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A. An lllustrative Example

Let us consider a Bernoulli MAB with eight periods (I' = 8) and three arms (K = 3) with the
following priors:
w1 ~ Beta(3,1), p2 ~ Beta(1,1), us ~ Beta(1,3), (69)

where R, , ~ Bernoulli(y,) for each a € {1,2,3} and n € {1,2,---,8}. Given this prior belief, the
predictive mean reward of each arm is ji; = EMNBeta(s,l)[Ml] = %7 Mo = %, and fi3 = %, respectively.

As an illustrative example, we examine a particular instance where the true outcome w is given as

follows:
True means y,(6,) Rewards fa.n
n=1 2 3 4 5 6 7 8
Am 1 (a=1) 0.235 0 1 110000
Arm 2 (a =2) 0.443 1 0 01 1 1 1 0
Arm 3 (a = 3) 0.787 1 1 1.1 0 0 1 1

Table 8: An example of the outcome in a Bernoulli MAB with K = 3 and T = 8.

If we consider only the priors, arm 1 is best since ji1 is largest among (i1, fi2, fi3). If, however,

*The authors wish to thank Daniel Russo, Martin Haugh, David Brown, Jim Smith, and anonymous reviewers for
helpful comments. A preliminary version of this paper appeared in the conference proceedings Advances in Neural
Information Processing Systems 32 (NeurIPS 2019) (Min et al., [2019).

42


mailto:skmin@kaist.ac.kr
mailto:c.maglaras@gsb.columbia.edu
mailto:ciamac@gsb.columbia.edu

we have full information about the parameter values, arm 3 is best since ps is largest among

(:ulalu%,u:i)'

A.1. Inner Problems Induced by Different Penalty Functions

No penalty. To clarify the role of penalties, we first consider the case of zero penalty, i.e., z; = 0,
which was not discussed in With zero penalty, the DM at any time earns the current realized
reward without adjustment. The clairvoyant DM, who is informed of the outcome w, can find the
best action sequence for this particular outcome w. Recall that R, is defined to be the reward
from the n'® pull of arm a, not the reward from arm a at time n, and so the DM is not allowed to
skip any of the reward realizations and the total reward does not depend on the order of pulls. As
depicted in the table below, the optimal solution is to pull arm 1 four times, arm 2 once, and arm

3 three times, which yields a total reward of 7.

Payoffs under zero penalty ]
Maximal payoff
n=1 2 3 4 5 6 7 8
Arm 1 0 1 1.1 0 0 0 0
Arm 2 1 0 01 1.1 1 0 7
Arm 3 1 1 1 1 0 0 1 1

TS penalty. Next, let us examine the penalty thS(alzt, w) £ ri(ars, w) — pa, (fa,) under which the
DM earns p, whenever playing arm a. The hindsight optimal action sequence is to pull arm 3 (the
arm with the largest mean reward p,) eight times in a row and the DM can earn a total reward of
T x ps = 6.296 at most.

Payoffs under z;'®
n=1 2 3 4 5 6 7 8

Arm 1| 235 235 .235 .235 .235 .235 .235 .235
Arm 2 | 443 443 443 443 443 443 443 443 6.296
Arm 3 | 787 787 787 787 787 787 787 .7T87

Maximal payoff

IRS.FH penalty. When the penalties are given by 2" (aj, w) 2 r(aps,w) — fa, 7—1(w),
the DM earns fi, 7—1(w) whenever playing arm a. Recall that fi, 7—1(w) is the Bayesian estimate
on mean reward of arm a after observing reward realizations R, 1, -+, Rq7—1. In this particular
example, we have (ﬂl,T_1,/l2,T_1,/13,T—1) = (%, 8, %) and the maximal payoff is T X fio 71 =

5.333, which can be obtained by playing arm 2 throughout the entire time horizon.

IRS.V-Zero penalty. Finally, let us focus on z/%-V-2PR (a1, w) £ ry(ayy,w) — flay i (ars—1,a0)
under which the DM earns fign—1(w) from the n'® pull of arm a. Since the payoff from an arm
changes over time as the Bayesian estimate evolves, playing only one arm is no longer optimal,
unlike in the previous two cases. It can be easily verified that the optimal allocation is to play arm

1 six times and arm 2 two times, as visualized in the table below.
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Irs.FH
Payofts under z; Maximal payoff
n=1 3 4 5 6 7 8
Arm 1] 6/11 6/11 6/11 6/11 6/11 6/11 6/11 6/11
Arm2 | 6/9 6/9 6/9 6/9 6/9 6/9 6/9 6/9 5.333
Arm 3| 6/11 6/11 6/11 6/11 6/11 6/11 6/11 6/11
IrS.V-ZERO
Payoffs under z; Maximal payoff
n=1 2 3 4 5 6 7 8

Arm 1| 3/4 3/5 4/6 5/7 6/8 6/9 6/10 6/11

Arm 2 | 1/2 2/3 2/4 2/5 3/6 4/7 5/8 6/9 5.314

Arm3 | 1/4 2/5 3/6 4/7 5/8 5/9 5/10 6/11

IRS.V-EMax and the ideal penalty. Regarding the penalty functions z[RS-V-EMAX apq pideal

we cannot visualize the optimal solution with a table since the total payoff depends on the detailed
sequence of pulls and not only the number of pulls. While omitting the visual proof of optimality,
we have that the action sequence ajg = (1,2,2,1,1,1,1,1) achieves the maximal payoff of 5.806
under z[®S-V-EMAX “and af g = (1,1,1,1,1,1,1,1) achieves the maximal payoff of 6.063 under 214!,
In particular for 219! the maximal payoff depends only on the prior belief y and the time horizon

T, irrespective of the outcome! w.

We have so far illustrated how the different penalty functions induce the different inner prob-
lems and the different best actions given the same outcome w. The readers may notice from the
above examples that, as the penalty function becomes more complicated, the hindsight best ac-
tion sequence becomes less dependent on a particular realization of w. Instead, it becomes more
dependent on the prior belief.

A.2. IRS Performance Bounds

The maximal payoffs above are calculated for a particular outcome given by Table [8] Recall that
the IRS performance bound W7 is defined as the expected value of the maximal payoff where
the expectation is taken with respect to the randomness of outcome w over its prior distribution
Z(T,y). We can obtain this value by simulation, i.e., by solving a bunch of inner problems with
respect to the randomly generated outcomes w®,w® ... w5 and taking the average of the
maximal values. For this particular Bernoulli MAB setting (7" = 8 with given priors), we obtain

the following performance bounds:

WO ‘ WTS ‘ WIRS.FH ‘ WIRS.V—ZERO ‘ WIRS.V—EMAX H Wideal — V*
6.805 | 6429 | 6279 | 6111 | 6075 |  6.063

'For details, see the proof of the strong duality theorem in While the maximal value does not depend
on w, the optimal action sequence still depends on w. More specifically, it is the sequence of actions that the
(non-anticipating) Bayesian optimal policy will take when w is sequentially revealed.
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We observe that the performance bounds are monotone, i.e., W9 > WTS > Jy/IRs.FH  pj/IRS.V-ZERO
Wirs-V-EMAX , pyzideal — 17+ “wwhich is consistent with Theorem

A.3. lllustration of the IRS Policy (IRS.V-Zero)

We illustrate how the policy 7!®8-V-2ERO makes decisions sequentially when the true outcome w is
the one specified in Table At t = 1, it first synthesizes a future scenario based on the prior

belief (i.e., sampling @; ~ Z(yo)) and finds the best action sequence in the presence of penalties

2/RSV-ZERO in the belief that the sampled outcome @ is the ground truth. The following table

IRS.V-ZERO

shows an example in which w plays arm 1.

Payoffs with respect to &1 ~ Z(yo)
n=1 2 3 4 ) 6 7 8
Arm 1| Beta(3,1) | 3/4 4/5 5/6 6/7 7/8 7/9 8/10 9/11
Arm 2 | Beta(1,1) | 1/2 1/3 1/4 1/5 1/6 17 2/8 3/9 | a;=1
Am 3 | Beta(1,3) | 1/4 1/5 1/6 1/7 1/8 1/9 1/10 2/11

t=1 Priors yg Action

As a result of the first action (a; = 1), we observe that R; ; = 0 (encoded in the true outcome w)
and the associated belief is updated from Beta(3, 1) to Beta(3,2) according to Bayes’ rule. In order
to make the next decision ag at time ¢t = 2, 71%5-V-%PR0 gimylates an outcome for the remaining time
horizon, i.e., @3 ~ Z(y1), independently of the outcome @; used at t = 1. Again, 7!*8-V-%FRO finds
the best action sequence for this new scenario and takes its first action.? The table below shows

an instance of Wy in which the policy will pull arm 2.

