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Abstract

An analysis of intraday volumes for the S&P 500 constituent stocks illustrates that (i) volume
surprises, i.e., deviations from forecasted trading volumes, are correlated across stocks, and (ii)
this correlation increases during the last few hours of the trading session. These observations can
be attributed partly to the prevalence of portfolio trading activity that is implicit in the growth of
passive (systematic) investment strategies, and partly to the increased trading intensity of such
strategies towards the end of the trading session. In this paper, we investigate the consequences
of such portfolio liquidity on price impact and portfolio execution. We derive a linear cross-asset
market impact from a stylized model that explicitly captures the fact that a certain fraction
of natural liquidity providers trade only portfolios of stocks whenever they choose to execute.
We find that due to cross-impact and its intraday variation, it is optimal for a risk-neutral
cost-minimizing liquidator to execute a portfolio of orders in a coupled manner, as opposed to
the separable volume-weighted-average-price (VWAP) execution schedule that is often assumed.
The optimal schedule couples the execution on the individual stocks so as to take advantage of
increased portfolio liquidity towards the end of the day. A worst-case analysis shows that the
potential cost reduction from this optimized execution schedule over the separable approach can
be as high as 15% for plausible model parameters. Finally, we discuss how to estimate cross-
sectional price impact if one had a dataset of realized portfolio transaction records by exploiting
the low-rank structure of its coefficient matrix suggested by our analysis.

1. Introduction

Throughout the past decade or so we have experienced a so-called movement of assets under

management in the equities markets from actively managed to passively and systematically managed

strategies. This migration of assets has also been accompanied by the simultaneous growth of

exchange-traded funds (ETFs). In very broad strokes, passive strategies tend to base investment

and trade decisions on systematic portfolio-level procedures – e.g., invest in all S&P 500 constituents
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proportionally to their respective market capitalization weights, invest in low-volatility stocks,

high-beta stocks, high dividend stocks, etc. By contrast, active strategies tend to base investment

decisions on individual firm-level procedures – e.g., invest in a particular stock selectively. In the

sequel, we will refer to passive strategies as “index fund” strategies.

This gradual shift in investment styles has affected the nature of trade order flows, which moti-

vates our subsequent analysis. We make three specific observations. First, passive and systematic

strategies tend to generate portfolio trade order flows, i.e., trades that simultaneously execute or-

ders in multiple securities in a coordinated fashion, e.g., buying a $50 million slice of the S&P

500 over the next two hours that involves the simultaneous execution of buy orders along most or

all of the index constituents. Second, passive strategies tend to concentrate their trading activity

towards the end of the day, partly so as to focus around times with increased market liquidity,

and partly because mutual funds that implement such strategies have to settle buy and sell trade

instructions from their (retail) investors at the closing market price at the end of each day; ETF

products exhibit similar behavior. Third, the shift in asset ownership over time and the changes

in the regulatory environment have changed the composition and strategies under which natural

liquidity1 is provided in the market; these are the counterparties that step in to either sell or buy

stock against institutional investors so as to clear the market.

In §2 we will provide some empirical evidence that pairwise correlations amongst trading volumes

across the S&P 500 constituents are positive throughout the trading day, and increase by about a

factor of two over the last 1–2 hours of the trading day. That is, trading volumes exhibit common

intraday variation away from their deterministic forecast in a way that is consistent with our earlier

observations.

In this paper we study the effect of portfolio liquidity provision in the context of optimal trade

execution. Specifically, we consider a stylized model of natural liquidity provision that incorporates

the behavior of single-stock and portfolio participants, and that leads to a market impact model that

incorporates cross-security impact terms; these arise due to the participation of natural portfolio

liquidity providers. We formulate and solve a multi-period optimization problem to minimize the

expected market impact cost incurred by a risk-neutral investor that seeks to liquidate a portfolio.

We characterize the optimal policy, which is “coupled” – i.e., the liquidation schedules for the various

orders in the portfolio are jointly determined so as to incorporate and exploit the cross-security

impact phenomena. We contrast this optimal schedule with a separable execution schedule, where
1We use the term “natural” liquidity to indicate demand or supply from the investors who make investment

decisions with their own perspective as opposed to the liquidity provided by market makers or arbitrageurs who may
not affect the equilibrium market price.
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the orders in the portfolio are executed independently of each other; this is commonly adopted by

risk-neutral investors. Separable execution is suboptimal, in general, and we derive a bound on the

sub-optimality gap of such a separable execution schedule against the optimal portfolio execution

schedule, which can be interpreted as the execution cost reduction that an investor can achieve by

optimizing around such cross-impact effects.

Contributions. In detail, the main contributions of the paper are the followings.

First, we propose a stylized model of cross-sectional price impact that highlights the effect of

portfolio liquidity provision. Under the assumption that the magnitude of single-stock and portfolio

liquidity provision is linear in the change in short-term trading prices, we show that market impact

is itself linear in the trade quantity vector, and characterize the coefficient matrix that exhibits an

intuitive structure: it is the inverse of a matrix that is decomposed into a diagonal matrix plus a

(non-diagonal) low-rank matrix where the diagonal components capture the effect of single-stock

liquidity providers and the non-diagonal terms capture the effect of portfolio liquidity providers

that are assumed to trade along a set of portfolio weight vectors, such as the market and sector

portfolios. Cross-impact is the result of portfolio liquidity provision.

Second, we show that optimal trade scheduling for risk-neutral minimum cost liquidation is

coupled. We formulate and solve a multi-period optimization problem that selects the quantities to

be traded in each security over time so as to liquidate the target portfolio over the span of a finite

horizon (a day in our case) in a way that minimizes the cumulative expected market impact costs.

The optimal trade schedule is coupled, and, specifically, incorporates and exploits the presence

and intraday variation of cross-impact effects. Coupling is not the result of a risk penalty that

captures the covariance of intraday price returns, as is typically the case (Almgren and Chriss,

2000; Tsoukalas et al., 2017), but the result of correlated liquidity. We identify the special cases

where a separable execution approach would be optimal, namely, when a) there was no portfolio

liquidity provision, or b) the intensity of portfolio liquidity provision varies proportionally to the

intensity of single-stock liquidity provision throughout the trading day.

Third, we compare the optimal policy to a separable volume-weighted-average-price (VWAP)

execution policy, and characterize the worst-case liquidation portfolios and the magnitude of the

benefit that one derives from the optimized solution. A straightforward estimation of the mixture

of single-stock and portfolio liquidity providers that would be consistent with the intraday volume

profile and the intraday profile of pairwise volume correlations can be converted back into a numer-

ical value for the aforementioned bound, which is around 15%. The worst-case analysis provides

some intuition on the settings where this effect may be more pronounced.
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Last, we propose an efficient procedure to estimate the suggested cross-asset impact model, i.e.,

a practical scheme for estimating the (time-varying) coefficient matrix for price impact. A direct

estimation procedure for all cross-impact coefficients between each pair of stocks seems intractable

due to the low signal-to-noise ratio that often characterizes market impact model estimation and the

increased sparsity of trade data when we study pairs of stocks. Exploiting the low-rank structure

of our stylized impact model derived above, we propose a procedure that involves the estimation of

only a few parameters, e.g., one parameter per sector. We do not calibrate the cross-impact model,

as this typically requires access to proprietary trading information, but we do specify a detailed

procedure verified using synthetic data.

Linear cross-impact model. In the derivation of cross-impact model, we make several stylized

assumptions that lead to a linear and transient impact. This is clearly a simplification that allows

us to show through a tractable and insightful analysis the implication of portfolio natural liquidity

provision to impact costs and execution schedules. Specifically, cross-impact terms arise from this

source of liquidity, and optimal schedules are coupled across orders to account for such interaction

effects: in settings where portfolio liquidity provision is attractive in terms of its supply curve’s

price sensitivity parameter, the optimized schedules deviate from separable VWAP-like ones to

“tilt” and take advantage of portfolio liquidity provision. We believe that these insights are robust

to the functional form of the impact model as long as the portfolio liquidity is present. And,

specifically, a linear permanent impact cost contribution can be readily incorporated still within

the tractability of a different quadratic optimization problem, and similarly for linear transient

impact with decay. If the functional form of the impact cost function is non-linear, e.g., square-

root or some other rational power, then while we expect that the key insights should continue

to hold, the optimal execution schedule can only be found numerically and tends to be extreme

(Curato et al., 2014).

Literature survey. One set of papers that is related to our work focuses on optimal trade

scheduling, where the investor considers a dynamic control problem of splitting the liquidation of

a large order over a predetermined time horizon so as to optimize some performance criterion.

Bertsimas and Lo (1998) solve this problem in the context of minimizing the expected market

impact cost, and Almgren and Chriss (2000) extend the analysis to the mean-variance criterion;

see also Almgren (2003) and Huberman and Stanzl (2005). Bertsimas and Lo (1998) show that

the cost-minimizing solution under a linear impact model schedules each order in proportion to the

stock’s forecasted volume profile. In these papers, multiple-security trading is briefly discussed as an

extension of single-stock execution, and a similar setup can be found in recent studies (e.g., Brown
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et al. (2010), Haugh and Wang (2014)). A separate strand of work, which includes Obizhaeva and

Wang (2013), Rosu (2009), and Alfonsi et al. (2010), treat the market as one limit order book

and use an aggregated and stylized model of market impact to capture how the price moves as

a function of trading intensity. Tsoukalas et al. (2017) build on Obizhaeva and Wang (2013) to

consider a portfolio liquidation problem incorporating risk and cross-impact effects and illustrate

that the coupled execution is optimal for a risk-averse trader. Finally, closest to our paper is the

recent work of Mastromatteo et al. (2017) that looks at portfolio execution with a linear cost model

with cross-impact terms; their analysis predicates that the portfolio impact matrix has the same

eigenvectors as the return correlation matrix, and is stationary. The problem structure allows for

their model to be estimable – in a way similar to what we suggest in our paper, and the stationary

model leads to a separable optimal trading schedule, which agrees with our results for that special

case.

Apart from the execution scheduling problem, consistent efforts have been made to understand

the nature of price impact theoretically and empirically. The seminal work of Kyle (1985) justifies

a linear (permanent) price impact within a framework of rational expectations in which the market

price is understood as an outcome of an equilibrium among the traders; our stylized derivation

partly adopts the ideas therein. Huberman and Stanzl (2004) show using a no-arbitrage argument

that the permanent price impact must be a linear function of the quantity traded (in the absence

of temporary impact) and extend the argument to a multi-asset and time-dependent framework.

