t−1 ⊕ a, ω; T, y) + V ẑ,in

t+1 (a1:t−1 ⊕ a, ω; T, y)
}

,

(170)
with V ẑ,in

T +1(·, ω; T, y) = 0. Then, we have W ẑ(T, y) = E
[
V ẑ,in

1 (∅, ω; T, y)
]
. To prove the claim, it

suffices to show that, for any given ω,

V ẑ,in
t (a1:t−1, ω; T, yt−1(a1:t−1, ω; y)) ≤ V̂ (T − t + 1, yt−1(a1:t−1, ω; y)) , (171)

for all a1:t−1 ∈ At−1 and for all t = 1, · · · , T + 1.

We argue by induction. As a terminal case, when t = T + 1, the inequality (171) holds trivially
since both sides are zero. Fix t and suppose that the inequality (171) holds for t + 1. Omitting ω
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for brevity, we get

V̂ (T − t + 1, yt−1(a1:t−1))− V ẑ,in
t (a1:t−1; T, yt−1(a1:t−1)) (172)

= V̂ (T − t + 1, yt−1(a1:t−1))−max
a∈A

{
rt(a1:t−1 ⊕ a)− ẑt(a1:t−1 ⊕ a; T, y) + V ẑ,in

t+1 (a1:t−1 ⊕ a; T, y)
}

(173)

= min
a∈A


V̂ (T − t, yt(a1:t))− V ẑ,in

t+1 (a1:t−1 ⊕ a; T, y)︸ ︷︷ ︸
≥0 (∵ induction hypothesis)

+ V̂ (T − t + 1, yt−1(a1:t−1))− E
[
rt(a1:t−1 ⊕ a) + V̂ (T − t, yt(a1:t−1 ⊕ a))

∣∣∣Ht−1
]

︸ ︷︷ ︸
≥0 (∵ Remark 8)


(174)

≥ 0. (175)

■

Proof of “W TS(T, y) ≥ W Irs.V-EMax(T, y).” Recall that zIrs.V-EMax
t is a penalty function gener-

ated by W TS. We observe that W TS(·, ·) is a supersolution: for any T and y,

W TS(T, y) = Ey

[
T ×max

a∈A
µa(θa)

]
(176)

= Ey

[
max
a∈A

µa(θa)
]

+ W TS(T − 1, y) (177)

≥ max
a∈A

{
Eya [µa(θa)] + W TS(T − 1, y)

}
(178)

= max
a∈A

{
Ey
[
Ra,1 + W TS(T − 1, y)

]}
(179)

= max
a∈A

{
Ey
[
Ra,1 + W TS(T − 1,U(y, a, Ra,1))

]}
. (180)

The last equality holds since E
[
W TS (T − 1,U(y, a1, r1(a1, ω)))

]
= W TS(T−1, y), as argued in (39).

By Lemma 2, we have W Irs.V-EMax(T, y) ≤W TS(T, y) which also holds in a stronger sense. ■

D.4. Proof of Theorem 3

D.4.1. Suboptimality Decomposition

As in §C.1, we define the Q-values of the inner problem given a particular outcome ω, a penalty
function zt(·), a time horizon T , and a prior belief y.

Qz,in
t (a1:t−1, a, ω; T, y) = rt(a1:t−1 ⊕ a, ω)− zt(a1:t−1 ⊕ a, ω; T, y) (181)

+ V z,in
t+1 (a1:t−1 ⊕ a, ω; T, y),

V z,in
t (a1:t−1, ω; T, y) = max

a∈A

{
Qz,in

t (a1:t−1, a, ω; T, y)
}

, (182)
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with V z,in
T +1(·, ω; T, y) ≡ 0. Additionally define the total payoff of an action sequence and the

hindsight best action under penalties:

Sz(a1:T , ω; T, y) ≜
T∑

t=1
rt(a1:t, ω)− zt(a1:t, ω; T, y), (183)

az,∗
t (a1:t−1, ω; T, y) ≜ argmax

a∈A

{
Qz,in

t (a1:t−1, a, ω; T, y)
}

. (184)

We have V z,in
1 (∅, ω; T, y) = maxa1:T ∈AT Sz(a1:T , ω; T, y).