Payoffs with respect to &y ~ Z(y1)
n=1 2 3 4 5) 6 7
Arm 1| Beta(3,2) | 8/5 4/6 4/7 4/8 4/9 5/10 5/11
Arm 2 | Beta(1,1) 1/2 2/3 3/4 3/5 4/6 4/7 5/8 as =2
Arm 3 | Beta(1,3) | 1/4 1/5 1/6 1/7 1/8 1/9 1/10

t=2 Priors y; Action

We can update the prior of arm 2 as a new reward realization Ra; = 1 is revealed. In the
following decision epochs t = 3,4, ---, the policy repeats the same decision-making procedure —
(i) samples & ~ Z(y¢—1), (ii) solves the inner problem, and (iii) plays the best arm that the
optimal solution suggests — while updating the priors as the true reward realizations are revealed

sequentially.

The following table illustrates the last decision epoch. As there remains one time period only,
the policy mI®S-V-ZERO tries to maximize fio0(@7) = fia(y7), which is the expected mean reward

given the prior at that moment. Such a decision is totally myopic, but it is Bayesian optimal.

2In case of IRS.V-ZERO, we select the arm with the largest pull allocation as a first action.
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t—8 | Priors yr Payoffs with respect to &; ~ Z(y7) Action
n=1

Arm 1 | Beta(6,3) 6/9

Arm 2 | Beta(2,2) 2/4 ag =1

Arm 3 | Beta(l,3) 1/4

B. Algorithms in Detail

B.1. Implementation of IRS.V-Zero

We provide a pseudo-code of the policy 7!*V-2ERO introduced in The same logic can be

WIRS.V—ZERO

directly used to compute the performance bound if the sampled outcome @ is replaced

with the true outcome w.

IRS.V-ZERO

Algorithm 5: Arm selection rule of 7 when remaining time is 1" and current belief

isy

Function IRS.V-Zero(T,y)

0o ~ Pa(Ya) Ran ~ Ra(@), VYne{l,...,T},Yae{l,...,K}
fora=1,--- ,K do

70,0 < Ya> Sa,0 < 0

forn=1,---,7T do

ga,n — Sa,n—l + /ja(ga,n—l)

ga,n — ua(ga,nflv Ra,n)

end

end
Mo 0, Mo, + —oc0,¥n € {1,...,T}
fora=1,--- ,K do
forn=0,---,7 do
Mo = maxo<ms<n{Ma—1,n—m + Sam}

Lan argmaxogmsn{MG_Ln_m + Sam}
end
end
T+ T
fora=K,---,1do
e < Lar

~ %
T(-T—na
end

return argmax, 1
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B.2. Implementation of IRS.V-EMax

We use the notation y;(ni.x,w) to denote the belief as a function of pull counts ny.x =S (n1,---,nK) €
N&, based on the observation that the belief is completely determined by how many times each
of the arms has been pulled, nj.g, irrespective of the specific sequence in which the arms have
been pulled. Given the pull counts nj.x, we define the payoff of pulling arm a one more time after
pulling the individual arms ni,--- ,ng times respectively: with ¢ = Zle ng, the effective payoff

associated with arm a at time ¢ is

(01K, a,w) 2 fgn, (W) — WIS (T —t = Lyii(nig + eq,w)) + WS (T —t — 1,y (015, w))
(70)
where e, € NJ is a basis vector such that the a'! component is one and the others are zero. Note
that we used the fact that E {WTS (T — t,yt)‘ Ht—l] =WTS (T —t,y;1).

Consider a subproblem of that maximizes the total payoff given the number of pulls ny.x

across all the arms: with ¢ = fo:l Ng, We get

M(ny.x,w) 2 max {Z re(al,,w) — z RS VEMAX (5 ) Z 1{as =a} = na,Va} (71)

a €A

Consequently, the maximal value M (n;.x,w) should satisfy the following Bellman equation:

M(ny.g,w) = max {M(n;.x —eq,w)+r°(n1.x —eq,a,w)}, (72)

a€A:ng>1
i.e., when letting a* be the maximizer of , it is optimal to play arm a* after making the best
effort within the allocation nj.x —e,. For all feasible counts nj.x’s such that Zle ne < T, we can
compute M (nj.x,w)’s by sequentially solving in an appropriate order. By doing so, we can

obtain the maximal value of the original inner problem by evaluating

M 73
nlnllaé)](VT { (1’11 KW )} ) ( )
where Ny 2 {(ny,--- ,ng) € N : YK | n, = T}, and the performance bound WS- V-EMAX jg the

expected value of ([73]) with respect to the random realization of w. The optimal action sequence

aj.p can be obtained by tracking M (nj.x,w)’s backward.
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Algorithm 6: Arm selection rule of 7/®S-V-2ERO

isy

Function IRS.V-EMax (T, y)

0o ~ Pa(¥a), Ran ~ Ra(0), VYne{l,...,T},Vae{l,...,K}

0.0 < Yar Jan  Ua(Jan—1, Ran), Yne{l,...,T}Yae {1,...,K}
for each ni.x € N<7 do

when remaining time is T and current belief

| i) < Egny. ) [maxg ra(6a)]

end

for each ni.x € Nop do

1., ] fia(Fan, 1) + (T = T na = 1) x (k] — Tk +eq]), Va e
{1,...,K}

end

M][0] <0

for each ny.x € N<r \ {0} in order with increasing -5, n, do

N [n1.] = maxqn, >0 { M 01k — €a] + 7 n1xc — €, 0]}

Alny.g] argmax., ~o {M[nlzK — eq] + 7[n1.x — eq, a]}
end

my. g < argmax, . en, {M[HLK]}

fort=T,---,1do

a; «— Amy.k]

Mg — Mgz — 1

end

return aj

Here, ¥(n1:x) £ (G1n1s » UKng )y N & {015 Y0 na < Th Ner £ {0k g 10 < T, and
in line 8, n;.x iterates over N<r \ {0} in an order in which S°K | ng is non-decreasing.

Since |[N<r| = O(TX), it requires O(KTX) operations to compute all M(ny.x,w)’s. However,
another practical issue is the cost of computing WTS(T,y) = T x Ey [maxg ftq(0q)] which has to
be evaluated O(T K ) times in total. There is no simple closed-form expression in general, and it

should be evaluated with numerical integration or Monte Carlo sampling.

B.3. Implementation of IRS.Index

We first prove the identity that was utilized in and then provide the pseudo code for IRS.INDEX
policy.

Proposition 2. The optimization problem can be reformulated as

max {TXFO+(T n) x ()\— min F)‘> —G—Xn:(,uaz 1— 1)} (74)

0<n< 0<i<n
=1
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Here, the decision variable n is the total number of pulls of a stochastic arm.

Proof. Fix m £ ny, i.e., the total number of pulls on the stochastic arm. Note that if a; = 0, then

(T —t) x (Tp, =T, ) = 0since ny = ny_1. The objective function can be represented as

ﬁé Han— 1_% T‘ Tn X/X 2: )X (Fz__rzfl)ﬂ (75)

n=1

where t,, £ inf {t;ny > n} represents the time at which the n*" pull on the stochastic arm is made.
It suffices to find the optimal pulling times (¢1,--- ,t,,) with 1 <t} <ty <--- < t,, < T by which
S (T = t) x (T = T_, ) is minimized. With o 2 0 and fy41 2 T+ 1, we have

NE

(T~ ta) x (T3 =T (76)

n=1
m m

=D (T —ty) xTp = > (T —tn) xTh_, (77)
n=1 n=1
m m—1

=D (T —ta) xTp = Y (T —tny1) x T (78)
n=1 n=0
m m

=D (T —ty) xTp = (T —t0) xT5 = > (T = tng1) x Tp + (T — tmg1) x T, (79)
n=0 n=0

=T\ —TxT)+ Z tni1 —tn) X T (80)

n=0
Consider the minimum value among I}, ..., '), and let n* = argming<, <, I'). In order to minimize