Similarly, Schneider and Lillo (2019) show that linearity and symmetry are required for a cross-

impact model to exclude arbitrage opportunities in a continuous time and transient impact setting.

Identifying the functional form of price impact and its interaction with the price dynamics has been

a topic of many empirical studies. Almgren et al. (2005) report an estimation result that supports

a linear permanent impact and a sub-linear temporary impact. Tóth et al. (2011, 2018) report that

the price impact at the meta-order level is a concave function of total order size, which is known

as a square-root impact law; see also Capponi and Cont (2019) and Bucci et al. (2019). Building

these empirical findings, a number of impact models have been proposed such as a transient impact

model (Bouchaud et al., 2008; Gatheral et al., 2012), a history dependent permanent impact model

(Bouchaud et al., 2008), and a latent order book model (Donier et al., 2015); however, nonlinear

impact models are less amenable to direct analysis.

The topic of cross-impact has recently started to be explored. Specifically in Benzaquen et al.

(2016), the authors postulate and estimate a linear propagator impact model based on the trade

sign imbalance vector in each period, and observe that the eigenvectors of cross-impact matrix
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coincide with those of return covariance matrix, which had motivated the aforementioned work of

Mastromatteo et al. (2017) and a recent work of Tomas et al. (2020). A similar characterization

can be found in the earlier works of the financial econometrics literature (Hasbrouck and Seppi,

2001; Lo and Wang, 2000, 2009) that adopt common factor models to analyze co-movement in

returns/trading volumes across stocks, and attribute such a commonality to the portfolio order

flows. While we do not estimate the cross-asset impact as this typically requires proprietary trade

data as opposed to publicly available market data, our model motivation and predictions are con-

sistent with these studies. In our paper, we further incorporate the temporal pattern of liquidity

to examine its consequence in portfolio execution scheduling.

An important motivation of our work is the gradual shift of assets under management from active

to passive and systematic strategies, and its implication for market behavior and the composition

and timing of trading flows. In particular, focusing on the topic of liquidity, which is our main

concern, this literature has found a causal relationship between ETF or mutual fund ownership

and the commonality in the liquidity of the underlying constituents, e.g., Ben-David et al. (2017),

Karoli et al. (2012), Koch et al. (2016), Agarwal et al. (2018); the motivation of that cross-sectional

dependency is attributed to the arbitrage mechanism of ETFs or the correlated trading of mutual

funds.2

Commonality in trading volume and portfolio liquidity provision. Throughout the paper,

we connect two concepts – the correlation in trading volume across stocks and the cross-asset (non-

diagonal) terms in market impact. We argue in §2 that the correlation in volume is attributable

to the portfolio order flows, and in §3 that the cross-asset impact is partially attributable to the

liquidity provision at a portfolio level, both of which are interpreted as reflection of the portfolio

investors’ participation. We further motivate in §4 a parametric intraday variation of cross-asset

impact from the observed intraday pattern of volume correlation illustrated in §2. A more explicit

connection is made in §5 based on a Poisson process analogy so as to provide a numerical illustra-

tion. We discuss this issue also in Appendix C, where we suggest and demonstrate an estimation

procedure.

2. Preliminary Empirical Observations

To motivate our downstream analysis, we provide some empirical evidence for the cross-sectional

behavior of intraday trading volume, focusing on the level and intraday variation of the pairwise
2The concentration of trading flows towards the end of the trading day has been a popular topic in the financial

press; see, e.g., Driebusch et al. (2018).
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correlations among trading volumes of the S&P 500 constituent stocks. We analyzed 482 stocks

(N = 482), denoted by i, that were constituents of S&P 500 throughout the calendar year of 2018.3

Our dataset contains 240 days (D = 240), denoted by d, excluding days that are known to exhibit

abnormal trading activity, namely, the FOMC/FED announcement days on 01/31, 03/21, 05/02,

06/13, 08/01, 09/26, 11/08, and 12/19, and the half trading days on 07/03, 11/23, 12/05, and

12/24.

We use a Trade-and-Quote (TAQ) database, and extract all trades, excluding those that: a)

occur before 09:35 or after 16:00; b) opening auction prints or closing auction prints (COND field

contains “O,” “Q,” “M,” or “6”); and c) trades corrected later (CORR field is not 0, or COND

field contains “G” or “Z”). We divide a day into five-minute intervals (T = 77, 09:35–09:40, ...,

15:55–16:00), denoted by t. We denote by DVolidt the aggregate notional ($) volume traded on

stock i across all transactions that took place in time interval t on day d. We define DVolit to

be the yearly average notional volume traded on stock i in time period t, and AvgVolAlloct to be

the cross-sectional average percentage of daily volume traded in period t (“daily volume” in this

definition accounts for all trading activity between 9:35 and 16:00, excluding auction and corrected

prints):

DVolit ,
1
D

D∑
d=1

DVolidt, VolAllocit ,
DVolit∑T
s=1 DVolis

and AvgVolAlloct ,
1
N

N∑
i=1

VolAllocit. (1)

For each pair of stocks (i, j) we denote by Correlijt the pairwise correlation between the respec-

tive intraday notional traded volumes across days for each time period t. As a measure of cross-

sectional dependency, we subsequently calculate the average pairwise correlation over all pairs of

stocks:

Correlijt ,
∑D
d=1(DVolidt −DVolit)(DVoljdt −DVoljt)√∑D

d=1(DVolidt −DVolit)2 ·
∑D
d=1(DVoljdt −DVoljt)2

, (2)

AvgCorrelt ,
1

N(N − 1)
∑
i 6=j

Correlijt. (3)

Figure 1 depicts the graphs of AvgVolAlloct and AvgCorrelt. AvgVolAlloct exhibits the com-

monly observed U-shaped behavior that shows that trading activity is concentrated in the morning

and the end of the day. The graph of AvgCorrelt reveals that (i) trading volumes are positively

correlated throughout the day, and (ii) the cross-sectional average pairwise correlation increases
3See Appendix §A for additional empirical analysis on the years before 2018.

7



09
:3

0

10
:0

0

10
:3

0

11
:0

0

11
:3

0

12
:0

0

12
:3

0

13
:0

0

13
:3

0

14
:0

0

14
:3

0

15
:0

0

15
:3

0

16
:0

0

Time of the day t

0.00

0.02

0.04

0.06

0.08

A
ve

ra
ge

vo
lu

m
e

al
lo

ca
ti

on
A

v
g
V

ol
A

ll
o
c t

09
:3

0

10
:0

0

10
:3

0

11
:0

0

11
:3

0

12
:0

0

12
:3

0

13
:0

0

13
:3

0

14
:0

0

14
:3

0

15
:0

0

15
:3

0

16
:0

0

Time of the day t

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

A
ve

ra
ge

p
ai

rw
is

e
co

rr
el

at
io

n
A

v
gC

o
rr

el
t

Figure 1: Cross-sectional average intraday traded volume profile (left) and cross-sectional average
pairwise correlation (right): S&P 500 constituent stocks in 2018.

significantly during the last few hours of the day.4

One possible explanation of the observed intraday volume correlation profile could be the non-

stationary participation of portfolio order flow throughout the course of the trading session. Mar-

ket participants that trade portfolio order flow cause correlated stochastic volume deviations across

stocks that, in turn, could contribute to the observed pairwise correlation profile. Interpreting port-

folio order flows as the primary source of cross-sectional dependency in trading volume, AvgCorrelt
indirectly reflects the intensity of portfolio order flow within the total market order flow. Our

empirical observation indicates that (i) portfolio order flow contributes a certain fraction of trading

activity throughout the day, which (ii) is increasing towards the end of the day. In particular,

with the increasing popularity of ETFs and passive funds in recent years, people now trade similar

portfolios which may induce stronger cross-sectional dependency; Karoli et al. (2012), Koch et al.

(2016), and Agarwal et al. (2018) provide empirical evidence that the commonality in trading vol-

ume indeed arises from the trading activity in ETFs or passive funds. Similarly, transactions to

buy or sell shares of mutual funds are settled at the closing prices, and mutual fund companies

tend to execute the net inflows or outflows near or at the end of the trading session.

We will return to these findings on AvgVolAlloct and AvgCorrelt in §5 in order to approximate

the relative magnitude of each different type of natural liquidity providers (portfolio vs. single-stock
4Alternative calculations of the intraday volume and correlation patterns produce similar findings. For exam-

ple, one could compute stock-specific average traded volume profiles, and for each day compute the stock-specific
normalized volume deviation profiles between the realized and forecasted volume profiles; these could be used for
the pairwise correlation analysis. Similar findings are obtained when we study stocks clustered by their sector, e.g.,
among financial, energy, manufacturing, etc., stock sub-universes.
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investors), and characterize its effect on the optimal execution schedule and execution costs.

3. Model

We assume that there are two types of investors – single-stock and index-fund investors – that

provide natural liquidity in the market. In this section, we derive the cross-sectional market impact

model from a stylized assumption on the liquidity provision mechanism of these investors. The term

“single stock” here refers to discretionary or active investors that are willing to supply liquidity on

individual securities.

3.1. Single-stock Investors and Index-fund Investors

Single-stock (discretionary) investors are assumed to trade and provide opportunistic liquidity on

individual stocks by adjusting their holdings in response to changes in the price of the stock. A

change in single-stock investor holdings in stock i is assumed to be linear in the change in the

market price with a coefficient ψid,i. Single-stock investors will sell (or buy) ψid,i shares of stock i

when its price pi rises (or drops) by one dollar.

A linear supply relationship between holdings and price is often assumed in the market mi-

crostructure literature (Tauchen and Pitts, 1983; Kyle, 1985). It is typically justified under the

assumption that a risk-averse investor chooses his holdings to maximize his expected utility given

his own belief on the future price. With a constant absolute risk aversion (CARA) utility function

and normally distributed beliefs, the optimal holding position is proportional to the gap between

the current price and his own reservation price, with a proportionality coefficient that incorporates

his confidence in his belief and his preference on uncertainty. Our parameter ψid,i can be thought

as a sum of the individual investors’ sensitivity parameters.