Proposition 6 (Suboptimality decomposition). Given a non-anticipating policy π ∈ ΠF and a dual-
feasible penalty function zt, the suboptimality gap is the sum of the instantaneous suboptimalities
of individual actions taken by π along the sample path: i.e.,

W z(T, y)− V (π, T, y) = Ey

[
max
a1:T
{Sz(a1:T , ω; T, y)} − Sz(Aπ

1:T , ω; T, y)
]

(185)

= Ey

[
T∑

t=1
max

a

{
Qz,in

t (Aπ
1:t−1, a, ω; T, y)

}
−Qz,in

t (Aπ
1:t−1, Aπ

t , ω; T, y)
]

,

(186)

where the expectation is taken with respect to the randomness of outcome ω and the randomness of
policy π.

Proof. The first equality immediately follows from the definition of W z and mean equivalence
(Proposition 3). Now fix ω, T , and y. Consider the (pathwise) suboptimality of the action sequence
Aπ

1:T compared to the clairvoyant optimal solution. It can be decomposed into the instantaneous
suboptimalty incurred by the individual action at each time:

max
a1:T
{Sz(a1:T )} − Sz(Aπ

1:T ) =
T∑

t=1
max

a

{
Qz,in

t (Aπ
1:t−1, a)

}
−Qz,in

t (Aπ
1:t−1, Aπ

t ). (187)

By taking expectation, we obtain the second equality. ■

The next lemma shows that the instantaneous suboptimalty of the first action can be expressed
in terms of mean reward metrics for each of the IRS penalty functions.

Lemma 3. Fix time horizon T , prior belief y, and the true outcome ω, and hide the dependency
on them in notation for Qz,in

1 (·), az,∗
1 (·), µa(·) and µ̂a,n(·). For each of the penalty functions zTS,

zIrs.FH, and zIrs.V-Zero, the instantaneous suboptimalty of action a ∈ A satisfies the following:
(1) When z ≡ zTS,

Qz,in
1 (az,∗

1 )−Qz,in
1 (a) = µaz,∗

1
− µa. (188)

(2) When z ≡ zIrs.FH,
Qz,in

1 (az,∗
1 )−Qz,in

1 (a) = µ̂az,∗
1 ,T −1 − µ̂a,T −1. (189)
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(3) When z ≡ zV-Zero,

Qz,in
1 (az,∗

1 )−Qz,in
1 (a) ≤ max

0≤n≤T −1

{
µ̂az,∗

1 ,n

}
− µ̂a,0. (190)

Proof. (1) When z ≡ zTS, we have

Qz,in
1 (a) = µa + (T − 1)×max

a′
µa′ . (191)

Since the last term does not depend on action a, the claim follows.

(2) When z ≡ zIrs.FH, we obtain the claim by replacing µa with µ̂a,T −1 in the above proof.

(3) When z ≡ zIrs.V-Zero, recall that the associated inner problem is to find an optimal allocation:
i.e.,

max
n1:K∈NT

{
K∑

a=1

na−1∑
i=0

µ̂a,i

}
. (192)

Let n∗
1:K be the optimal allocation. Observe that the suboptimality is incurred only when n∗

a = 0,
it is no worse than µ̂a∗,n∗

a∗ − µ̂a,0 (the loss if the payoff when pulling a one more time but pulling
az,∗

1 one less time). Since n∗
a∗ ≤ T − 1, the claim follows. ■

D.4.2. Recursive Structure of IRS Penalty Functions

To describe the recursive structure of Bayesian MAB problems explicitly, we define a shift operator
Mt : At × Ω→ Ω,

Mt(a1:t, ω) ≜ (Ra,na ;∀na > nt(a1:t, a), ∀a ∈ A) . (193)

The shifted outcomeMt−1(a1:t−1, ω) encodes the remaining reward realizations after taking a1:t−1.

Remark 9 (Recursive structure of remaining uncertainties). Conditioned on Ht−1(a1:t−1, ω), the re-
maining uncertainties are sufficiently described by yt−1(a1:t−1, ω; y), i.e.,

Mt−1(a1:t−1, ω)|Ht−1(a1:t−1, ω) ∼ I(yt−1(a1:t−1, ω; y)). (194)

Remark 10 (Recursive structure of IRS penalties). Each of penalty functions (22)–(26) has the fol-
lowing form:

zt(a1:t, ω; T, y) = φz(Mt−1(a1:t−1, ω), T − t + 1, yt−1(a1:t−1, ω; y)), (195)

for some function φz : Ω × N × Y → R, i.e., the penalty at each time is completely determined by
the remaining rewards Mt−1(a1:t−1, ω), the remaining time horizon T − t + 1, and the prior belief
yt−1(a1:t−1, ω) at that moment.