, it should satisfy that t,4+1 —t, =T —m+ 1 for n = n* and t,4+1 — t, = 1 for n # n*. For
such t,,’s, reduces to

m

Iy _ _ A A A
Z.Uwz,nfl“‘(T m) X A ( - T xTIj —I—ZF + (T - m)><0£1311<nmf‘ ) (81)
n=1 n=0

m m—

A A
Z flan—1+ (T —m) x <A—Og}£mr >+T><r0—z_:rn. (82)
By taking its maximum value over m = 0, --- ,7T, we obtain . |

The following pseudo code implements the arm selection rule of the IRS.INDEX policy when
remaining time is 7" and current belief is y. In line 14, the infimum can be found via the bisection

method, and y, 0.7 = (Ua,0 - - - » Ya,T) Tepresents the sequence of beliefs under the sampled outcome.
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Algorithm 7: Arm selection rule of IRS.INDEX policy when remaining time is 7" and current

belief is y

Function IRS.Single.Worth-Trying(a, T, \, ¥a,0.7)
)« Eg,.,. [max(pq(0a),N)],Vn € {0,...,T}
Sty 0, S5« 0, mf + I}
forn=1,---,T do
St = St + Ba(Jan—1)
ST &0, 4T
ml « min (mgfl, f*i‘hl)
end
B maxicncr {St, + T x T+ (T —n) x (A=mk) = ST} =T x A
if ¢, > 0 then
‘ return true
else
‘ return false

end

Function IRS.Index(T,y)

0o ~ Pa(Ya), Ram ~ Ra(0), Vne{l,....,T},Vac{l,...,K}

Ja.0 < Yas  Jan < Ua(Ham—1, Ran), VYne{l,....,T}, Vac{l,...,K}
fora=1,--- ,K do

| X < inf {\;IRS.Single Worth-Trying(a, T, \, ¥a0.1) = true}

end

return argmax, \}

C. Proofs for

Proposition 3 (Mean equivalence). If the penalty function z is dual feasible, the presence of penalties

does not affect the performance of a non-anticipating policy 7: i.e.,

T
EY ;n(AL,w) - zt(AT:t,w)] =Ey LX; rt(Aft,w)] = V(r,T,y). (83)

Proof. The claim immediately follows from the definition of dual feasibility and the linearity of the

expectation operator. [
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C.1. Proof of Theorem [1]

Despite that the results of Theorem 1] were already well established in Brown et al. (2010), we
provide the detailed proof as our context is slightly different from that of Brown et al.| (2010)
regarding the measurability of ;. We define an appending operator ¢ that concatenates an element

into a vector so that a;.; = aj.4_1 D a;.

Weak duality. Define the filtration for the perfect information relaxation G; £ F; U o(w) and

consider a relaxed policy space Ilg £ {7 : AT is G;_j-measurable, V¢}. Then, we have

T T
N x Pro T T
14 (Tv y) 2 sup E [Z 7nt(‘Al:t)] :p. sup E [Z rt(Alzt) - zt(Alzt)] (84)
mEllp  [4=1 mellp  [4=1
T T
< sup E Zrt(Af:t) — zt(AT:t)] =E l max Zrt(al;t) — zt(al;t)] (85)
TI'EH([; t=1 a1:T€-/4T t=1
= WA(Ty), (86)
where the inequality holds since Iy C Ilg. |

Strong duality. Fix T and y. Let V"(aj.;_1,w) and Qi"(a;.;_1,a,w) be, respectively, the value
function and the state-action value (Q-value) function that are associated with the inner problem
given a particular outcome w under the ideal penalty . With VTi“+1 = 0, we have the

following Bellman equation for the inner problem:

Marg_1,a,w) 2 ry(an—1 ® a,w) — 218N a1 ® a,w) + Vi (a1-1 @ a,w), (87)
in _ in
‘/t (alzt—17 CL)) - I;leaj‘( {Qt (allt—17 0/7 w)} . (88)

We argue by induction to show that

Vi ayy—1,w) = VHT —t + 1, yi-1(ars—1,w)), (89)
Qr(ari—1,a,w) = Q*(T —t + 1, yi_1(a14-1,w), a), (90)

forallaj, 1 € A ac Aand t € {1,...,T + 1}.

As a terminal case, when t = T 4 1, the claim holds trivially, since VTirjrl(alzT,w) =0 =
V*(0,yr(ai.r,w)). Now assume that the claim holds for ¢ + 1: ie., V' (ayg,w) = V(T —

51



t,yi(a4,w)) for all ay,; € A’ For any a;;_1 € A" ! and a € A, then,

Q" (ar-1,a,w) = re(a14-1 D a,w) — 22 (A14-1 B a,w) + VT (a14-1 ® a,w) (91)
=E[r(ai-1®a,w) + V(T —t,yi(ar4-1 @ a,w))| Hi—1(a14-1,w)] (92)
V(T —t,yi(ars1 ® a,w)) + Vi (a1 © a,w) (93)
=0
=E[r(an-1®a,w)+ V(T -t yi(ar1 ®a,w)| Hi(a-1,w)]  (94)
=Ey, (arrw) [Ba + V(T = t,U(yi-1(a1:1-1,w), a, Ry))] (95)
= Q" (T — t,y1-1(ar4-1,w), a), (96)

where the last equality follows from the original Bellman equation . Consequently, we obtain

V;:m (al:t—la LU) = Igleaj\( {Q;:n (alzt—la a, w)} (97)
= gleajf {Q* (T - ta yt—l(alzt—la (,U), a)} (98)
=VHT -t yi-1(a1t-1,w)). (99)
Therefore the claim holds for all ¢t = 1,--- , 7. In particular for t = 1, we have
V0, w) =V*(T,y), Q"0,aw)=Q*T,y,a), Yw. (100)

Note that the maximal value of the inner problem does not depend on the outcome w, i.e., it is
deterministic with respect to the randomness of w. As its expected value, Widea(T y) = V*(T,y).
|

C.2. Proof of Remark 2]

ideal golves the same inner problem with

We proceed on the proof of strong duality. The policy m
respect to a randomly sampled outcome @. When the remaining time is T' and the current belief

is y, it takes an action with the largest Q-value: together with (100), it yields

7I.ideal

a = argmax Q(0, a, ) = argmax Q*(T,y, a). (101)
a a

ideal glways takes

Therefore, at each moment, irrespective of the sampled outcome @, the policy =
the same action that the Bayesian optimal policy would take. Although there might be some
ambiguity regarding tie breaking in argmax, it does not affect the expected performance. Therefore,

V(rideal T y) = V*(T,y). n
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C.3. Proof of Remark 3

First observe that for any non-anticipating policy 7 € Ily, since AT is F;_i-measurable, we have

T T T
Ey [Z r( AT, wﬂ = E, [ZE (re(AT )] Fi1, 0)] — E, [Z uAgwAg)] L (02)
t=1 t=1 t=1

Since E[r¢(ay.¢,w)|0] = a,(04,) for any aj; € A', we further deduce that

T
Ey [Z ZI;FS(AT:tvw)‘| =Ey [Z Tt(Aflrmw)] —Ey
t=1

t=1

T
ZMA;TWA?)] =0, (103)
t=1

and thus z'S is dual feasible.

Also observe that Elri(aj.)|fir—1] = Elpe, |for—1] = Elpa,|ar—1, Hi—1] and E[ry(aj4)|Hi—1] =
E[ttq,|Hi—1] for any ay,, € A'. We can easily verify that each of penalty functions (22)-(26) has a
form of

zi(ars, w) = 255 (ars, w) + wi(ar:, w) — Elwy(ars, w)|Gi1(an—1,w)], (104)

for some deterministic function w; and some relaxed information set Gy_1 2 H;_1. By invoking
Proposition 2.3 (iii) of Brown et al.|(2010), we have that 2R FH TS ;Irs.V-ZERO_ TS © IRS.V-EMaX _

285, and zldal — TS are dual feasible, and therefore so are z/RS-FH = 2[RS-V-ZERO = IRS.V-EMAX a1
zzifdeal. [
D. Proofs for
D.1. Notes on Regularity
Proposition 4. If Ey|R, | < co for all a,
Eylia(fa)] < 00, and WTS(T,y) < oo, VT €N. (105)
Proof. By Jensen’s inequality,
Ey|ta(0a)] = Ey [[E (Ran|ba)|] < Ey [E ([Ran||0a)] = Ey|Ran| < co. (106)
Consequently,
K K
Ey {mgxﬂa(ea)] < Ey Z ‘Na(ea”] = ZEyWa(ea” < o0. (107)
a=1 a=1
The claim holds since WTS(T,y) = T x Ey[max, 14 (0,)]- |
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Proposition 5. If Ey|R, | < oo,