We consider a universe of N stocks, denoted by i = 1, . . . , N . Suppose that the change in the

N -dimensional price vector is ∆p ∈ RN . Let ei be the ith standard basis vector. Single-stock

investors on stock i will experience the price change e>i ∆p and adjust their holding position by

−ψid,i · e>i ∆p. In vector representation, the change in the holding vector of single-stock investors

∆hid ∈ RN can be written as

∆hid (∆p) = −
N∑
i=1

ei · ψid,i · e>i ∆p = −Ψid∆p ∈ RN , (4)

where Ψid , diag (ψid,1, . . . , ψid,N ) ∈ RN×N . The quantity ∆hid (∆p) can be thought as “signed”-

volume; i.e., it is positive when orders to buy are submitted in the market when the prices drop,
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and negative when orders to sell are submitted in the market when prices rise.

In turn, index-fund investors trade “portfolios” based on some view on the entire market, a

sector, or a particular group of securities such as high-beta stocks. This investor type includes

many institutional investors, but the individual investors who hold ETFs or join index funds also

belong to this group. We assume that there are K such funds, denoted by k = 1, . . . ,K. Let

wk = (wk1, . . . , wkN )> ∈ RN be the weight vector of index fund k, expressed in the number of

shares: one unit of index fund k contains wk1 shares of stock 1, wk2 shares of stock 2, and so on.

Given a price change ∆p ∈ RN , investors in index fund k will experience the price change w>k ∆p.

Analogous to single-stock investors, index-fund investors adjust their holding position on index

fund k linearly to its price change w>k ∆p with a coefficient ψf,k. Since trading one unit of index

fund k is equivalent to trading a basket of individual stocks with weight vector wk, we can state

the change in the index-fund investors’ holding position vector ∆hf ∈ RN as a vector of changes in

the constituents of that fund:

∆hf (∆p) = −
K∑
k=1

wk · ψf,k ·w>k ∆p = −WΨfW>∆p ∈ RN , (5)

where

W ,


| |

w1 . . . wK

| |

 ∈ RN×K , Ψf , diag (ψf,1, . . . , ψf,K) ∈ RK×K . (6)

Throughout the paper, we assume that all ψid,i’s and ψf,k’s are strictly positive, and that wk’s are

linearly independent.

To better illustrate, we provide a limit order book interpretation of the model. We first consider

order books for single stocks and those for index funds in “isolation”. A single-stock order book for

stock i consists of the limit orders submitted by the single-stock investors, where the limit orders

are distributed with a constant density ψid,i (i.e., ψid,i shares of stock i per one dollar interval) and

are symmetric on buy and sell sides with a mid-price pi and no bid-ask spread. For each index-

fund k, the index-fund investors place the limit orders in a separate order book with a constant

density ψf,k (i.e., ψf,k shares of index fund k per one dollar interval) and its mid-price is given by

w>k p. Let us now focus on the amount of limit orders available within a certain range of price

in two types of order books in “aggregation”. Within the price deviations ∆p ∈ RN across single

stocks (equivalently, W>∆p ∈ RK across index funds), there will be Ψid∆p shares of single stocks

available in the single-stock order books, and ΨfW>∆p shares of index funds available in the

index-fund order books (that are equivalent to WΨfW>∆p shares of single stocks), and therefore
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(
Ψid + WΨfW>

)
∆p shares of single stocks in total. In that sense, the linear impact model

corresponds to limit order book that has the same thickness across price levels.

3.2. Cross-sectional Price Impact

We wish to execute v ∈ RN shares during a given time period. Depending on whether we want

to buy or sell, each component can be positive or negative. Our orders (eventually) transact

against natural liquidity provided by single-stock and index-fund investors; market makers and

high-frequency traders intermediate the market but tend to maintain negligible inventories at the

end of the day. A price change of ∆p ∈ RN will affect an inventory change of v shares if the

following market-clearing condition is satisfied:

v + ∆hid (∆p) + ∆hf (∆p) = 0. (7)

By equations (4) and (5),

v =
(

N∑
i=1

ei · ψid,i · e>i +
K∑
k=1

wk · ψf,k ·w>k

)
∆p =

(
Ψid + WΨfW>

)
∆p. (8)

In other words, out of v shares, Ψid∆p ∈ RN shares are obtained from single-stock investors and

WΨfW>∆p ∈ RN shares from index-fund investors. This linear relationship between v and ∆p

can be translated into the price impact summarized in the next proposition.

Proposition 1 (Cross-sectional price impact). When a liquidator executes v ∈ RN shares, the market-

clearing price change vector ∆p ∈ RN is such that

∆p = Gv and G ,
(
Ψid + WΨfW>

)−1
. (9)

Note that the coefficient matrix G is an inverse of Ψid + WΨfW>, which is composed of two

symmetric and strictly positive-definite matrices. Therefore, G is itself a well-defined symmetric

positive-definite matrix, with the following structure: a diagonal matrix plus a non-diagonal low-

rank matrix. The following matrix expansion derived from an application of the Woodbury matrix

identity will prove useful:

G =

 Ψid︸︷︷︸
diagonal

+ WΨfW>︸ ︷︷ ︸
rank K


−1

= Ψ−1
id︸ ︷︷ ︸

diagonal

−Ψ−1
id W

(
Ψ−1

f + W>Ψ−1
id W

)−1
W>Ψ−1

id︸ ︷︷ ︸
rank K

. (10)
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Proposition 1 characterizes the structure of the cross-price impact model. The cross-impact is

captured by the non-diagonal entries in WΨfW> that result from the natural liquidity provision

attributed to index-fund (portfolio) investors.

We interpret the terms Ψid = diagNi=1(ψid,i) and Ψf = diagKk=1(ψf,k) as “liquidity”. The com-

ponent ψid,i represents the amount of liquidity provided by single-stock investors in stock i and

ψf,k represents the amount of liquidity supplied by index-fund investors in index fund k. The sum

Ψid +WΨfW> indicates the total market liquidity. As shown in (9), price impact is inversely pro-

portional to liquidity, which agrees with the conventional definition of liquidity as a measure of ease

of trading. When ψid,i or ψf,k is large, equivalently when liquidity is abundant, price impact is low.

Since ψid,i and ψf,k are defined as the sensitivity of investors’ holdings to market price movements,

these terms are a measure of price impact that capture how many shares we can obtain from these

two types of investors when the price moves by a certain amount.

3.3. One-period Transaction Cost

Consider a liquidator that wishes to execute v ∈ RN shares in a short period of time, say over 5 to

15 minutes. Let p0 ∈ RN be the price at the beginning of this execution period. Assuming that v

is traded continuously and at a constant rate over the duration of that time period, the liquidator

will realize an average transaction price given by

p̄tr = p0 + 1
2Gv + ε̄tr, (11)

where ε̄tr ∈ RN represents a random error term that captures unpredictable market price fluctua-

tions or the effect of trades executed in that period by other investors. The equation (11) suggests

that costs accumulate linearly over the duration of the period, and that the average price change

is half the end-to-end impact plus a random contribution due to fluctuations in the price due to

exogenous factors. (We will return to this assumption later on.) We will assume that the error

is independent of our execution v and zero mean, i.e., E
[
ε̄tr|v

]
= 0. The single-period expected

implementation shortfall incurred by the liquidator is given by

C̄ (v) , E
[
v>
(
p̄tr − p0

)]
= 1

2v>Gv. (12)

Linear price impact induces quadratic implementation shortfall costs; note that the resulting cost

is always positive since G is positive-definite. The following proposition briefly explores how the

mixture of natural liquidity providers affects the expected execution cost.
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Proposition 2 (Extreme cases). Consider a parametric scaling of the single-stock and index-fund

natural liquidity, Ψid and Ψf, respectively, given by

G =
(
α ·Ψid + β ·WΨfW>

)−1
, (13)

for some scalars α ∈ (0, 1] and β ∈ (0, 1].

(i) If there are no index-fund investors (α→ 1 and β → 0), the expected execution cost becomes

separable across individual assets:

lim
α→1,β→0

C̄ (v) = 1
2v>Ψ−1

id v = 1
2

N∑
i=1

v2
i

ψid,i
. (14)

(ii) If there are no single-stock investors (α → 0 and β → 1), the liquidator can execute port-

folio orders with finite expected execution cost only when the orders can be expressed as a linear

combination of the index-fund weight vectors. Specifically,

lim
α→0,β→1

C̄ (v) =

 ∞ if v /∈ span (w1, . . . ,wK) ,
1
2u>Ψ−1

f u if v = Wu.
(15)

(The proof is provided in Appendix D.1.) Therefore, separable (security-by-security) market impact

cost models, often assumed in practice, essentially predicate, as per our analysis, that all natural

liquidity in the market is provided by opportunistic single-stock investors. And, in that case, (14)

recovers the commonly used “diagonal” market impact cost model. The other extreme scenario

assumes that all liquidity is provided along the weight vectors of the index-fund investors, and

the resulting cost then depends on how the target execution vector v can be expressed as a linear

combination of (w1, . . . ,wK). In practice, the latter case suggests that execution costs may increase

in periods with a relatively higher intensity of portfolio liquidity provision when the target portfolio

that is being liquidated is not well aligned with the directions in which portfolio liquidity is supplied.

3.4. Time-varying Liquidity and Multi-period Transaction Costs

The stylized observations of Proposition 2 suggest that intraday trading costs may be affected by

intraday variations in the mixture of natural liquidity providers, and, in particular, if the relative

contribution of index-fund investors increases significantly over time.