Remark 9 immediately follows from Bayes’ rule, and Remark 10 can be easily verified. We
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observe the recursive structure of the sequential inner problems that the DM solves throughout the
decision-making process, which can be characterized by the following property.

Proposition 7 (Generalized posterior sampling). For each of penalty functions (22)–(26), the IRS
policy π is randomized in such a way that it takes an action a with the probability that the action
a is indeed the best action az,∗

t at that moment, i.e.,

P [Aπ
t = a| Ft−1] = P

[
az,∗

t (Aπ
1:t−1, ω) = a

∣∣Ft−1
]
, ∀a, ∀t. (196)

The source of uncertainty in the LHS is the randomness of the policy (embedded in ω̃) and that in
the RHS is the randomness of nature (embedded in ω). Here we assume that the tie-breaking rule
in argmax of (184) is identical to the one used when πz solves the inner problem.

Proof. Observe that the IRS’s action Aπ
t can be represented as

Aπ
t = az,∗

1
(
∅, ω̃; T − t + 1, yt−1(Aπ

1:t−1, ω; y)
)

, (197)

where ω̃ ∼ I(yt−1(Aπ
1:t−1, ω; y)), i.e., the action that the clairvoyant DM will take in an MAB

instance specified by horizon T−t+1, prior belief yt−1(Aπ
1:t−1, ω; y), and the outcome ω̃. Therefore,

it suffices to verify that the inner problem that π solves at time t is identically distributed with
the sub-inner problem with respect to ground-truth ω (i.e., the subproblem given the past action
sequence Aπ

1:t−1).

Fix time t, past actions a1:t−1 = Aπ
1:t−1, and the true outcome ω. The sub-inner problem

determining az,∗
t (a1:t−1, ω) is

max
a′

t:T

{
T∑

s=t

rs(a1:t−1 ⊕ a′
t:s, ω)− zs(a1:t−1 ⊕ a′

t:s, ω; T, y)
}

. (198)

By Remark 10, for any s ∈ {t, . . . , T}, the penalty at (inner) time s is given by

zs(a1:t−1 ⊕ a′
t:s, ω; T, y) (199)

= φz(Ms−1(a1:t−1 ⊕ a′
t:s−1, ω), T − s + 1, ys−1(a1:t−1 ⊕ a′

t:s−1, ω; y)) (200)

= φz


Ms−t(a′

t:s−1,Mt−1(a1:t−1, ω)),
(T − t + 1)− (s− t),
ys−t(a′

t:s−1,Mt−1(a1:t−1, ω); yt−1(a1:t−1, ω; y)

 (201)

= zs−t+1(a′
t:s,Mt−1(a1:t−1, ω); T − t + 1, yt−1(a1:t−1, ω; y)). (202)

For rewards, similarly, we have rs(a1:t−1 ⊕ a′
t:s, ω) = rs−t+1(a′

t:s,Mt−1(a1:t−1, ω)). Therefore, the
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sub-inner problem (198) is reformulated as

max
a′

t:T

{
T∑

s=t

rs−t+1(a′
t:s,Mt−1(a1:t−1, ω))− zs−t+1(a′

t:s,Mt−1(a1:t−1, ω); T − t + 1, yt−1(a1:t−1, ω; y))
}

.

(203)
Given the fact that the shifted outcomeMt−1(a1:t−1, ω) and the sampled outcome ω̃ are identically
distributed with I(yt−1(a1:t−1, ω; y)) conditionally on Ht−1(a1:t−1, ω) (Remark 9), this sub-inner
problem follows the same distribution with

max
a′

1:T −t+1

{
T −t+1∑

s=1
rs(a′

1:s, ω̃)− zs(a′
1:s, ω̃, T − t + 1, yt−1(a1:t−1, ω; y))

}
, (204)

which characterizes the IRS’s action Aπ
t . Therefore, az,∗

t (Aπ
1:t−1, ω) is identically distributed with

Aπ
t conditioned on Ft−1. ■

Remark 11. Utilizing the recursive structure of IRS penalty functions, Lemma 3 can be extended
to describe the instantaneous suboptimality of the tth action. Fix true outcome ω and past actions
a1:t−1, and hide the dependency on them in notation for Qz,in

t (·), az,∗
t (·), nt(·), µa(·) and µ̂a,n(·).