A 1L
nlgrolo flan(W;Ya) = nl;rglo - Zl R, i = pa(0s) almost surely, (108)
1=

where fian(W; Ya) 2 Ey, [tta(0a)[Ra,1, -+, Ranl]-

Proof. Fix a and let H, £ ¢ (Ra,1,- -+, Rap). First note that, by the strong law of large numbers,
limy, 00 % Yoic1 Ra,i = pa(fq) almost surely. Therefore, j14(6,) is measurable with respect to Hoo =
U, Hn. Also note that fig, = E(uq(0a)|Hy) is a Doob martingale adapted to H,. By Levy’s
upward theorem, since fi4(6,) € £ by Proposition 4} fian converges to E (1q(0s)|Hoo) = ta(6a)

almost surely as n — oo. |

D.2. Proof of Proposition

Asymptotic behavior of 7!*5FH  Tet & be the sampled outcome used by 7% FH By Proposition
we have limy, o0 flan (@) = ua(éa) for almost all . This, together with the assumption that

wi(0;) # pi(0;) for i # j, since argmax, ptq(6,) is uniquely defined for almost all @, yields
argmax fra(0a) = argmax nlgrolo flan(©) = nhﬁngo argmax flan(@) as. (109)

Since almost-sure convergence guarantees convergence in distribution, for any a € A,

lim P [AIRS'FH(T, y) = a} = lim P {argmax far7-1(0) = a} (110)
T—o0 T—o0 a ’
=P {argmax pra (Or) = a} (111)
=P [A™(y) = a. (112)

Irs.FH

Note that we are not assuming that m and 715 share the randomness. The sampled parameters

TS

used in 715 are not necessarily the ones used in 7% "H but their distributions are identical since

they are drawn from the same prior. |

Asymptotic behavior of 7!%-V-2ER0 | To gsimplify notation, let A5 & AMS-V-ZERO(T v) Ag above,
it suffices to show that lim7_,o A7 = argmax,¢ 4 ua(éa) := ATS for almost all sampled outcome @.

We hide @ and 0, from the notation for the further simplification.

Define

A £ min |ugrs — po| and M2 sup  |fgn- (113)
a#ATS a€ANn>0

We have 0 < A < 2M < oo almost surely since j;(6;) # 11;(6;) for i # j and limy, o0 flan = o < 00
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almost surely for all a. In addition, there exists N € N such that
R A
‘/J;am—/.l,a‘ < Zv vn2N7 VG/GA (114)

For such N, we have

mf ,uaTS n = SUp flgn + -, Va# ATS. (115)

n>N 2 ’
Note that AT, A, M, and N do not have the dependency on 7.

To argue by contradiction, suppose that A% # ATS for some large T such that T' > 2N —&—%4—2.
Define the optimal allocation to the inner problem of IRS.V-ZERO for such 7"

K ng
an = argmax {ZZNuS 1} (116)

ny R ENT | g=1 =1
where the ties are broken arbitrarily in argmax{}. We let n°(a) be the a'" component of nJ .

According to the specified arm selection rule, we have A = argmax, n°(a) and hence n°(A%) > |1 |

(> N). We prove the claim for the following two cases:

Case 1: If n°(a™®) > N, consider an allocation n} ; that is a deviation from the given optimal
allocation n{.j such that arm a™S gets one pull whereas arm A% gets one less pull: i.e., nf(ATS) =
n°(ATS) + 1, nt(AS) = n°(A3) — 1, and nf(a) = n°(a) for any a ¢ {ATS, AS.}. The change in the

total payoff from this deviation is

’I’L

—

a) K n°(a A
ﬂa,iq = fai1 = A yo(ats) — fLAS. no(A%)—1 = 5 >0 (117)
a=1 i=1

||M

where the inequality follows from (T15) and that n°(A™) > N and n°(A%) > N. The alloca-
tion n} ) 1is strictly better than nf. ., which contradicts the assumption that nj j is an optimal

allocation.

Case 2: If n°(A™) < N, consider an allocation nI: i that is a deviation from the given optimal
allocation n$, - such that arm A3 gets no more than N pulls whereas arm ATS gets the remains:
ie.,
n°(ATS) + (n°(A3) — N) ifa= ATS,
nf(a)2{ N if a = AS, (118)
n°(a) if a ¢ {ATS A%}
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By making this the deviation, the total payoff should increase by

K K n°(a)
Z Z flai-1— Y Y flai- (119)
a=1 i= a=1 =1

O(AIS)-F(TLO(AOT)—N) n°(Az)
= > fars;_1— Y fiag.ic (120)
i=n°(ATS)+1 i=N+1
n° (A7) n°(Az)
> —(N—-n°(AT®)-2M + D~ figrs; ;- Z s i—1 (121)
i=N+1 =N+1
> —(N —n°(AT9)) . 2M + (n°(45) = N) - % (122)
> (n°(A%) — N) - %—QNM (123)

Since T' > 2N + SMN + 2 and n°(A%) > L%J, the last term is strictly positive, which is a contra-

diction.

We’ve shown that for almost all @, when T is large enough, the optimal allocation nj., must

allocate more than a half of the pulls on arm A™S = argmax, j14(,). This concludes the proof.

D.3. Proof of Theorem [2|
D.3.1. Proof of “WTS5(T,y) > WIRs-FH(T y)”

Proof. It immediately follows from Jensen’s inequality: since max(---) is a convex function,
WTS(T,y) = T x By [max ia(0a)| > T x By [maxE (p1a(00)| fr1)| = WFH(Ty).  (124)
a a
[

D.3.2. Proof of “WRs-FH(T y) > JyIRs-V-ZERO( 4/y»

Lemma 1 (Variant of Jensen's inequality). Suppose that ¢ : R — R is an increasing (deterministic)

function. Then, for any real-valued random variable X such that E|X| < oo,
E [max {X + ¢(X),0}] > E [max {E(X) + ¢(X),0}]. (125)
Proof. Define 2 E(X) and f,(t) £ max{t + ¢(z),0}. Since f,(-) is a convex function for each z € R,

fo() > fu(p) 4+ (¢ = p) - fo(p) = max{p + @(z),0} + (t — p) - Hp +p(z) >0}, Vi, Va (126)

By setting t = x, we get

max{z + ¢(),0} = fo(z) = max{p + ¢(z),0} + (z — p) - Y+ ¢(x) = 0}, Va. (127)
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Note that, since 1{p + @(z) > 0} is increasing in z, (i) for any > p, (x — p) > 0 and 1{u + o(z)} >
1{p+ ¢(p)}, and (ii) for any « < p, (x —p) <0 and 1{p+ ¢(x)} < 1{p+ ¢(u)}. Therefore,

(2= 1) Ut o(2) > 0} > (3 — ) - 1{u+ () >0}, VoeR (128)
Combining this with 7 we get
max{z + ¢(x),0} > max{p + p(z),0} + (x — ) - 1{u+ () >0}, VzeR. (129)

For random variable X, by taking expectation, we get

E [max{X + p(X),0}] > E [max{u + p(X),0} + (X — ) - L{pu + ¢(n) > 0}] (130)
> E [max{p + o(X), 0} + E(X — ) - L{+ ¢(n) > 0} (131)

— E [max{y + p(X), 0}]. (132)

[ |

Corollary 1. On a probability space (2, F,P), let p(z,w) : R x Q@ — R be a function such that (i)
the mapping x — ¢(x,w) is increasing for each w € Q and (ii) for some sub-o-field H C F, the
mapping w — p(z,w) is H-measurable for each v € R (i.e., ¢(-,w) is a deterministic function
conditioned on H). Then

E [max {X (w) + ¢(X (w),w), 0}] > E [max {E(X[H)(w) + ¢(X (w),w), 0}]. (133)

Proof. Define
pw) 2EXH)(w), I(w) = Huw) + e(u(w),w) > 0}. (134)

By (129), we have
max{z + ¢(z,w),0} > max{u(w) + ¢(z,w),0} + (z — p(w)) - I(w), Ve eR, foreachwe Q. (135)

Since p(w) and I(w) are H-measurable,

E [max{X () + (X (@), ), 0}] > E max{u(w) + 9(X (@), w),0} + (X (@) — p(w)) - 1(w)] (136)
— E[E (max{a(w) + p(X (@),w), 0} + (X(w) - p@)) - @) H)]  (137)
— E fmax{p(w) + ¢(X (),w),0}] + E[E((X(w) — p(w)) - I(w)| H)] (138)
— E [max{E (X[H) (@) + p(X (@), ), 0}] (139)
+E | BXIH) ) - p(w)) 1(w) (140)
=0
— E [max{E (X|H) (&) + o(X(w),), 0} (141)
[ |

Corollary 2. On a probability space (Q, F,P), let (Cy,--- ,Cr) be H-measurable real-valued ran-
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dom variables for some sub-o-field H C F (i.e., C;’s are constants conditioned on H ). Then

E{O%%{(i—nﬁ ><X+C’i}} ZIE[Org%}%{E(X|H)-1{i2n+1}+(i—n—1)+ ><X+CZ-}}
(142)
foranyn=0,1,---,T.