We will consider the transaction cost of an intraday execution schedule v1, . . . ,vT over T periods,

in which vt ∈ RN shares are executed during the time interval t. We will make the following

13



assumptions on the intraday behavior of price impact, price dynamics, and realized execution

costs.

a) We allow the mixture of liquidity provision to fluctuate over the course of the day. We denote

the time-varying liquidity by ψid,it and ψf,kt with an additional subscript t. We assume that the

portfolio weight vectors wk of index liquidity providers are fixed during a given day. Under this

setting, the coefficient matrix of price impact can be represented as follows:

Gt =
(
Ψid,t + WΨf,tW>

)−1
.

b) Let pt be the fundamental price at the end of period t. The “fundamental” price denotes

the price on which the market agrees as a best guess of the future price excluding the temporary

deviation of the realized transaction price due to market impact. The fundamental price process

(p0,p1, . . . ,pT ) is assumed to be a martingale independent of the execution schedule:

pt = pt−1 + εt, for all t = 1, . . . , T,

where the innovation term εt satisfies E [εt|Ft−1] = 0 and Ft−1 denotes all past information. The

term εt is commonly understood as the change in a market participant’s belief perhaps due to the

information revealed during period t. We are implicitly assuming that our execution conveys no

information about the future price.

c) The realized “transaction” price in each period can deviate from the fundamental price tem-

porarily, e.g., due to a short-term imbalance between buying order flow and selling order flow. In

executing vt shares, the liquidator is contributing to such an imbalance, which causes the tempo-

rary price impact according to the mechanism described above. We assume that this impact is

temporary, and we particularly assume that the transaction price begins at the fundamental price

in each period regardless of the liquidator’s trading activity in prior periods.5 Given the coefficient

matrix Gt, when vt is executed smoothly, the average transaction price is

p̄tr
t = pt−1 + 1

2Gtvt + ε̄tr
t ,

where the error term ε̄tr
t satisfies E

[
ε̄tr
t |vt

]
= 0 as before.

Under these assumptions, the expected transaction cost of executing a series of portfolio trans-
5Even in the presence of permanent impact, if it is linear, symmetric, and time-invariant, it does not affect the

optimal trading schedule. See Appendix A of Almgren and Chriss (2000).
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actions v1, . . . ,vT is separable over time and can be expressed as follows:

C̄ (v1, . . . ,vT ) , E
[
T∑
t=1

v>t
(
p̄tr
t − p0

)]
=

T∑
t=1

1
2v>t Gtvt.

This formulation implicitly assumes that the intraday liquidity captured through ψid,it’s and ψf,kt’s

is deterministic and known in advance. Although intraday liquidity evolves stochastically over the

course of the day, its expected profile exhibits a fairly pronounced shape that serves as a forecast

that can be used as a basis for analysis (as is done in practice). In later sections, we introduce more

detailed parameterizations that utilize the intraday trading volume as an observable proxy for the

intraday variation of the liquidity; see §4.2, §5.1 and Appendix C.

3.5. Discussion on Model

The cross-impact model derived in this paper can be characterized as a special case of the multi-

asset version of Almgren-Chriss model (Almgren and Chriss, 2000, Appendix A), where we represent

the temporary impact with symmetric positive definite matrices whose non-diagonal entries reflect

the effect of portfolio liquidity provision. This would be the simplest form of cross-impact model

that achieves tractability and economic soundness at the same time. One may consider a more gen-

eralized form that possibly involves non-linear, asymmetric, or transient/permanent components:

for example, one could hypothesize a square root-like impact model by appropriately changing the

underlying assumptions for the two types of liquidity providers. However, such a generalized model

may no longer be analytically tractable and even may open the possibility of arbitrage or price

manipulation. Indeed, Schneider and Lillo (2019) show that linearity and symmetry are required

for a cross-impact model to exclude arbitrage opportunities although their setup is slightly different

from ours,6 and a similar conclusion can also be found in Huberman and Stanzl (2004). See also

the discussion in §1 on the robustness of linearity assumption.

4. Optimal Portfolio Execution

We will formulate and solve the multi-period optimal portfolio execution problem in §4.1, and then

explore the properties of the optimal solution as a function of intraday variations of the two sources

of natural liquidity providers in §4.2.
6More specifically, Schneider and Lillo (2019) consider transient impact models in a continuous-time setting and

show that if the impact is non-linear (Lemma 3.5) or asymmetric (Lemma 3.9) then there exists a round-trip trade
schedule that yields a positive profit in expectation.
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4.1. Optimal Trade Schedule

Consider a risk-neutral liquidator interested in executing x0 ∈ RN shares over an execution horizon

T (e.g., a day). We formulate a discrete-time optimization problem to find an optimal schedule

v1, . . . ,vT that minimizes the expected total transaction cost:

minimize C̄ (v1, . . . ,vT ) =
T∑
t=1

1
2v>t Gtvt (16)

subject to
T∑
t=1

vt = x0. (17)

Proposition 3 (“Coupled” execution). The risk-neutral cost minimization problem (16–17) has a

unique optimal solution given by

v∗t = G−1
t

(
T∑
s=1

G−1
s

)−1

x0 =
(
Ψid,t + WΨf,tW>

) (
Ψ̄id + WΨ̄fW>

)−1
x0, (18)

where the total daily liquidity Ψ̄id and Ψ̄f are defined as follows:

Ψ̄id ,
T∑
t=1

Ψid,t, Ψ̄f ,
T∑
t=1

Ψf,t. (19)

We make the following observations. First, the optimal solution is “coupled” across securities.

Specifically, as long as the market impact is cross-sectional, the cost-minimizing solution needs to

consider all orders simultaneously in optimally scheduling how to liquidate the constituent orders, as

opposed to scheduling each order separately and attempting to minimize costs as if market impact

were separable; such a separable execution approach is often used in practice (effectively assuming

that there are no cross-impact effects). The coupled execution recognizes that the blend of natural

liquidity changes intraday, and attempts to change the composition of the residual liquidation

portfolio so as to take advantage of portfolio liquidity that may become available, say towards the

end of the day, for example. We will explore this point further in the remainder of this section.

Second, it is typical to derive coupled optimal portfolio trade schedules for risk-averse investors that

consider the variance of the execution costs in the objective function or as a constraint; in that case,

the covariance structure of the portfolio over its liquidation horizon intuitively leads to a coupled

execution solution (Almgren and Chriss, 2000; Tsoukalas et al., 2017). In our problem formulation,

the coupling of the execution path is driven by the cross-sectional dependency of natural (portfolio)

liquidity provided by index-fund investors which leads to cross-impact, as opposed to the cross-
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sectional dependency of intraday returns. Third, we note that in the above formulation we have

not imposed side constraints that would enforce that the liquidation path is monotone; we will

return to this point later on.

The structure of the optimal schedule in (18) takes an intuitive form: the proportion of the

trade that is liquidated in period t is proportional to the available liquidity in that period, as

captured by the time-dependent numerator matrix Ψid,t + WΨf,tW>, normalized by the total

liquidity made available throughout the day, as captured by the time-independent denominator

matrix Ψ̄id + WΨ̄fW>. An alternative interpretation also given by (18) is that the optimal

schedule splits the order in a way that is inversely proportional to a normalized time-dependent

market impact matrix.

Corollary 1 (No index-fund investors, Ψf,t = 0 for t = 1, . . . , T ). When there are no index-fund

investors: i.e., ψ̄f = 0, a separable VWAP-like trade schedule is optimal:

v∗it = ψid,it∑T
s=1 ψid,is

· xi0, for i = 1, . . . , N. (20)

Proof of Proposition 3. Note that since Gt is symmetric, ∂
∂vt

1
2v>t Gtvt = Gtvt. The Karush-Kuhn-

Tucker (KKT) conditions of the convex minimization problem in (16)–(17) require that there exists

a vector λ ∈ RN such that

λ = ∂

∂vt
1
2v>t Gtvt

∣∣∣∣
vt=v∗t

= Gtv∗t , for all t = 1, . . . , T,

which together with the inventory constraint in (17) implies that

x0 =
T∑
t=1

v∗t =
T∑
t=1

G−1
t λ.

It follows that v∗t = G−1
t λ = G−1

t

(∑T
s=1 G−1

s

)−1
x0. Since all Gt’s are invertible, the optimal

solution exists and is unique. �

In a market where all natural liquidity is provided by single-stock, opportunistic investors, there

are no cross-security impact effects, market impact is separable, and the minimum cost schedule

for a risk-neutral liquidator is also separable across securities – the optimal solution simply needs

to minimize expected impact costs separately for each order in the portfolio. Each individual

order can be scheduled independently of the others, and the resulting schedule is VWAP-like in

that the execution quantity vit is proportional to the available liquidity ψid,it at that moment.
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Indeed, the overall market trading volume profile is treated as the observable proxy for the natural

liquidity profile, the solution spreads each order separately and in a way that is proportional to

the percentage of the market volume that is forecasted for each time period; this is what a typical

VWAP execution algorithm does.

Conversely, if some of the natural liquidity is provided by index-fund investors that wish to trade

portfolios, e.g., liquidate some amount of an energy-tracking portfolio if the energy sector has had

a significant positive return intraday, the separable VWAP schedule would not minimize expected

market impact costs, and would not be optimal for the motivating trade scheduling problem.

4.2. Optimal Trade Schedule under a Parametric Liquidity Profile

To gain some insight into the structure of the optimal policy, we explore a setting where the intensity

of single-stock and index-fund investors’ liquidity provision varies parametrically as follows: single-

stock investors’ liquidity ψid,it varies over time t = 1, 2, . . . , T according to a profile αt, and index-

fund investors’ liquidity ψf,kt varies according to another profile βt, i.e.,

Ψid,t = αt · Ψ̄id, Ψf,t = βt · Ψ̄f, for t = 1, . . . , T, (21)

where
∑T
t=1 αt =

∑T
t=1 βt = 1.

We will assume that all single stocks share the same time-varying profile αt, and likewise all

index funds share the profile βt. The empirical findings of §2 indicate that pairwise correlations of

trading volumes increase towards the end of the day. If a primary source of stochastic fluctuations

in intraday trading volumes is the stochastic arrivals of single stock and portfolio trades, then

one would expect that the profiles αt, βt vary intraday so as to generate the well-known U -shaped

volume profile, and to vary differently from each other so as as to generate the time-varying pairwise

correlation relationship; this is supported by the behavior of market participants towards the end

of the day, as discussed earlier. Indeed, if the two sources of natural liquidity had the same trading

activity profiles, i.e., αt = βt, then the average correlation in intraday trading volume would not

vary intraday. We expect that towards the end of the day, the intensity of index-fund liquidity

provision (βt) increases relatively faster than the intensity of single-stock liquidity provision (αt).

Proposition 4 (Optimal execution under structured variation). Under the parameterization of (21),

the schedule v∗t is optimal for risk-neutral cost minimization (16):

v∗t = αt · x0 + (βt − αt) ·W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id x0, (22)
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or, equivalently,

v∗t = αt · x0 + (βt − αt) ·
K∑
k=1

(ŵ>k x0) ·wk, (23)

where Ŵ , Ψ̄−1
id W

(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
, and ŵk denotes the kth column of Ŵ.