(1) When z ≡ zTS,
Qz,in

t (az,∗
t )−Qz,in

t (a) = µaz,∗
t
− µa. (205)

(2) When z ≡ zIrs.FH,

Qz,in
t (az,∗

t )−Qz,in
t (a) = µ̂az,∗

t ,nt−1(az,∗
t )+T −t − µ̂a,nt−1(a)+T −t. (206)

(3) When z ≡ zV-Zero,

Qz,in
t (az,∗

t )−Qz,in
t (a) ≤ max

0≤n≤T −t

{
µ̂az,∗

1 ,nt−1(az,∗
1 )+n

}
− µ̂a,nt−1(a). (207)

D.4.3. Preliminary Lemmas on MAB with Natural Exponential Family Distributions

We first describe the notion of sub-Gaussian random variable as an effective tool for bounding its
tail behavior.

Definition 3 (Sub-Gaussian random variable). A random variable X is σ-sub-Gaussian if

E [exp (λ(X − EX))] ≤ exp
(

σλ2

2

)
, ∀λ ∈ R, (208)

for some σ > 0.

Lemma 4. Given a random variable X, suppose that there exists σ > 0 such that

P [X ≥ EX + zσ] ≤ e−z2/2, ∀z ≥ 0. (209)
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Then, the following holds:

E
[
(X − (EX + zσ))+

]
≤ σ

z
e−z2/2, ∀z > 0. (210)

Corollary 3. If a random variable X is σ-sub-Gaussian, it satisfies the condition of Lemma 4 and
hence the inequality (210) holds.

Proof. With µ ≜ EX, we have

E
[
(X − (µ + zσ))+

]
=
∫ ∞

x=µ+zσ
P [X ≥ x] dx =

∫ ∞

t=z
P [X ≥ µ + tσ] σdt ≤ σ

∫ ∞

t=z
e−t2/2dt. (211)

Utilizing the tail bound established for the standard normal distribution, we can show that

∫ ∞

t=z

1√
2π

e−t2/2dt ≤ 1
z

e−z2/2
√

2π
. (212)

By combining these two inequalities, we obtain the desired result.

The corollary simply follows from Markov inequality: for any z ≥ 0 and λ ≥ 0, we have

P[X ≥ µ + zσ] = P
[
eλ(X−µ) ≥ eλzσ

]
≤ E[eλ(X−µ)]

eλxσ
≤ exp

(
σ2λ2

2 − λzσ

)
. (213)

By taking λ = z
σ , it follows that P[X ≥ µ + zσ] ≤ e−z2/2. ■

We now return to the context of MAB problems and show that the mean reward metrics are
sub-Gaussian.

Lemma 5 (Sub-Gaussianity of mean reward metrics). Consider the setting of Theorem 3, i.e., the
reward distribution of arm a is described by an L-smooth log-partition function Aa(θa) and hyper-
parameters (ξa, ν). Then, the conditional mean reward µa is

√
L/ν-sub-Gaussian: i.e.,

E(ξa,ν) [exp (λ(µa − µ̄a))] ≤ exp
(

Lλ2

2ν

)
, ∀λ ∈ R, (214)

where µ̄a = E(ξa,ν)[µa] = ξa

ν is the prior predictive mean reward (i.e., the unconditional mean
reward). Furthermore, the posterior predictive mean reward µ̂a,n is

√
Ln

ν(ν+n) -sub-Gaussian: i.e.,

E(ξa,ν) [exp (λ(µ̂a,n − µ̄a))] ≤ exp
(

λ2

2 ×
Ln

ν(ν + n)

)
, ∀λ ∈ R. (215)

Proof. We first prove that µa is
√

L/ν-sub-Gaussian. Due to L-smoothness condition, Aa(θa) is
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finite valued for all θa ∈ R. For any λ ∈ R, we have

E(ξa,ν) [exp (λµa)] (i)= E(ξa,ν)
[
exp

(
λA′

a(θa)
)]

(216)

=
∫ ∞

−∞
exp

(
λA′

a(θa)
)
× fa(ξa, ν) exp (ξaθa − νAa(θa)) dθa (217)

=
∫ ∞

−∞
fa(ξa, ν) exp

{
ξaθa − νAa(θa) + λA′

a(θa)
}

dθa (218)