Proof. When n = T, both sides become E [maxg<;<7 {C;}], which makes the claim true. Fix n < T and
define

plaw) 2 max {(i—n—1)xz+Ciw)} - max {Ciw)}. (143)

Note that ¢(z,w) satisfies the conditions in Corollary |1} By Corollary

E [Orélza<xT {G-n)* x X +C;} (144)

[max{ max {(i—n)x X + C;}, maXC’H (145)
n+1<:<T 0<i<n

[ ax {X + nﬁ?ﬁi’i {t—n—-1)x X +C;}, 021?;”@” (146)

=FE |max X(w)+ max {(i—n-—1)%x X(w)+ Ci(w)} — max C;(w), 0p + max C;(w) (147)

n41<i<T 0<i<n 0<i<n
= (X (w)w)
>E max{IE (X|H) (w +TL+I{131X<T{(2—TL—1) x X(w) + Ci(w )}—Orgazch( w), O}—l—orél?é(nci(w)}
(148)
=FE _max {n+I{1<a7X<T {E(X|H)+(i—n—1)x X+ C;}, Jmax ClH (149)
_ . s _ + .
=E OrgixT{E (X|H)-1{i>n+1}+(i—n—1) ><X+CZ}]. (150)
|
Proof of ccwlRS‘FH (T, y) > WIR,S.V—ZER,O(T7 Y)-” Define
K
NTé{nl:KEN{f:Zna:T} and S ( ZM‘” 1. (151)
a=1

What we want to show is

WiksFH — {T X max{ﬂa,Tq}} =

K

el
N
D Sl

nlII;aE)](VT { }] = WIR&V*ZERO' (153)
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Further define

k—1 K
)t x y
o max { (; Sa(na > (Sk(nk An) + (ng —n)" X flar-1) + ( > nax ua,T1> H :

a=k+1
(154)
where a A b £ min(a,b). Observe that WRsSFH = = Uy g, WIRSV-2ER0 — 71 1 and Ugq1,0 = Uk 7. Therefore,

it suffices to show that

A
Ukn:

)

Uk,nZUk,n+1a szl,"'aKa VTLZO,,Tfl (155)
Fix k and n. Define a sub-o-field
H £ (o) ({Ra,s}a:k,lgsgn ) {Raﬂs}a;ék,lSsSTfl) . (156)

For each ¢ =0,---,T, define

max{(ZS na>+5k (iAn) <Z Ng X flg,T— 1) : nlzKENT,nk.i}. (157)

a=k+1

Note that C;’s are H-measurable and

Uk,n =K [Org;ag(T{ i — n) X g, r—1 + Cl}:| . (158)
With X £ fiqr_1,
Ukn=E L%ELXT{ i—n)t x X+ C’z}} (159)
CorelovBl E(X i >n+1)+ (i Dt x X +C 1
> {o@iXT{ (X|H)- 1{i>n+1}+(i—n—-1)"x X+ 1}} (160)
@) o " .
S ) |:Oglza<XT {fkm - Hizn+1} 4+ (i—n—1)" X flar_1+ C,}] (161)
b
© Ui, (162)

Equation (a) holds since E (X|H) = E (fi,7—1|") = E (fk,7—1|Rk,1, - s Rkon) = flan, and equation (b)
holds since Sy (i An) 4 fgn-1{i > n4+1} = 3" figso1-1{i > s} 4+ fgn-1{i > n+1} = X" i -1{0 >
s} =Sp(i A (n+1)). [ ]

A note on the proof. One may wonder if the above result can be derived in a simpler way by
exploiting the properties of nested filtration (e.g., Proposition 2.3 of Brown et al., [2010). Unlike
the proof of WTS > WIRSFH f)owever, the proof of WIS FH > py/IRS.V-ZERO q5eg not simply follow

from the fact that o(fip—1) is larger than o(H;—1).

Consider a Bernoulli MAB with K = 2, T' = 2, and a prior distribution Beta(1, 1), and let us
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introduce its variation whose reward function is given by 7;(-) as follows:

ri(ar) = ri(a1), ry(ane) = —kra(are), (163)

where 7¢(-) is the reward function of the original Bernoulli MAB. When x > 0, one can show that

T
75
Irs.FH __ s —
wist = | [glﬁg {; E(ré(al:t)luT—l)H TR (164)
T
WISV20 _ I |imax d S OB () (are) | He1) §| = = — or. (165)
anT =1 t ' 2 8

If x is large enough, we obtain WRSFH  JJ/IRS.V-ZERO "which i opposite to the above result.

Recall that the additional gain from knowing the future information can be decomposed into
two components; the gain from knowing the immediate reward and the gain from knowing the next
belief state, where IRS.V-ZERO considers the former component only. When those two components
are not aligned as in this example (i.e., a higher | leads to a worse next belief state), the DM can
exploit the penalties if they penalize only for the first component (e.g., when 7} is smaller than
expected, the DM will get compensated for this difference but she can still earn the larger reward

in the next period).

This is also related to the fact that zgRS'V‘ZERO does not correspond to zero penalty under the
some (partial) information relaxation, but should be understood as an approximation of z}fdeal
under the perfect information relaxation. As opposed to TS and IrRS.FH, the optimal solution to
the IRS.V-ZERO’s inner problem may depend on the entire outcome w. With the terminology of
Brown et al. (2010), there is a mismatch between the filtration that generates the penalties and

the filtration that characterizes the relaxed policy space.

D.3.3. Proof of “WTS(T,y) > WIS V-EMAX( yy»

To show that WTS > WS- V-EMAX 'wwe take a completely different approach that utilizes Theorem 4

in |[Desai et al. (2012a). We here rephrase the definition and the theorem therein using our notation.

Definition 2 (Supersolution). An approzimate value function Vo No x YV — R is a supersolution
to the Bellman equation if

~

V(T,y) > max{Ey, [Ro1+ V(T = LU(y, Ro1,1) |}, ¥y €V, VI >1, (166)

acA

with V(O,y) =0 forally € ).
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Remark 8. If ‘7(, -) is a supersolution, then for any given w, T, andy,

~

V(T—t+1,yi-1(ars—1,w;y)) > Ey [Tt(alzt—l @ a,w;y) + V(T — t,yi(ari—1 @ a,w; Y))’ Hi (a1, w)} ;
(167)
foralla€ A, ajy 1€ A7 andt € {1,...,T}.

Lemma 2 (Theorem 4 of Desai et al|(2012a), rephrased). Consider a penalty function 2, generated

it(al:ta w; T, ;Y) = Tt(alznw) - Ey [Tt(alztu UJ) ’Ht—l(alzt—la w)] (168)
+ V(T = tyi(ans, wiy) = By [V (T =t yi(@re, wiy))| Hioi(are-1,0)]

If 17(, -) is a supersolution, then the performance bound induced by penalty function 2 is tighter
than V : i.e.,
W (T,y) < V(T,y). (169)

And this holds in a stronger sense: for each outcome w, the mazximal value of the inner problem

with respect to w (denoted by Vf’in(@,w;T, y) in the proof) is smaller than or equal to ‘A/(T, y)-

Proof. Let Vtzm() be the DP solution of inner problem for a given penalty Z; with respect to

a particular outcome w:

W27in(alzt—17 w3 T7 Y) - I(?Gajl{ {Tt(al:t—l ©® a, CU) - ét(al:t—l ® a, W, T7 Y) + ‘/Zliln(alzt—l s> a,w; T7 Y)} )
(170)
with ijfi(-,w;T, y) = 0. Then, we have W#*(T,y) = E {Vf’in(@,w;T, y)} To prove the claim, it

suffices to show that, for any given w,

Vo (ars 1, w0 Ty 1 (ane1,w;y) < V(T —t+ 1y 1(ane1,w;y)), (171)

forallajy 1 € A7 tand forallt=1,--- , T + 1.