Before offering an interpretation for (23) we state the following corollary.

Corollary 2 (Optimal execution under common variation). If αt = βt for all t = 1, . . . , T , a separable,

VWAP-like strategy is again optimal:

v∗t = αt · x0. (24)

The proof of Proposition 4 is given in Appendix D.2. Corollary 2 states that when the intensity

of natural liquidity provision is the same for single-stock and index-fund investors, i.e., αt = βt,

the optimal schedule v∗t is again aligned with x0 scaled by αt. As αt (= βt) represents the market

activity at time t, the above policy can be interpreted as a VWAP-like execution that spreads each

individual order proportionally to the total volume available at each point in time; this is separable

across orders. As noted earlier, the setting where αt = βt is inconsistent with the empirical findings

on the intraday behavior of pairwise correlations of trading volumes.

In contrast, (23) highlights that when the mixture of natural liquidity varies intraday (through

the difference between αt and βt), the optimal schedule tilts away from the VWAP-like execution

encountered in (24) so as to take advantage of an increase in available index-fund liquidity, e.g.,

offered along the direction of sector portfolios.

5. Illustration of Optimal Execution and Performance Bounds

In this section we provide a brief illustration of the optimized execution path that incorporates the

effect of index-fund (portfolio) liquidity. Risk-neutral investors often adopt a separable execution

style, i.e., trade each asset separately, most often using a volume-weighted average-price (VWAP)

algorithm. As we show in §4, this separable strategy, under some assumptions, can be shown

to minimize expected impact costs per order, but disregards the effect of portfolio liquidity and

cross-impact costs when multiple orders are traded side by side. For a stylized model of natural

liquidity of the form introduced in §4.2 simplified to the case of a single index fund (e.g., the market

portfolio), we establish a worst-case bound on the sub-optimality gap of such a separable execution

schedule against the optimized portfolio execution schedule derived above.
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Specifically, restricting attention to the parameterization introduced in §4.2 in a setting with a

single index fund (K = 1), we have Ψid,t = αt · Ψ̄id and Ψf,t = βt · Ψ̄f with
∑T
t=1 αt =

∑T
t=1 βt = 1.

Proposition 4 states that the optimal execution v∗t is

v∗t = αt · x0 + (βt − αt) ·
(
ŵ>1 x0

)
·w1, for t = 1, . . . , T, (25)

where w1 ∈ RN is the weight vector of the index fund (e.g., the market portfolio), expressed in

number of shares, and ŵ1 ,
(
ψ̄−1

f,1 + w>1 Ψ̄−1
id w1

)−1
Ψ̄−1

id w1. By contrast, the separable execution

vsep
t liquidates each order in the portfolio independently, allocating quantities to be traded in each

period in a way that is proportional to the total traded volume that is forecasted to be executed

in that period:

vsep
it = VolAllocit · x0i, for t = 1, . . . , T, for each i = 1, . . . , N, (26)

where VolAllocit is the percentage of the daily volume in security i that trades in period t, defined

in (1).

§5.1 (and, in more detail, Appendix §D.3) posits a stylized stochastic-process generative model

for single-stock and index-fund (portfolio) investor order flow that results in a simple parametric

structure in the total traded volume profile VolAllocit and the resulting pairwise correlation profile

(among traded volumes) Correlijt. The model’s primitive parameters can be estimated so as to

be consistent with AvgVolAlloct and AvgCorrelt, discussed in §2. §5.2 provides analytic results on

the optimality gap between the separable and the optimal execution schedules, in (26) and (25),

respectively, which for the parameters estimated in §5.1 can be as high as 15%.

5.1. A Useful Parameterization of Intraday Liquidity

We will posit a simple generative model of single-stock and index-fund (portfolio) order flow (driven

by two underlying Poisson processes). This mixture of order flows comprises the total volume for

the day, and also generates a certain correlation structure in the traded volumes per period across

securities. (We will offer a brief overview in this section, and defer to Appendix §D.3 for additional

details on this model.) Let θi denote the fraction of traded volume in a day for stock i that is

generated by the order flow submitted by index-fund investors. Formally,

θi ,
|w̃1i| · q̄f

q̄id,i + |w̃1i| · q̄f
, (27)
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where q̄f is the notional traded by index-fund investors, w̃1i is the weight of security i in this index

fund (notionally weighted), and q̄id,i is the notional traded by single-stock investors in security i.

For simplicity, further assume that θ1 = θ2 = . . . = θN = θ; i.e., all securities have the same

composition of order flow as contributed by single-stock and index-fund investors.

In such a model (as explained in §D.3), the intraday volume and pairwise correlation profiles

are given by

AvgVolAlloct = 1
N

N∑
i=1

E [DVolidt]∑T
s=1 E [DVolids]

= αt · (1− θ) + βt · θ, (28)

AvgCorrelt = 1
N(N − 1)

∑
i 6=j

Correlijt = βt · θ2

αt · (1− θ)2 + βt · θ2 . (29)

We note that the assumption that θi = θ for all securities i leads to the conclusion that all securities

have the same intraday volume profile, and, perhaps more importantly, that the intraday volume

correlation profile Correlijt is the same across all pairs of stocks. The latter is arguably a fairly

strong restriction, and it is only imposed so as to allow for a more tractable closed-form performance

analysis.

Given the empirically observed profiles for AvgVolAlloct and AvgCorrelt, illustrated in Figure

1, we can solve a set of coupled equations defined by (28)–(29), where the respective left hand

sides are given by the empirically estimated values, so as to identify the values of θ, α1, . . . , αT and

β1, . . . , βT . The results are summarized in Figures 2 and 3. We can observe that θ is estimated to

be .24, implying that 24% of total traded volume originates from the index fund. We also observe

that, at the beginning of the day, the trading activity of index-fund investors βt is smaller than

that of single-stock investors αt, but βt far exceeds αt in the last hour of the day, as expected. Such

an intraday variation in the composition of order flow is consistent with the increasing pairwise

correlation in volumes towards the end of the trading day.

Finally, Figure 4 provides a graphical illustration of the optimal execution schedule in (25) with

respect to these estimated parameters. The example depicts an investor that wants to liquidate a

portfolio x0 with two orders, where the weights of the liquidation portfolio deviate significantly from

the weights of the index portfolio w1 (as captured by the angle between x0 and w1). To exploit the

increased end-of-day liquidity along the direction of the index portfolio, w1, the optimal schedule

trades stock 2 more aggressively in the morning session, as shown by v∗t , thus tilting away from

a separable VWAP-like execution that would be aligned with x0. As a consequence, the residual

portfolio executed towards the end of the day is better aligned with the index portfolio (in the
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Figure 2: Intensity of single-stock investors, αt, and index-fund (portfolio) investors, βt, calibrated
to best match empirical profiles of traded volume, AvgVolAlloct, and pairwise volume correlations,
AvgCorrelt (left) and deviation of αt, βt from the market profile, AvgVolAlloct (right). The data of the
year 2018 is used as in §2.
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Figure 3: Decomposition of average volume allocation, AvgVolAlloct, into single-stock investors’ con-
tribution, αt · (1− θ), and index-fund investors’ contribution, βt · θ (left) and their proportions (right).
In this generative model, every security is assumed to have the same intraday profiles.

afternoon, v∗t is closer to the index portfolio w1).

5.2. Implementation Shortfall Comparison: Optimal vs. Separable Execution Sched-
ules

From (26) and (28) we get that the separable schedule vsep
t is given by

vsep
t = (αt · (1− θ) + βt · θ) · x0, (30)
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Figure 4: Illustration of the optimized schedule v∗t , which is shown to tilt away from or toward the
direction of index fund w1 depending on the difference between single-stock and index-fund liquidity,
βt − αt.

and for v∗t and vsep
t , the expected implementation shortfall can be written as follows:

C̄(v∗t ) = 1
2x>0

(
Ψ̄id + WΨ̄fW>

)−1
x0, (31)

C̄(vsep
t ) = 1

2

T∑
t=1

(αt · (1− θ) + βt · θ)2 · x>0
(
αtΨ̄id + βtWΨ̄fW>

)−1
x0. (32)

Note that under the assumption that there is only one index fund, w1, we can simplify the above

expressions and reduce WΨ̄fW> to w1ψ̄f,1w>1 . The expression for C̄(vsep
t ) is obtained by substi-

tuting (30) into (16). We define as a relative performance measure the ratio between the expected

transaction costs incurred by the two execution schedules:

Υ(x0) , C̄(v
sep
t )

C̄(v∗t )
; (33)

this ratio is clearly greater than or equal to 1, and captures the additional cost incurred by the

separable VWAP-like schedule over the optimal (coupled) execution schedule.

Proposition 5 (Exact cost ratio). For any x0 ∈ RN ,

Υ(x0) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+ ∆ ·

 x>0 Ψ̄−1
id x0(

w>1 Ψ̄−1
id x0

)2 ·
1 + η1

ψ̄f,1
− 1


−1

, (34)
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where

γt ,
βt
αt
, η1 , ψ̄f,1w>1 Ψ̄−1

id w1, and ∆ ,
T∑
t=1

αt · (1− θ · (1− γt))2 (1− γt)
1 + η1 · γt

. (35)

(The proof is given in Appendix D.4.1.) The parameter η1 is the ratio between index-fund liquidity

(1/ψ̄f,1) and single-stock liquidity along the index-fund weights (w>1 Ψ̄−1
id w1). Equivalently, it is

the ratio between the price change of trading along the index-fund direction w1 against only the

fraction of single-stock investors in the market,7 and the price change of trading along w1 against

only the fraction of index-fund investors in the market,8 which is 1/ψ̄f,1.

The last expression in the performance metric is a product two terms: the first is associated

with the intraday variation of liquidity and trading volume (∆), and the second is associated with

the degree of alignment between the execution portfolio x0 and the index fund weights w1.

Worst case liquidation portfolios. First, we explore the structure of the portfolios that would

exhibit the largest optimality gap under a separable execution.