=
∫ ∞

−∞
fa(ξa, ν) exp

{
ξaθa − ν

(
Aa(θa)− λ/ν ·A′

a(θa)
)}

dθa (219)

(ii)
≤
∫ ∞

−∞
fa(ξa, ν) exp

{
ξaθa − ν

(
Aa(θa − λ/ν)− Lλ2

2ν2

)}
dθa (220)

= exp
(

Lλ2

2ν

)
×
∫ ∞

−∞
fa(ξa, ν) exp {ξaθa − νAa(θa − λ/ν)} dθa (221)

= exp
(

ξaλ

ν
+ Lλ2

2ν

)
×
∫ ∞

−∞
fa(ξa, ν) exp {ξa(θa − λ/ν)− νAa(θa − λ/ν)} dθa

(222)

= exp
(

ξaλ

ν
+ Lλ2

2ν

)
×
∫ ∞

−∞
fa(ξa, ν) exp {ξaθa − νAa(θa)} dθa (223)

= exp
(

ξaλ

ν
+ Lλ2

2ν

)
, (224)

where we have utilized that (i) µa(θa) = A′
a(θa) and (ii) Aa(θa + δ) ≤ Aa(θa) + δA′

a(θa) + L
2 δ2.

Since µ̄a = ξa/ν, we obtained the desired result.

Next we focus on the posterior predictive mean reward µ̂a,n. Recall that we have

µ̂a,n = ξa +
∑n

i=1 Ra,i

ν + n
. (225)
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For any λ ∈ R, we have

E(ξa,ν)

[
exp

(
λ

n∑
i=1

Ra,i

)]
= E(ξa,ν)

[
E
{

exp
(

λ
n∑

i=1
Ra,i

)∣∣∣∣∣ θa

}]
(226)

(i)= E(ξa,ν) [E {exp (λRa,1)| θa}n] (227)
(ii)= E(ξa,ν) [exp {Aa (θa + λ)−Aa(θa)}n] (228)
(iii)
≤ E(ξa,ν)

[
exp

{
λ ·A′

a(θa) + Lλ2

2

}n]
(229)

(iv)= E(ξa,ν)

[
exp

{
nλ · µa + Lnλ2

2

}]
(230)

= exp
(

nλµ̄a + Lnλ2

2

)
× E(ξa,ν) [exp (nλ(µa − µ̄a))] (231)

(v)
≤ exp

(
nλµ̄a + Lnλ2

2

)
× exp

(
Ln2λ2

2ν

)
(232)

= exp (nλµ̄a)× exp
(

λ2

2 ×
Ln(ν + n)

ν

)
, (233)

where we have utilized that (i) Ra,i’s are conditionally independent given θa, (ii) the moment-
generating function of Ra,1 is given by E[λRa|θa] = exp (Aa(θa + λ)−Aa(θa)), (iii) Aa(·) is L-
smooth, (iv) A′

a(θa) = µa(θa), and (v) µa is
√

L/ν-sub-Gaussian. Given that E [
∑n

i=1 Ra,i] = nµ̄a,
we just have shown that the sum

∑n
i=1 Ra,i is

√
Ln(ν+n)

ν -sub-Gaussian. Therefore, its scaled version∑n

i=1 Ra,i

ν+n is
√

Ln
ν(ν+n) -sub-Gaussian, and so is µ̂a,n. ■

Lemma 6. Consider the setting of Theorem 3. With σn ≜
√

Ln
ν(ν+n) , the following holds:

E
[(

max
0≤i≤n

µ̂a,i − (µ̄a + zσn)
)+
]
≤ σn

z
e−z2/2, ∀z > 0. (234)

Proof. Recall that the posterior predictive mean reward process {µ̂a,n}n≥0 is the martingale with
respect to the filtration generated by reward realizations Ra,1, Ra,2, . . . and whose mean is µ̄a.
Therefore, {exp(λµ̂a,n)}n≥0 is a positive submartingale for any given λ ≥ 0. By Doob’s maximal
inequality, we deduce that

P
[

max
0≤i≤n

µ̂a,i ≥ µ̄a + zσn

]
= P

[
max

0≤i≤n
exp (λ(µ̂a,i − µ̄a)) ≥ exp (λzσn)

]
≤ E [exp (λ(µ̂a,n − µ̄a))]

exp (λzσn) .