We argue by induction. As a terminal case, when ¢ = T + 1, the inequality (171) holds trivially
since both sides are zero. Fix ¢ and suppose that the inequality (171) holds for ¢ + 1. Omitting w
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for brevity, we get

~

V(T —t+1,yi1(ars-1) — V™ (a1 Ty ye1(are 1)) (172)
=V (T —t+1,y:-1(a14-1)) — max {T't(a1:t—1 ®a)— Zar—1@a;T,y) + V{iiln(al:tq ®a;T, Y)}
(173)

1% (T —t,yi(asy)) — Vﬁiln(am—l ©a;T,y)

>0 (. induction hypothesis)

= min

a€d | +V(T—t+1,yr1(ar1)) — E [rates @ a) + V(T = t,yi(ar1 & )| He]

>0 (.- Remark[g)
(174)

> 0. (175)
u

Proof of “WTS(T,y) > WIRS-V-EMAX(T v} » Recall that z/%5V-EMAX i 4 penalty function gener-
ated by WTS. We observe that WTS(~, -) is a supersolution: for any 7" and y,

wTS(T,y) =Ey [T X max g a)} (176)
= [maxua o) } +W(T - 1,y) (177)
> max {Ey, [ua(0)] + WS(T - 1y) | (178)
= max {Ey [Ra,l FWIS(T -1, y)}} (179)
= max {By [Ro1 + WS - 1U(y,0, Rar)| }. (180)

The last equality holds since E [WTS (T -1,U(y,a1,m (a1, w)))} = WTS(T—1,y), as argued in ([39).
By Lemma [2, we have WS V-EMAX(T 5y < 17 TS(T y) which also holds in a stronger sense. |
D.4. Proof of Theorem 3]

D.4.1. Suboptimality Decomposition

As in §C.1, we define the Q-values of the inner problem given a particular outcome w, a penalty

function z(-), a time horizon T, and a prior belief y.

Cgfjin(al:t—l; a,w; T7 y) = rt(alzt—l ® a, w) - Zt(alit_l ©a,w; T’ Y) (181)
+ V:iiln(alzt—l @ a,w; T> y)a
‘/tz’in(alttfla ws T7 y) = max {Q?in (alztfl’ a,w; T’ y)} ’ (182)
acA
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with V7 _inl( ,w;T,y) = 0. Additionally define the total payoff of an action sequence and the

hindsight best action under penalties:

T
S*(arr,wiT,y) £ r(a,w) — z(an, w; T,y), (183)
t=1
a;" (ar4—1,w; T, y) £ argmax {Qf’in(alzt—h a,w;T, Y)} : (184)
acA

We have V" (0, w; T, y) = max, .car S*(arr, w;T,y).

Proposition 6 (Suboptimality decomposition). Given a non-anticipating policy = € Iy and a dual-
feasible penalty function z;, the suboptimality gap is the sum of the instantaneous suboptimalities

of individual actions taken by m along the sample path: i.e.,
w* (T7 Y) - V(ﬂ-a Ta y) = Ey |:maX {SZ(aIITa Wy T7 Y)} - SZ(AT:Ta ws Ta y)] (185)

[Zmax{ zm lt 1, QW Ty)} z1n( 1:t— I’A?7W;T7Y)

(186)

where the expectation is taken with respect to the randommness of outcome w and the randomness of

policy .

Proof. The first equality immediately follows from the definition of W#* and mean equivalence
Proposition[3). Now fix w, T', and y. Consider the (pathwise) suboptimality of the action sequence
(Prop , T, and y p p y q

AT compared to the clairvoyant optimal solution. It can be decomposed into the instantaneous

suboptimalty incurred by the individual action at each time:

max {8 (arr)} - 57 Zmax{ PNAL b0} - QAT AT, (18T)

By taking expectation, we obtain the second equality. |

The next lemma shows that the instantaneous suboptimalty of the first action can be expressed

in terms of mean reward metrics for each of the IRS penalty functions.

Lemma 3. Fiz time horizon T, prior belief y, and the true outcome w, and hide the dependency

on them in notation for Q7 HONs (), pta(+) and fign(-). For each of the penalty functions 2™,

ZIRSFH =g 21RS-V-2ERO the instantaneous suboptimalty of action a € A satisfies the following:

(1) When z = 275,
PMaP) = Q™ (@) = oz — o (188)
(2) When z = 2m-FH
i’,in(ai,*) B i,in(a) = figz* r—1 — fla-1- (189)
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(8) When z = zV-%PRO,

zing zx\  ~zin < 0z o~
(0) - QM (a) < s (s fiao. (190)

Proof. (1) When z = 2™, we have
P1a) = pa + (T — 1) x max . (191)

Since the last term does not depend on action a, the claim follows.
(2) When z = 2'"-H e obtain the claim by replacing p, with i, 71 in the above proof.

(3) When z = 2!RS-V-2ERO recall that the associated inner problem is to find an optimal allocation:

i.e.,

K ne—1
max {Z > ﬂw}. (192)

max SN (037 150
Let nJ. ;- be the optimal allocation. Observe that the suboptimality is incurred only when n} = 0,
it is no worse than 'aa*’”Z* — [lq,0 (the loss if the payoff when pulling a one more time but pulling
af’* one less time). Since n}. < T — 1, the claim follows. [ |

D.4.2. Recursive Structure of IRS Penalty Functions

To describe the recursive structure of Bayesian MAB problems explicitly, we define a shift operator
M, Al x Q — Q,
Mi(ars,w) £ (Ran,; Ve > ni(ais, a),Va € A). (193)

The shifted outcome M;_1(aj.;—1,w) encodes the remaining reward realizations after taking aj.;—1.

Remark 9 (Recursive structure of remaining uncertainties). Conditioned on Hi—i(aj4—1,w), the re-

maining uncertainties are sufficiently described by yi—1(ai.i—1,w;y), i.e.,

Mi_i(arg—1,w)| Hi—1(ar—1,w)  ~  Z(yi—i(ari—1,w;y)). (194)

Remark 10 (Recursive structure of IRS penalties). Each of penalty functions ([22)~(26) has the fol-

lowing form:
zi(are, w; T,y) = @*(Mi—1(ar—1,w), T =t + 1, yr—1(a1:4-1,w;y)), (195)

for some function ¢©* : Q2 x N x Y — R, i.e., the penalty at each time is completely determined by
the remaining rewards My_1(aj.1—1,w), the remaining time horizon T —t + 1, and the prior belief

yi—1(ai.t—1,w) at that moment.

Remark [9] immediately follows from Bayes’ rule, and Remark can be easily verified. We
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observe the recursive structure of the sequential inner problems that the DM solves throughout the

decision-making process, which can be characterized by the following property.

Proposition 7 (Generalized posterior sampling). For each of penalty functions f, the IRS
policy w is randomized in such a way that it takes an action a with the probability that the action

a is indeed the best action a;”™ at that moment, i.e.,
PAT = a| Fr] =P [a;" (ATyo1,w) = a| Foa] . Va, 9 (196)

The source of uncertainty in the LHS is the randomness of the policy (embedded in @) and that in
the RHS is the randomness of nature (embedded in w). Here we assume that the tie-breaking rule
in argmax of (184) is identical to the one used when 7* solves the inner problem.

Proof. Observe that the IRS’s action A} can be represented as
;r = CLT’* ((Z)’Q;T_t—i_ 17yt—1(A71T:t—1aw;Y)) ) (197)

where @ ~ Z(y:—1(AT,_,w;y)), i.e., the action that the clairvoyant DM will take in an MAB
instance specified by horizon T'—t+1, prior belief y;_1 (AT, _;,w;y), and the outcome @. Therefore,
it suffices to verify that the inner problem that 7 solves at time ¢ is identically distributed with
the sub-inner problem with respect to ground-truth w (i.e., the subproblem given the past action

s
sequence AT, ;).