Remark 1 (Maximum/minimum cost ratio). Let Υmarket and Υorth be the cost ratio when x0 = w1

and x0 = w⊥1 , respectively, where w⊥1 is an arbitrary portfolio such that w>1 Ψ̄−1
id w⊥1 = 0 with

w>1 6= 0:

Υmarket , Υ(x0 = w1) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+ η1 ·∆, (36)

Υorth , Υ(x0 = w⊥1 ) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
. (37)

Then, the largest and smallest cost ratios are obtained at either x0 = w1 or x0 = w⊥1 depending on

the sign of ∆:

max
x0∈RN

{Υ(x0)} =

 Υmarket if ∆ ≥ 0

Υorth if ∆ ≤ 0
, min

x0∈RN
{Υ(x0)} =

 Υorth if ∆ ≥ 0

Υmarket if ∆ ≤ 0
. (38)

7If we trade w1 against single-stock investors we cause a change in prices given by ∆p = Ψ̄−1
id w1, which implies

a change in the price of the market portfolio equal to w>1 Ψ̄−1
id w1.

8To gain some intuition of the magnitude of that parameter, imagine wanting to buy a $100 million slice of the
S&P 500, where in one case it is acquired from distinct liquidity providers, each trading only one of the constituent
orders, while in the other case it is acquired from the same (portfolio) liquidity provider. The mere difference in the
aggregate volatility held by the distinct liquidity providers in the first scenario versus the unique market portfolio
liquidity provider in the second scenario would suggest a potentially significant difference in trading costs, and
therefore a high (� 1) value for η1.
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In particular, for fixed (η1, α1, . . . , αT , β1, . . . , βT ), there exists θ∗ ∈ [0, 1] such that

∆ ≥ 0 if θ ≤ θ∗ and ∆ ≤ 0 if θ ≥ θ∗. (39)

Similarly, for fixed (θ, α1, . . . , αT , β1, . . . , βT ), there exists η∗1 ∈ [ θ
1−θ ,∞] such that

∆ ≤ 0 if η1 ≤ η∗1 and ∆ ≥ 0 if η1 ≥ η∗1. (40)

This remark identifies which portfolios give rise to the largest and smallest cost ratios, respec-

tively. It is straightforward that the cost ratio has extreme values at x0 = w1 and x0 = w⊥1 , i.e.,

when x0 is most and least aligned with the market portfolio w1. From (30) and (23) we get that

in these two extreme cases the separable and optimal schedules are given by

vsep
t = (αt · (1− θ) + βt · θ) · x0, and v∗t =


(
αt ·

(
1− η1

1+η1

)
+ βt · η1

1+η1

)
· x0 if x0 = w1,

αt · x0 if x0 = w⊥1 .

When x0 = w1, the sensitivity of the optimized execution schedule to the intensity of index-fund

liquidity provision, βt, is η1
1+η1

, whereas the sensitivity of the separable execution is θ. If θ > η1
1+η1

,

the separable execution schedule will trade above the optimal level in the morning, and trade below

the optimal level towards the end of the day; the opposite happens if θ < η1
1+η1

. We can expect

that the suboptimality of separable execution roughly scales with
(
θ − η1

1+η1

)2
. A similar argument

suggests that when x0 = w⊥1 , the suboptimality of separable execution roughly scales with (θ − 0)2.

Comparing
(
θ − η1

1+η1

)2
and θ2 as proxies for Υmarket and Υorth, respectively, the findings of Remark

1 follow.

Performance implications when trading the market portfolio. Next we characterize Υmarket

as a function of the parameter η1.

Remark 2 (Characterization of Υmarket). For fixed (θ, α1, . . . , αT , β1, . . . , βT ), as a function of η1,

Υmarket(η1) decreases if η1 ≤
θ

1− θ , and Υmarket(η1) increases if η1 ≥
θ

1− θ . (41)
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For particular values of η1,

Υmarket(η1 = 0) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
, (42)

Υmarket

(
η1 = θ

1− θ

)
= 1, (43)

lim
η1→∞

Υmarket(η1) = 1 + (1− θ)2 ·
(

T∑
t=1

α2
t

βt
− 1

)
. (44)

This implies that Υmarket first decreases and then increases as η1 varies. This can be similarly

understood as Remark 1: separable execution correctly reacts to the liquidity provided by index-

fund investors only when η1 = θ
1−θ , and overreacts or underreacts when η1 deviates from θ

1−θ .
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Figure 5: Possible range of cost ratio Υ with respect to η1 given the values of θ, α1, . . . , αT , β1, . . . , βT

obtained in §5.1. Compared to the separable execution, the coupled execution can save up to 14.0 %
when trading the market portfolio.

Our estimate of the fraction of index-fund liquidity, θ = .24, suggests a threshold value of

θ/(1 − θ) ≈ .31. Even though the value of η1 is unidentifiable in our context, one would expect

the value of η1 to be moderately large (see Footnote 8), and that the realized benefits from using

optimal vs. separable execution schedule to approach the upper bound in (44). That upper bound is

equal to 14.0% for the parameters θ, α1, . . . , αT , β1, . . . , βT estimated in §5.1, and Figure 5 graphs

Υmarket and Υorth as functions of η1. That is, under the assumptions of our stylized generative

model of order flow, one can reduce execution costs by as much as 14.0% by optimally coupling

the execution schedules of the various orders that are being liquidated so as to exploit the effects

of cross-impact induced due to portfolio liquidity provision.

Liquidating single orders. Finally, we apply our results to the special case where the target
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portfolio to be liquidated is an order on a single security.

Remark 3 (Individual orders). When trading a single stock, the cost ratio is given by

Υ(x0 = ei) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+ η1,i

1 + η1 − η1,i
·∆, (45)

where η1,i ,
w2

1i·ψ̄f,1
ψ̄id,i

. We can further identify the stock that induces the largest cost ratio:

argmax
i=1,...,N

{Υ(x0 = ei)} =


argmaxi=1,...,N

{
w2

1i
ψ̄id,i

}
if ∆ ≥ 0

argmini=1,...,N

{
w2

1i
ψ̄id,i

}
if ∆ ≤ 0

. (46)

Here we are comparing the performance implications of liquidating a single order using a sep-

arable execution schedule vs. the optimal execution schedule that may add positions early in the

day, so as to unwind the residual portfolio later in the day in a way that benefits from the liquidity

provided by index-fund investors. The fraction w2
1i/ψ̄id,i determines which security is most costly

to trade, and depends both on the market weight of the security in the index-fund portfolio, and

the liquidity provided by its own single-stock investors. Assuming that, for our estimated value

for θ, η1 is sufficiently large (∆ ≥ 0), equation (46) suggests that the optimized execution schedule

may be most beneficial when trading in securities with large market weights.

6. Extensions

Estimation of cross-asset market impact. Estimating a cross-security impact model that

explicitly measures the impact coefficient between any pair of securities i, j is hard due to the high

dimensionality of the unknown coefficient matrix (an N ×N matrix), and because the underlying

data tends to be very noisy. We propose an efficient procedure to estimate an impact model by

exploiting the low-rank structure of the cost model postulated in §3, which would take as input a

large set of proprietary portfolio transactions.

The derivation in §3 predicts a linear relationship between the portfolio transactions ṽdt ∈ RN

(measured in dollar amount) and the realized implementation shortfalls r̃tr
dt ∈ RN (measured in

return) of the form

r̄tr
dt = 1

2
(
Ψ̃id,dt + W̃dΨ̃f,dtW̃>

d

)−1
ṽdt + ε̄tr

dt, (47)

where a diagonal matrix Ψ̃id,dt ∈ RN×N describes the liquidity provided by single-stock investors,

a diagonal matrix Ψ̃f,dt ∈ RK×K describes the liquidity provided by index-fund investors, and the
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noise term ε̄tr
dt ∈ RN describes the random fluctuation of price. As analogous to a common practice

to estimate the price impact for individual stocks,9 we further parameterize the diagonal entries of

the liquidity matrices as follows:

ψ̃id,idt = γid ×
D̂Volid,idt
σ̂id,idt

, ψ̃f,kdt = γf,k ×
D̂Volf,kdt
σ̂f,kdt

, (48)

where D̂Volid,idt and σ̂id,idt (resp., D̂Volf,kdt and σ̂f,kdt) are some forecasted trading volume and

volatility of the stock i (resp., the index fund k) generated by the single-stock investors (resp., the

index-fund investors), and γid and γf,k’s are unknown parameters that describe time-invariant char-

acteristics of liquidity providers. As a result, we can substantially reduce the number of unknowns

to estimate: assuming that such forecasts are available, it suffices to estimate K + 1 parameters.

In Appendix C, we motivate the above parameterization in detail, propose an effective regression

scheme including the case where the forecasts are not available, and also verify the procedure based

on a carefully synthesized dataset.

Trading constraints. Trade execution algorithms used to liquidate portfolios may impose addi-

tional constraints, starting with side constraints that force the liquidation schedule to only trade

in the securities that are included in the target liquidation portfolio, and to only trade in the di-

rection of the parent orders themselves – i.e., only sell stock in securities that were submitted as

“sell” orders, and vice versa for “buy” orders.

§4–§5 do not impose these side trading constraints, and the derived optimal schedules may

violate these restrictions, e.g., by choosing to trade in securities that are not included in the target

liquidation portfolio, x0, so that the residual liquidation portfolio can take advantage of (cheaper)

natural portfolio liquidity towards the end of the day.10 Similarly, the optimal schedule may choose

to increase the size of an existing order (as opposed to start liquidating it) early in the day, if that

would be beneficial when liquidating the residual portfolio towards the end of the day.

The constrained portfolio liquidation problem is similar in nature to the one studied in the

previous section, and the (numerically) optimized schedule will continue to incorporate and exploit

the effects of cross-impact and natural portfolio liquidity provision. One exception is when a single

parent order is liquidated, in which case these cross-impact and portfolio liquidity factors are not
9The parameterization (48) is consistent with most of the literature in estimating market-impact models; e.g.,

assuming that there are only single stock natural liquidity providers, one would recover a commonly encountered cost
model of the form γ−1

id × σ̂idt(ṽidt/D̂Volidt); see Almgren et al. (2005).
10In a market where all liquidity is provided by single-stock investors, the optimal schedule would never choose to

trade outside the universe of securities that are in the liquidation portfolio or to trade against the direction of the
respective parent orders.
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relevant to such a constrained formulation.11

Mean-variance optimization. This paper primarily focuses on the risk-neutral liquidation prob-

lem for which we characterize the optimal schedule that minimizes the expected execution cost.