(235)
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By Lemma 5, since µ̂a,n is σn-sub-Gaussian, we further have

E [exp (λ(µ̂a,n − µ̄a))]
exp (λzσn) ≤

exp
(

λ2σ2
n

2

)
exp (λzσn) = exp

(
λ2σ2

n

2 − λzσn

)
. (236)

Therefore, by taking λ ≜ z
σn

, we have P [max0≤i≤n µ̂a,i ≥ µ̄a + zσn] ≤ e−z2/2, and by invoking
Lemma 4, we obtain the claim. ■

D.4.4. Proof of Theorem 3

Lemma 7. Consider one of the IRS penalty functions zTS, zIrs.FH, and zIrs.V-Zero. As discussed
in Remark 11, we have

Qz,in
t (a1:t−1, az,∗

t , ω)−Qz,in
t (a1:t−1, a, ω) ≤ µU

t (a1:t−1, az,∗
t , ω)− µL

t (a1:t−1, a, ω), (237)

for some µU
t (a1:t−1, az,∗

1 , ω) and µL
t (a1:t−1, a, ω), where az,∗

t abbreviates az,∗
t (a1:t−1, ω). Suppose that

there exists a sequence of confidence intervals {(Lt(a), Ut(a))}a∈A,t∈N such that (Lt(·), Ut(·)) is
σ(Ht−1)-measurable, and

Ey

[(
µU

t (a1:t−1, a, ω)− Ut(a)
)+
∣∣∣∣Ht−1(a1:t−1, ω)

]
≤ CU

T
, ∀a,∀t (238)

Ey

[(
Lt(a)− µL

t (a1:t−1, a, ω)
)+
∣∣∣∣Ht−1(a1:t−1, ω)

]
≤ CL

T
, ∀a,∀t (239)

for some constants CU > 0 and CL > 0. Then, for IRS policy π induced by the chosen penalty
function, we have

W z(T, y)− V (π, T, y) ≤ CU + CL +
T∑

t=1
E [Ut(Aπ

t )− Lt(Aπ
t )] . (240)

Proof. Let A∗
t ≜ az,∗

t (Aπ
1:t−1, ω), and let Et[·] denote E[·|Ft−1]. By Proposition 7 we have

Et[Ut(Aπ
t )] =

∑
a∈A

Ut(a) · Pt[Aπ
t = a] =

∑
a∈A

Lt(a) · Pt[A∗
t = a] = Et[Ut(A∗

t )]. (241)

Therefore, we have

Et

[
µU

t (A∗
t )− µL

t (Aπ
t )
]

(242)

= Et

[
µU

t (A∗
t )− µL

t (Aπ
t )
]

+ Et [Ut(Aπ
t )− Ut(A∗

t )] + Et [Lt(Aπ
t )− Lt(Aπ

t )] (243)

= Et

[
µU

t (A∗
t )− Ut(A∗

t )
]

+ Et

[
Lt(Aπ

t )− µL
t (Aπ

t )
]

+ Et [Ut(Aπ
t )− Lt(Aπ

t )] (244)

≤ Et

[(
µU

t (A∗
t )− Ut(A∗

t )
)+
]

+ Et

[(
Lt(Aπ

t )− µL
t (Aπ

t )
)+
]

+ Et [Ut(Aπ
t )− Lt(Aπ

t )] . (245)
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We further observe that

Et

[(
µU

t (A∗
t )− Ut(A∗

t )
)+
]

=
∑
a∈A

Et

[(
µU

t (a)− Ut(a)
)+
]
Pt[A∗

t = a] ≤ CU

T

∑
a∈A

Pt[A∗
t = a] = CU

T
.

(246)
Similarly, we have Et

[(
Lt(Aπ

t )− µL
t (Aπ

t )
)+
]
≤ CL

T . Combining all these results, we have

W (T, y)− V (π, T, y) Prop 6= E
[

T∑
t=1

Qz,in
t (A∗

t )−Qz,in
t (Aπ

t )
]

(247)

≤ E
[

T∑
t=1

µU
t (A∗

t )− µL
t (Aπ

t )
]

(248)

= E
[

T∑
t=1

Et

[
µU

t (A∗
t )− µL

t (Aπ
t )
]]

(249)

≤ E
[

T∑
t=1

(
CU

T
+ CL

T
+ Et [Ut(Aπ

t )− Lt(Aπ
t )]
)]

(250)

≤ CU + CL +
T∑

t=1
E [Ut(Aπ

t )− Lt(Aπ
t )] . (251)

■

We are now ready to prove Theorem 3. To facilitate simpler notation, we define

Nπ
t−1(a) ≜ nt−1(Aπ

1:t−1, a), µ̂π
t (a, n) ≜ µ̂a,Nπ

t−1(a)+n, (252)

which represent, respectively, the number of pulls on arm a prior to time t under policy π, and
the posterior predictive mean reward process given the past actions Aπ

1:t−1. Observe that for each
a ∈ A, the process {µ̂π

t (a, n)}n≥0 is a martingale, as discussed Remark 1.