Fix time t, past actions a;;—1 = AT,_;, and the true outcome w. The sub-inner problem

determining a;*(a1.;—1,w) is

a.r

T
max {er(a1;t1 ®ay.g,w) — zs(ari—1 B apg,w; 7T, y)} . (198)

s=t

By Remark for any s € {t,...,T}, the penalty at (inner) time s is given by

zs(aj—1 ®ag,,w;T,y) (199)

= " (Ms—1(ar—1 @ ay,_1,w), T — s+ 1,ys—1(an—1 ® a1, w; y)) (200)
Ms—t(als—1, Mi—1(a1:4-1,w)),

=" | (T—t+1)—(s—1), (201)
Ys—t(ahs 1, Me—1(a14-1,w); ye-1(ars—1,w; y)

= zs_tp1(ag, Mi1(ar—1,w); T —t+ 1,y 1(ars—1,w; y)). (202)

For rewards, similarly, we have rg(aj.;—1 @ aj.,,w) = rs—¢11(a}.s, Mi—1(ar.t—1,w)). Therefore, the
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sub-inner problem (198) is reformulated as

T
max {er—t+1(a1/t:sa Mi—1(ari-1,w)) = Zs—t41 (g5, Mi—1(are—1,w); T — t + L yi—1(ar-1,w; Y))} :

a.r
(203)

Given the fact that the shifted outcome M;_;(aj4—1,w) and the sampled outcome @ are identically

s=t

distributed with Z(y;—1(aj.4—1,w;y)) conditionally on H;_i(aj.;—1,w) (Remark @, this sub-inner

problem follows the same distribution with

T—t+1
max { Z rs(al.s, @) — zs(als, @, T —t + l,yt_l(alzt_l,w;y))} , (204)
a1t s=1

which characterizes the IRS’s action AT. Therefore, a;”*(AT,,_,,w) is identically distributed with
A7 conditioned on F;_;. [ |

Remark 11. Utilizing the recursive structure of IRS penalty functions, Lemma [3 can be extended
to describe the instantaneous suboptimality of the t'* action. Fiz true outcome w and past actions
z,in

ajt—1, and hide the dependency on them in notation for Q7™ (+), a7 (+), nt(+), pa(+) and fign(-).
(1) When z = 275,

PMai™) = Q™ (@) = pgzr — pa (205)
(2) When z = - FH
Q7" (a7™) — Q™(a) = figz ()4 T—t — Flame—1(a)+T—t- (206)
(3) When z = zV-%PRO,
z,in, z* z,in ~ ~
t (at ) — Wy (a) < Ogrr?g%(—t {Maf’*,ntﬂ(af’*)-‘rn} — Hani_q(a)- (207)

D.4.3. Preliminary Lemmas on MAB with Natural Exponential Family Distributions

We first describe the notion of sub-Gaussian random variable as an effective tool for bounding its

tail behavior.

Definition 3 (Sub-Gaussian random variable). A random variable X is o-sub-Gaussian if

E [exp (M(X —EX))] < exp <02)\2> , VAER, (208)

for some o > 0.

Lemma 4. Given a random variable X, suppose that there exists o > 0 such that

P[X >EX +z20] < e */2, Vz>0. (209)
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Then, the following holds:

E[(X - (EX + 20))*] < 26*22/2, Yz > 0. (210)

Corollary 3. If a random variable X is o-sub-Gaussian, it satisfies the condition of Lemma[{] and
hence the inequality (210) holds.

Proof. With 1 = EX, we have

oo

E {(X— (,u—l—zo'))"'} :/x P[X > z]dx = OOIP’[X > u+to]odt < O_/too e 2t (211)

=p-+zo t=z =z

Utilizing the tail bound established for the standard normal distribution, we can show that

© 1 gy, le /2

—e dt < = . 212
t=z V21 Tz /27 (212)

By combining these two inequalities, we obtain the desired result.

The corollary simply follows from Markov inequality: for any z > 0 and A > 0, we have
B E e)x(X—p,) 0.2 )\2

PX>pu+z0]=P [e)‘(X > eAZU} < [ema] < exp 5~ Azo | . (213)
By taking A = £, it follows that P[X > u+ zo] < 212, [ |

g

We now return to the context of MAB problems and show that the mean reward metrics are

sub-Gaussian.

Lemma 5 (Sub-Gaussianity of mean reward metrics). Consider the setting of Theorem@ i.e., the
reward distribution of arm a is described by an L-smooth log-partition function A,(6,) and hyper-

parameters (q,v). Then, the conditional mean reward i, is \/L/v-sub-Gaussian: i.e.,

_ LN?

]E@a,l/) [exp ()\(:u’(l - /’La))] < CeXp (21/) ’ VA€ R7 (214)
where fia = Eg, ,)lta] = %“ is the prior predictive mean reward (i.e., the unconditional mean
reward). Furthermore, the posterior predictive mean reward fiq p is V(fi’n) -sub-Gaussian: i.e.,

N _ A2 Ln
E(faﬂ/) [eXp (A(/,La”n — /,La)>] S exp ? X m 5 V)\ S R. (215)

Proof. We first prove that p, is /L/v-sub-Gaussian. Due to L-smoothness condition, A4 (6,) is
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finite valued for all 8, € R. For any A € R, we have

E e, [0 ia)] 2 B, 1) [exp (A4 (60))] (216)
— [ e (ML) X fular ) exp (€ab — vAAa(6.)) B (217)
_ [ O:O Fal€arv) exp {€alla — vAa(0a) + AL (82)) dO, (218)
_ /_ O; Falasv) exp {€aba — v (Aa(0a) — Mo - Ay(02))} d6, (219)
7 enmren {% v <Aa<6a A - gjj) } 8, (220)
— exp (?) < [ faltarv) exp (€t — v A0 ~ M)} B, (221)
~ exp (50;% N I?j) y /_O:O Fol€ar 1) xp {a(Ba — M) — v Ag(00 — A1)} dBa
(222)
— exp (5‘3 " L;Q) < [ halav)exp (68— vAu(6,)} dB, (223)
= exp (g‘;f + Lj) , (224)

where we have utilized that (i) pa(0s) = AL (6a) and (i) Aa(0s 4+ 6) < Aa(0a) + 6AL(0.) + 562

Since fig = &, /v, we obtained the desired result.

Next we focus on the posterior predictive mean reward fi, . Recall that we have

~ _ ga + Z?:l Ra,i

an Y+ n (225)
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For any A € R, we have

s o (15502 <5 pfon (1551

eaH (226)

i=1 i=1
D, [E{exp (ARa1)] 6a)"] (227)
Y E e, loxp {Aa (B + 3) — Au(0))"] (228)
(iid) )"
< Al -
< Bieaw) lexp {A Aaba) + = } ] (229)
v L 2
@) E, ) |exp {n)\ g + T;)\ H (230)

_ Ln\? _
= exp (n)\,ua + ) X Ee, ) [€xp (nA(pta — fia))] (231)
(v) Ln)\? Ln?)\?
v _
< exp (n)\ua + 5 > X exp ( 5 ) (232)
2

= exp (nA\ig) X exp <)\2 X W) , (233)

where we have utilized that (i) R,;’s are conditionally independent given 6,, (ii) the moment-
generating function of R, is given by E[ARq|0,] = exp (Aq(0a + ) — Ag(0)), (iil) Aq(-) is L-
smooth, (iv) AL (0,) = pa(0a), and (v) pg is /L/v-sub-Gaussian. Given that E [>7 | Rai] = njia,
we just have shown that the sum Y ;" | R, ; is 1/ M—snb—(}aussian. Therefore, its scaled version

Z";{f“’i is ,/V(fjr‘n)—sub—Gaussian, and so IS flgn. [ |
Lemma 6. Consider the setting of Theorem @ With o, & y(fj:n), the following holds:
E fla; — (fla + z00) " < Tne=2/2 vy 5 (234)
Olg%xnua,z Maq T 20n =7 € ) < .