One possible extension would be to incorporate the variance of execution cost into the objective,

as done in Almgren and Chriss (2000, Appendix A), so as to formulate a risk-averse liquidation

problem into a mean-variance optimization, and the optimal schedule can be readily found via a

quadratic programming (with N×T decision variables). We anticipate that it will be an interesting

research topic to characterize the optimal schedule that exploits the cross-sectional properties in

liquidity provision and random fluctuation of the prices.
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A. Additional Empirical Analysis

We provide the empirical analysis illustrated in §2 for the longer timespan from 2007 to 2018. The

same procedure was conducted for each year and for the stocks that had been the constituents of

S&P 500 throughout that year. Figure 6 shows the intraday pattern of correlation in liquidity for

each year with various ways of visualization. First of all, we observe consistently across all years

that the correlation increases over the course of the day. While the overall level of correlation

fluctuates over years12 (bottom left figure), we observe that the end-of-day increase had become

significant (bottom right figure), which can be attributable to the increasing popularity of index-

fund investing.

Figure 7 shows that the intraday pattern exists among both large-cap stocks and small-cap

stocks, and we can observe that the large-cap stocks are more correlated than the small-cap stocks.

Recall that in §5.2 we have argued that the benefit from incorporate cross-asset impact into

execution scheduling depends not only on the relative magnitude of index-fund liquidity provision

versus single-stock liquidity provision (that is captured by the proportion of index-fund liquidity

θ), but also on the intraday variation of their composition (that is captured by changes in the

ratio αt
βt

). Table 1 shows that the maximum cost savings according to the analysis of §5 have been

increasing in recent years: although the overall proportion of index-fund liquidity was relatively

higher during the financial crisis period ‘07–‘11, the composition of liquidity was stable throughout

the day in this period, and as a result a separable VWAP execution would work fine compared to

the optimized coupled execution.

Year ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18

Prop. of fund liquidity (%) 26.5 29.7 24.3 26.7 27.4 20.3 19.1 21.7 20.9 22.9 17.9 23.5
Maximum cost saving (%) 8.3 3.1 7.8 7.2 6.7 11.2 16.4 8.7 12.0 6.4 7.9 14.0

Table 1: The illustrative statistics introduced in §5: the proportion of index-fund liquidity, θ, and the
maximum cost saving, Υmax − 1, estimated on years 2007–2018.

B. Change of Units

In §3 and §4, the price impact was the equilibrium expected price change ∆p, expressed in dollars,

required for the market to clear when executing a vector v, expressed in number of shares for each

security in the executed portfolio. We can restate the market impact in terms of the return r ∈ RN

12We observe that the correlation is relatively higher during the period 2007–2011 that coincides with the time of
financial crisis. This will be consistent with a common belief that high volatility of markets is directly linked with
strong correlations between stocks (Junior and Franca, 2011).
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Figure 6: Intraday variations of average pairwise correlation in liquidity for years 2007–2011 (top left)
and for years 2012–2018 (top right), and their alternative visualization with ones averaged for each part
of day (bottom left) and ones further normalized by the average correlation level over the entire day
(bottom right).

as a function of the vector of notional execution quantities ṽ ∈ RN . We let p denote the (arrival)

equilibrium price vector p ∈ RN , snapped at the beginning of the execution period, and define the

diagonal matrix P , diag(p) ∈ RN×N . Then,

r , P−1∆p and ṽ , Pv. (49)

We redefine the liquidity variable ψid,i, ψf,k and weight vectors wk accordingly:

ψ̃id,i , p
2
i · ψid,i, ψ̃f,k , (w>k p)2 · ψf,k and w̃k ,

Pwk

p>wk
. (50)
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Figure 7: The average pairwise correlation for large-cap stocks (top-100 stocks in S&P 500, left) and
for small-cap stocks (bottom-100 stocks in S&P 500, right).

The redefined liquidity variable ψid,i now has the following interpretation: single-stock investors

will sell (or buy) 1% · ψ̃id,it dollar amount of stock i, when its price rises (or drops) by one percent.

The rescaled weight vector w̃k represents the normalized dollar-weighted portfolio. Putting it all

together, we get

r = P−1Gv = P−1
(
Ψid + WΨfW>

)−1
P−1 ·Pv

=
(
PΨidP + PWΨfW>P

)−1
ṽ =

(
Ψ̃id + W̃Ψ̃fW̃>

)−1
ṽ.

The resulting expected implementation shortfall cost is unchanged:

C̄(v) , 1
2v>∆p = 1

2 ṽ>r = 1
2 ṽ>

(
Ψ̃id + W̃Ψ̃fW̃>

)−1
ṽ.

C. Estimation of Cross-asset Market Impact

In this section, we provide a detailed description of the estimation procedure sketched in §6, and

verify the procedure based on a carefully synthesized dataset.

C.1. Estimation Scheme

Required data. We assume that we have access to realized portfolio executions, their realized

shortfalls, and reference information about the prevailing weight vectors of popular index funds

(such as the market and sector portfolios). More specifically, we assume that the given data
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contains the following information. First, the portfolio transactions ṽdt ∈ RN that is a portfolio

vector executed during time interval t on day d, expressed in (signed) notional dollar amounts.

Second, the realized implementation shortfalls (return) r̄tr
dt ∈ RN incurred in the execution of

portfolio ṽdt relative to the arrival price vector at the beginning of time interval t on day d.13

Third, some reference information that are publicly available: (i) the realized end-to-end returns

rdt ∈ RN during time interval t, (ii) the intraday trading volume DVolidt that is the total market

volume of stock i during time interval t on day d, expressed in (unsigned) notional dollar amounts,

and (iii) the daily allocation of index funds W̃d = [w̃1d, . . . , w̃Kd] ∈ RN×K where w̃kd is the dollar-

weighted vector of index fund k on day d, normalized (i.e., 1>w̃kd = 1, for all d and k). Optionally,

a proxy for the amount of index-fund order flows, i.e., a quantity that reflects the trade volume

generated by index-fund investors. Depending on the availability of such a proxy, we may adopt

different parameterizations of the cross-impact model, (M1) or (M2), which will be introduced

below.

Cross-asset impact model. The derivation in §3 predicts the following relationship between the

executed quantity ṽdt and the realized shortfall14 r̄tr
dt: analogous to (11), we derive

r̄tr
dt = 1

2G̃dtṽdt + ε̄tr
dt, G̃dt =

(
Ψ̃id,dt + W̃dΨ̃f,dtW̃>

d

)−1
, (51)

where the rescaled liquidity matrices are given by Ψ̃id,dt = diagNi=1(ψ̃id,idt) ∈ RN×N and Ψ̃f,dt =

diagKk=1(ψ̃f,kdt) ∈ RK×K , and the noise term ε̄tr
dt ∈ RN describes the random fluctuation of price.

Next we introduce a further parameterization of Ψ̃id,dt and Ψ̃f,dt, in which we reduce the number

of free parameters for the idiosyncratic components (as is typically done), and further simplify how

we capture the non-stationary behavior of the various terms so as to be able to rely on market

observable quantities as proxies.

A parameterization with “idiosyncratic” and “factor” trading volume. As discussed in

§3, the liquidity variable ψ̃id,idt (resp., ψ̃f,kdt) represents the notional amount of stock i (resp., index

fund k) that will be supplied by single-stock investors (resp., index-fund investors) in response to

a movement in the price of the stock (resp., index). We interpret that the variable ψ̃ captures (i)

the number of investors, or participation intensity, present in each period, and (ii) the sensitivity of
13We require the return dataset r̄tr

dt to have no missing entries. For an entry (i, d, t) such that no execution was
made at all (i.e., ṽidt = 0), we recommend to set r̄tr

idt to be the return measured with the market volume-weighted-
average-price relative to the arrival price at the beginning of interval, or simply a half of the end-to-end market return
1
2ridt.14In this section, we are using the realized shortfall (return) r̄tr

dt instead of the absolute price change ∆pdt, and
notional traded vectors ṽdt instead of number of shares vdt. Similarly, we use dollar-weighted vectors w̃k instead
of share-weighted vectors wk. With the rescaled liquidity parameters Ψ̃id and Ψ̃f, the structure of the price-impact
model remains the same. See Appendix B.
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these investors to price movements. The first factor roughly scales in proportion to trading volume,

while the second factor varies in a way that depends on the volatility of the underlying security

or index, and, specifically, it is plausible to imagine that it scales in a way that it is inversely

proportional to the volatility itself, i.e., ψ̃ ∝ DVol
σ . Based on this interpretation, we consider the

parameterizations of ψ̃id,idt and ψ̃f,kdt with the following reduced form:

ψ̃id,idt = γid ×
D̂Volid,idt
σ̂id,idt

, ψ̃f,kdt = γf,k ×
D̂Volf,kdt
σ̂f,kdt

, (M1)

where (i) D̂Volid,idt and σ̂id,idt denote (forecasted) “idiosyncratic” trading volume and volatility of

stock i that describe the trading activity of single-stock investors, (ii) D̂Volf,kdt and σ̂f,kdt denote

(forecasted) “factor” trading volume and volatility of index fund k that describe the trading activity

of index-fund investors, and (iii) γid ∈ R and γf , (γf,1, . . . , γf,K)> ∈ RK are unknown time-

invariant leading coefficients. We have selected a simple parameterization where all single-stock

terms ψ̃id,idt share the same coefficient γid that is believed to reflect some invariant characteristic

of all single-stock investors.

We do not further formulate “idiosyncratic” and “factor” trading volumes in this paper: they

will be latent variables, i.e., they are not immediately quantifiable from the market data, since the

actual trading volume that we observe from the market is the mixture of these two components.

Someone can estimate the intraday pattern of the proportion of factor trading volume explicitly as

suggested in §5.1, or can use some additional market information such as trading volume grouped

by investor type if available. Given such proxies, K + 1 unknown parameters (γid and γf) can be

estimated via a procedure described later.