Further define

∆π
t (a, n) ≜

√
L

ν + Nπ
t−1(a) ×

n

ν + Nπ
t−1(a) + n

, (253)

which is measurable with respect to Ft−1. In the context of Theorem 3, the prior/posterior of arm
a at time t is described by the hyperparameters

(
ξa +

∑Nπ
t−1(a)

i=1 Ra,i, ν + Nπ
t−1(a)

)
that converges

to µa, and therefore Lemma 5 implies that µ̂π
t (a, n) is ∆t(a, n)-sub-Gaussian conditioned on Ft−1.

(1) Suboptimality analysis for TS (60). As discussed in Remark 11, for TS, we have

Qz,in
t (az,∗

t )−Qz,in
t (a) = µaz,∗

t
− µa = µ̂π

t (az,∗
t ,∞)− µ̂π

t (a,∞). (254)

We construct the confidence intervals as follows:

Ut(a) ≜ µ̂π
t (a, 0) +

√
2 log T ×∆π

t (a,∞), Lt(a) ≜ µ̂π
t (a, 0) +

√
2 log T ×∆π

t (a,∞), (255)
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where ∆π
t (a,∞) = limn→∞ ∆π

t (a, n) =
√

L
ν+Nπ

t−1(a) so that µa is ∆π
t (a,∞)-sub-Gaussian condi-

tioned on Ft−1. By Lemma 4, we have

E
[
(µa − Ut(a))+

∣∣∣Ft−1
]
≤ ∆π

t (a,∞)√
2 log T

e− 2 log T
2 ≤

√
L/ν

T
, (256)

where we use the fact that 2 log T ≥ 1 for any T ≥ 2. Symmetrically, we have E
[
(Lt(a)− µa)+

∣∣∣Ft−1
]
≤

√
L/ν

T . By Lemma 7, we have

W TS(T, y)− V (πTS, T, y) ≤ 2
√

L/ν +
T∑

t=1
E [Ut(Aπ

t )− Lt(Aπ
t )] (257)

= 2
√

L/ν + 2
√

2 log T
T∑

t=1
∆π

t (Aπ
t ,∞). (258)

Further observe that

T∑
t=1

∆π
t (Aπ

t ,∞) =
T∑

t=1

√
L

ν + Nπ
t−1(Aπ

t ) =
∑
a∈A

Nπ
T (a)−1∑
n=0

√
L√

ν + n
=
∑
a∈A

√L√
ν

+
Nπ

T (a)−1∑
n=1

√
L√

ν + n


(259)

≤
∑
a∈A

√L√
ν

+
Nπ

T (a)−1∑
n=1

√
L√
n

 ≤∑
a∈A

(√
L√
ν

+
∫ Nπ

T (a)

x=0

√
L√
x

dx

)
= K

√
L√

ν
+ 2
√

L
∑
a∈A

√
Nπ

T (a). (260)

By utilizing Cauchy–Schwartz inequality, we deduce that

∑
a∈A

√
Nπ

T (a) ≤
√

K
∑
a∈A

NT (a) =
√

KT. (261)

Combining all these results, we conclude that

W TS(T, y)− V (πTS, T, y) ≤ 2
√

L

[ 1√
ν

+
√

2 log T

(
K√

ν
+ 2
√

KT

)]
. (262)

(2) Suboptimality analysis for Irs.FH (61). As discussed in Remark 11, for Irs.FH, we have

Qz,in
t (az,∗

t )−Qz,in
t (a) = µ̂π

t (az,∗
t , T − t)− µ̂π

t (a, T − t). (263)

We construct the confidence intervals as follows:

Ut(a) ≜ µ̂π
t (a, 0) +

√
2 log T ×∆π

t (a, T − t), Lt(a) ≜ µ̂π
t (a, 0) +

√
2 log T ×∆π

t (a, T − t). (264)
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Given that µ̂π
t (a, T − t) is ∆π

t (a, T − t)-sub-Gaussian conditioned on Ft−1, by Lemma 4, we have

E
[
(µ̂π

t (a, T − t)− Ut(a))+
∣∣∣Ft−1

]
≤ ∆π

t (a, T − t)√
2 log T

e− 2 log T
2 ≤ ∆π

t (a,∞)√
2 log T

e− 2 log T
2 ≤

√
L/ν

T
. (265)

Symmetrically, we have E
[
(Lt(a)− µ̂π

t (a, T − t))+
∣∣∣Ft−1

]
≤
√

L/ν

T .