Proof. Recall that the posterior predictive mean reward process {fiqn}n>0 is the martingale with
respect to the filtration generated by reward realizations R4 1, Rg2,... and whose mean is fi,.
Therefore, {exp(Afian)}n>0 is a positive submartingale for any given A > 0. By Doob’s maximal

inequality, we deduce that

R _ . _ E [exp (A fig.n — I
P Orél%xn fai > fla + zan] =P [Org%xn exp (A(fla,i — fa)) = exp (Azop)| < [ Z}((p((li\a;zn) ,ua))]'

(235)
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By Lemma 5, since fi,, is 0,-sub-Gaussian, we further have

ex flan — [ exp (X5 2oy
g2 ()

Therefore, by taking A £ é, we have P [maxo<i<p fla,i > fla + 200] < €*Z2/2, and by invoking

Lemma [], we obtain the claim. [ |

D.4.4. Proof of Theorem

Lemma 7. Consider one of the IRS penalty functions 215, 2R FH qnd 2IRS-V-ZERO  As discussed
in Remark[11, we have
Qtz’in(alztfla a?*a w) - Qf’in(alztfly a, w) S #g(a1:t717 af’*v OJ) - Mf(al:tfl, a, UJ), (237)

for some p¥ (ay4—1,a7™,w) and pt(ay.i—1,a,w), where ay’™ abbreviates a;”* (aj4—1,w). Suppose that
there exists a sequence of confidence intervals {(Lt¢(a), Ut(a))},eaien such that (Li(-), Ui(")) is

o(H;_1)-measurable, and

C

IE’y |:<,U/£J(a1:t—17a7w) Ut ‘Ht 1(a1t 1,W ):| S TU7 vaa\v/t (238)
L C

E, (Lt(a) — 1 (alzt_l,a,w) Ht_l(alzt_l,w) < T Va,Vt (239)

for some constants Cyy > 0 and Cp, > 0. Then, for IRS policy m induced by the chosen penalty

function, we have
T
=1

Proof. Let A} = a;”" (AT, 1,w), and let E[] denote E[|F;_1]. By Proposition |7| we have

Bi[U(A7)] = D Uila) -Py[A] = a] = > Li(a) - Pi[A} = a] = E[U;(A])]. (241)
acA acA

Therefore, we have

By |ff (A7) - (A7) (242)
=By [M?(A*) - MtL(Af)] + E¢ [Ur(A7) — Un(AD)] + By [Li(AF) — Le(A7)] (243)
= By |nf (A7) = U(A])] + By |Lo(AT) = pf (A7) + Be [Ui(AT) — Li(A])] (244)
< B [ (1 (A7) UAD) | + B (20D — b aD) |+ B2 D) - Lap). 9)
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We further observe that

Eq | (uf (A7) - Ui(47)) } SR [( ~ Uy(a)) }Pt[At =a < 2L Y P4} =d = .
acA acA
(246)
Similarly, we have E; {(Lt(A?) — uf (A,?))Jr < % Combining all these results, we have
Prop@ T i i
W(T,y)-V(m,Ty) ="E [Z Qi (A7) - Qf’m(A?)] (247)
t=1
<E[S A”)] (248)
Li=1
rT
—E | B W (A7) - ufm:)]] (249)
Li=1
Cv Cp
< v _ s
<E ; < Tt + E¢ [Ur(A7) — Li(Af )])] (250)
T
< Oy +Cp+ Y E[Uy(A]) — Le(A7)].- (251)
t=1
|
We are now ready to prove Theorem [3| To facilitate simpler notation, we define
gr—l(a) 2 nt*I(A;r:t—lv a)> ﬁ'?(av n) :ua NI, (a)+n> (252)

which represent, respectively, the number of pulls on arm a prior to time ¢ under policy m«, and
the posterior predictive mean reward process given the past actions AT, ;. Observe that for each

a € A, the process {iif (a,n)}n>0 is a martingale, as discussed Remark

Further define

L n
AT £ 2
£(a,n) \/1/ + N[ (a) g N i (a) +n’ (253)

which is measurable with respect to F;_1. In the context of Theorem [3, the prior/posterior of arm
a at time t is described by the hyperparameters ({a +> * l(a Ry, v+ Nfl(a)) that converges

to e, and therefore Lemma |5 implies that ] (a,n) is A¢(a, n)-sub—Gaussian conditioned on F;_1.
(1) Suboptimality analysis for TS (60). As discussed in Remark [L1} for TS, we have
(@) = Q7 a) = pgze — pa = fif (a7, 00) — i (@, 00). (254)
We construct the confidence intervals as follows:

Ui(a) = 47 (a,0) + /2logT x AT(a,00), Li(a) = fif(a,0) +/21logT x AT (a, 00), (255)
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L

where AT (a,00) = lim,_o AT (a,n) = so that pg is AT (a,00)-sub-Gaussian condi-

v+N[ (a)
tioned on F;_1. By Lemma [4] we have
AT (a,00) _z2logT L/v
_ + < D\ ) <
E [(na = U@) | Fia] < Zopmee T8 < 0 (236)

where we use the fact that 2log 7" > 1 for any 7' > 2. Symmetrically, we have E {(Lt(a) — ua)+’ ftq} <

VL By Lemma we have

=i
WTS(T,y) =V (#™S,T,y) <2:/L/v + XT:E [Us(AT) — Ly (AT)] (257)
t=1
=2 L/u—|—2\/2logTzT:Af(A?,oo). (258)
t=1

Further observe that

T T Nj’f(a)—l N%(a)—l

o I VI NI VI
S AT(AT,00) =3 [ — = — (+ )
t=1 - cA

SVv+NLAD o & Vrtn v ~ v+tn
(259)
VI Vi@-1 p VI M@ VL \  KVI .
S%(ﬁ—i_ ng % S(IGZ.A(\/;-F/Q:O \/de> —\/;—FQ\E% NT(Q). (26())

By utilizing Cauchy—Schwartz inequality, we deduce that

3" \/Nj@) < K'Y Np(a) = VKT. (261)
acA acA

Combining all these results, we conclude that

WS(T,y) =V (#x"™,T,y) <2VL [\; +2log T (5; + 2@)} . (262)

(2) Suboptimality analysis for Irs.FH (61)). As discussed in Remark for Irs.FH, we have
Q7™(ai™) — Q™ (a) = i (a7 ", T — t) — fif (a, T — t). (263)
We construct the confidence intervals as follows:

Us(a) = 47 (a,0) + /2logT x AT (a, T —t), Li(a) = a7 (a,0) 4+ /21logT x AT (a, T —t). (264)
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Given that 4] (a,T —t) is A} (a,T — t)-sub-Gaussian conditioned on F;_, by Lemma |4, we have

o AT(a, T —t) _210s7  AT(a,00) _2lgT L/v
E [(i7(a,T — t) - Upla))*| Fiy| < BLGL 0 o2t A7) —2gr vy,

=T ST ¢ = fleT . ST
Symmetrically, we have E [(Lt(a) — a7 (a, T — t))+’ ]—"t_l} < Y {;/V.

On the other hand, since N;_1(a) <t in any case, we have

1 " T—t B 1 o (1 v+ N[ (a)
v+ N (a) v+ N (a)+T—t B v+ N[ (a) v+ N (a)+T—t

1 1
T v+ N (a) vH+NT(a)+T—t
1 1

“ v+ N (a) v+T

Consequently,
ET: I T
SV v+N(a) v+T = = v+n v+T
B [ N%g_l 1 1
_aEA v v+T = v+n v+T
3 K N NE@-1
B \/D acA n=1 n T
. N7 (a)—1
() K 7 1 n
N vy ] n 2T
K N /N?(a) 1 z)\
— — — — |dz
- \/; oo T 2T
K i (VE(@)™?
=—+ 2y/NZ(a) — ~L
\/; acA < ’ 2T
() K 1
< —+2VKT — -/T/K
=7 + 3V /K,

(265)

(266)
(267)

(268)

(269)

(270)

(271)

(272)

(273)

(274)

(275)

where we have utilized that (i) the concavity of /-, and (ii) min{> %, nd/ %K n, = T} =

a=1

Y (T/K)*? = JT5/K.



Combining all these results, we conclude that

wisFH(p gy v (7S FH T y) < 2\/E +2v/2log T XT: AT(AT, T —t) (276)
<2VL [ +/2log T ( +2VKT — MT/K)] (277)

(3) Suboptimality analysis for IrRS.V-ZERO . As discussed in Remark for Irs.FH, we

have

Qp(a”) — QF (a):o<m37>g t{ﬂt a;”,n)} — Af (a,0). (278)

We construct the confidence intervals as follows:
Usla) 2 if (a,0) + v2log T x Af(a,T — ), Ly(a) 2 iif(a,0). (279)

By Lemma [6, we have

+ AT(a, T —t) _21os7 L/v
E l(ogglag%( iy (a,n) — Ut(a)) .7-}1] < We 2 < T (280)
where
E[4f(a,0) = L(a)| Fr—1] = 0. (281)
The rest of the proof is almost identical to the case of IRS.FH:
W/IRS.V—ZERO(T7 y) _ V( IRS.V-ZERO T y \/>+ ZE Ut Lt(A?)] ) (282)
L
= \/:Jm/zlogTZA;f(A;f,T—t) (283)
t=1
1 K 1
<VL|— 2logT | —= + 2V KT — —/T/K || .
< VE| 5+ vERRT (5 +2VET - 3/T/K)
(284)
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