On the other hand, since Nt−1(a) ≤ t in any case, we have

1
ν + Nπ

t−1(a) ×
T − t

ν + Nπ
t−1(a) + T − t

= 1
ν + Nπ

t−1(a) ×
(

1−
ν + Nπ

t−1(a)
ν + Nπ

t−1(a) + T − t

)
(266)

= 1
ν + Nπ

t−1(a) −
1

ν + Nπ
t−1(a) + T − t

(267)

≤ 1
ν + Nπ

t−1(a) −
1

ν + T
. (268)

Consequently,

T∑
t=1

√
1

ν + Nπ
t−1(a) −

1
ν + T

=
∑
a∈A

Nπ
T (a)−1∑
n=0

√
1

ν + n
− 1

ν + T
(269)

=
∑
a∈A

√1
ν
− 1

ν + T
+

Nπ
T (a)−1∑
n=1

√
1

ν + n
− 1

ν + T

 (270)

≤ K√
ν

+
∑
a∈A

Nπ
T (a)−1∑
n=1

√
1
n
− 1

T
(271)

(i)
≤ K√

ν
+
∑
a∈A

Nπ
T (a)−1∑
n=1

(
1√
n
−
√

n

2T

)
(272)

≤ K√
ν

+
∑
a∈A

∫ Nπ
T (a)

0

(
1√
x
−
√

x

2T

)
dx (273)

= K√
ν

+
∑
a∈A

(
2
√

Nπ
T (a)− (Nπ

T (a))3/2

2T

)
(274)

(ii)
≤ K√

ν
+ 2
√

KT − 1
3

√
T/K, (275)

where we have utilized that (i) the concavity of
√
·, and (ii) min{

∑K
a=1 n

3/2
a ;

∑K
a=1 na = T} =∑K

a=1(T/K)3/2 =
√

T 3/K.
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Combining all these results, we conclude that

W Irs.FH(T, y)− V (πIrs.FH, T, y) ≤ 2

√
L

ν
+ 2

√
2 log T

T∑
t=1

∆π
t (Aπ

t , T − t) (276)

≤ 2
√

L

[ 1√
ν

+
√

2 log T

(
K√

ν
+ 2
√

KT − 1
3

√
T/K

)]
. (277)

(3) Suboptimality analysis for Irs.V-Zero (62). As discussed in Remark 11, for Irs.FH, we
have

Qz,in
t (az,∗

t )−Qz,in
t (a) = max

0≤n≤T −t

{
µ̂π

t (az,∗
t , n)

}
− µ̂π

t (a, 0). (278)

We construct the confidence intervals as follows:

Ut(a) ≜ µ̂π
t (a, 0) +

√
2 log T ×∆π

t (a, T − t), Lt(a) ≜ µ̂π
t (a, 0). (279)

By Lemma 6, we have

E
[(

max
0≤n≤T −t

µ̂π
t (a, n)− Ut(a)

)+
∣∣∣∣∣Ft−1

]
≤ ∆π

t (a, T − t)√
2 log T

e− 2 log T
2 ≤

√
L/ν

T
, (280)

where
E [ µ̂π

t (a, 0)− Lt(a)| Ft−1] = 0. (281)

The rest of the proof is almost identical to the case of Irs.FH:

W Irs.V-Zero(T, y)− V (πIrs.V-Zero, T, y) ≤

√
L

ν
+

T∑
t=1

E [Ut(Aπ
t )− Lt(Aπ

t )] . (282)

=

√
L

ν
+
√

2 log T
T∑

t=1
∆π

t (Aπ
t , T − t) (283)

≤
√

L

[ 1√
ν

+
√

2 log T

(
K√

ν
+ 2
√

KT − 1
3

√
T/K

)]
.

(284)
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