A parameterization with observables. As an alternative of the parameterization (M1), we

propose a more specific parameterization that relies on directly observable quantities:

ψ̃id,idt = νid,t ×
MADVolidt

σ̄idt
, ψ̃f,kdt = νf,kt ×

∑
i∈Sk MADVolidt

σ̄f,kdt
. (M2)

The coefficients νid,t and νf,t are the unknowns here, and the others variables are the moving-average

measures defined as

MADVolidt ,
1
τ

τ−1∑
s=0

DVoli,d−s,t, σ̄idt ,

√√√√1
τ

τ−1∑
s=0

r2
i,d−s,t, σ̄f,kdt ,

√√√√1
τ

τ−1∑
s=0

(
w̃>k,d−srd−s,t

)2
, (52)

where τ is the length of sliding window and Sk is the set of stocks that belong to the index fund

k. One can adopt different averaging scheme as long as it provides reasonable forecasts for trading
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volume and volatility.

Compared to the previous parameterization (M1), the leading coefficients in (M2), νid,t and

νf,t, have the subscript t (as opposed to γid and γf) so as to reflect the intraday variation in

composition of the two types of liquidity provision (i.e., ψ̃id,idt vs. ψ̃f,kdt) correctly. Such a varia-

tion is not well captured in the moving-averaged measures introduced above (i.e., MADVolidt vs.∑
i∈Sk MADVolidt), since the observable trading volume DVolidt is a simple reflection of sum of two

types of liquidity.15 By allowing the unknown coefficients dependent on the time of the day, we let

the estimation procedure to find the right values of νid,t and νf,t that fairly describe the expected

intraday profile of liquidity composition.

There are T×(K+1) values to estimate, too many considering the noise level in the dataset. We

further reduce the number of unknowns by imposing a simple intraday variation pattern: we divide

a day into three segments and assume that the coefficients are constant within each segment.

More specifically, let Tbeg, Tend, and Tmid be the first one hour (09:30–10:30), the last one hour

(15:00–16:00), and the remaining trading session (10:30–15:00), respectively, and assume that

νid,t =


νbeg

id if t ∈ Tbeg

νmid
id if t ∈ Tmid

νend
id if t ∈ Tend

, νf,kt =


νbeg

f,k if t ∈ Tbeg

νmid
f,k if t ∈ Tmid

νend
f,k if t ∈ Tend

. (M2-seg)

With this segmentation, we have 3 × (K + 1) unknowns in total, and the intraday variation in

liquidity composition can be represented with the change in their relative magnitude across the

segments, i.e., νbeg
id vs. νbeg

f , νmid
id vs. νmid

f , and νend
id vs. νend

f .

Estimation procedure. We illustrate a simple procedure that estimates the unknown coefficients

in the parameterization (M2) for intraday segment Tend. The same procedure can apply for the

other intraday segments as well as the parameterization (M1).

We aim to find the values of νend
id ∈ R and νend

f ∈ RK such that their corresponding cross-impact

model fits the actual price changes realized during the time periods t ∈ Tend. Let us denote the

cross-impact matrix parameterized with νid and νf by G̃dt(νid,νf): More specifically,

G̃dt(νid,νf) ,
(

diagNi=1

(
νid ·

MADVolidt
σ̄idt

)
+ W̃ddiagKk=1

(
νf,k ·

∑
i∈Sk MADVolidt

σ̄f,kdt

)
W̃>

d

)−1

.

15Suppose that the intensity of liquidity provision by index-fund investors stays constant over time, i.e., ψ̃f,kdt
does not vary over the course of the day but does ψ̃id,idt only. The market-wide volume

∑
i∈Sk

MADVolidt will still
fluctuate according to the variation of single-stock investors’ liquidity provision, and therefore, the time-variation of∑

i∈Sk
MADVolidt does not correctly reflect the time-variation of index-fund investors’ liquidity provision.
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We first introduce the empirical loss Lend
id with respect to the realized single-stock shortfalls r̄tr

dt: as

we expect that r̄tr
dt ≈

1
2G̃dt(νid,νf)ṽdt,

Lend
id (νid,νf) ,

1
N

D∑
d=1

∑
t∈Tend

(
r̄tr
dt −

1
2G̃dt(νid,νf)ṽdt

)>
Σ̄−1
dt

(
r̄tr
dt −

1
2G̃dt(νid,νf)ṽdt

)
,

where Σ̄dt , diagNi=1(σ̄2
idt) is the empirical diagonal covariance matrix. Analogously, the empirical

loss Lend
f with respect to the realized index-fund shortfalls W̃>

d r̄tr
dt can be defined as follows:

Lend
f (νid,νf) ,

1
K

D∑
d=1

∑
t∈Tend

(
W̃>

d r̄tr
dt −

1
2W̃>

d G̃dt(νid,νf)ṽdt
)>

Σ̄−1
f,dt

(
W̃>

d r̄tr
dt −

1
2W̃>

d G̃dt(νid,νf)ṽdt
)
,

where Σ̄f,dt , diagKk=1(σ̄2
kdt) is the empirical diagonal covariance matrix of index-fund returns.

Observe that minimizing Lend
id or Lend

f is identical to performing a least squares estimation with

the heteroscedastic residual terms. In particular when the index-fund investors’ contribution is

absent (i.e., when we are restricted to have νf = 0), minimizing Lend
id is equivalent to the esti-

mation procedure proposed in Almgren et al. (2005). Similarly, when the single-stock investors’

contribution is absent (i.e., when we are restricted to have νid = 0) and the index funds are or-

thogonal, minimizing Lend
f is equivalent to fitting a separable linear model under which each index

fund is treated in isolation. In other words, the loss Lend
id focuses more on the diagonal entries of

cross-impact matrix G̃dt and the loss Lf rather focuses on the non-diagonal entries of G̃dt.

Based on those loss measures, we suggest a four-step procedure that yields the estimates ν̂end
id

and ν̂end
f :

1. (Initial guess) Find a single scalar value ν̂ via an ordinary least-squares regression based on

the following linear model:

r̄tr
idt = 1

2 × ν
−1 × σ̄idt

MADVolidt
× ṽidt + eidt,

where eidt’s are i.i.d. Initialize the estimates with ν̂: i.e., ν̂end
id ← ν̂ and ν̂end

f,k ← ν̂ for all

k = 1, . . . ,K.

2. (Estimation of diagonal entries) Fix ν̂end
f and find ν̂end

id that best explains the realized single-

stock shortfalls by minimizing loss Lend
id :

ν̂end
id ← argmin

νid∈R+

Lend
id (νid, ν̂

end
f ).
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3. (Estimation of non-diagonal entries) Fix ν̂end
id and find ν̂end

f that best explains the realized

index-fund shortfalls by minimizing loss Lend
f :

ν̂end
f ← argmin

νf∈RK+
Lend

f (ν̂end
id ,νf).

4. (Fine tuning) Finally adjust the estimates by minimizing two loss measures simultaneously:

(ν̂end
id , ν̂end

f )← argmin
(νid,νf)∈R+×RK+

{
Lend

id (νid,νf) + Lend
f (νid,νf)

}

Step 1 replicates the procedure to estimate a separable (idiosyncratic) impact model that is

commonly adopted in the literature, and the estimate ν̂ found in step 1 is utilized as a baseline

value for ν̂end
id and ν̂end

f in the next steps. In steps 2 and 3, it performs further estimation of ν̂end
id

and ν̂end
f by minimizing the losses Lend

id and Lend
f individually, and in step 4 it performs a fine

tuning by minimizing Lend
id + Lend

f together. In the implementation, we suggest to use a simple

gradient descent method in each step: the loss minimizer needs not to be the global optimum since

the results from the previous steps will provide reasonable initial solutions to the next steps.

This four-step procedure aims to estimate the coefficients νend
id and νend

f in a robust and efficient

way. By sequentially improving the estimates starting from the parameter value estimated from

a simple separable impact model, it prevents the final outcomes from taking extreme values and

accelerates the optimization procedure. One may performs step 4 only, but we anticipate that

the outcome will be very sensitive to initialization values because the objective is non-convex and

possibly multimodal. The matrix G̃dt(νid,νf) can be computed efficiently in practice by using the

Woodbury matrix identity.

Comparison with Schneider and Lillo (2019). Schneider and Lillo (2019) perform a direct

non-parametric estimation of cross-impact among Italian and European bonds (N = 33) using

high-frequency market data in an effort to validate their theoretical findings on no-arbitrage con-

ditions. Compared to their estimation procedure, our estimation heavily relies on the model: we

postulate a parsimonious parametric representation of cross-impact and exploit its structure to al-

leviate the difficulty of direct estimation. Since our model is based on a stylized characterization of

index-fund investors participating the stock markets, our suggested estimation scheme may not be

appropriate to estimate cross-impact among fixed-income securities that may share a different kind

of commonality following from risk and term structure. On the other hand, their non-parametric

approach may not be appropriate to handle non-stationary cross-impact as opposed to our para-
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metric approach that uses trading volume as a proxy for time-varying liquidity. Although it would

be an interesting research topic to adopt direct estimation methods and compare the results, we

believe that it would be beyond the scope of this paper.

C.2. Illustration with Synthetic Data

We illustrate and verify the suggested estimation procedure by using a (partly) synthetic dataset.

We construct test portfolios, one for each day d and period t. We will then simulate the execution

of these portfolios by adding some market impact on top of the actual market return in (d, t). We

pick randomly a set of market impact coefficients for the model in (M1), and simulate execution

costs for the test portfolios by adding the expected impact cost contribution to the realized market

return. We then forget the impact cost coefficients and the detailed specification of (M1), and

given the set of test portfolios and realized execution costs we estimate an impact model given the

(observable) parameterization (M2). Even though we use slightly different market impact models

for the dataset generation and for the parameter estimation, we will illustrate that it can still

predict the transaction costs well enough in spite of the model misspecification.

Original dataset. We consider three sectors (K = 3; energy, finance, and technology sectors) and

S&P 500 stocks that belong to these sectors (N = 153) throughout the year 2018. As in §2, we

consider five-minute intervals (T = 78) per each day, and exclude half-trading days and the days

on which FED announcements were made. In the calculation of moving-averaged measures (52),

we use the time window of τ = 60 days, and therefore the estimation is performed after excluding

the first 60 days (D = 240− 60 = 180).

Ground truth market impact model. We assume that the ground truth model is given by the

parameterization (M1) where the idiosyncratic volume forecast D̂Volid,idt and the factor volume

forecast D̂Volf,kdt are assumed to have the following form:

D̂Volf,kdt = θkt ×
∑
i∈Sk

MADVolidt, D̂Volid,idt = MADVolidt − wkdi × D̂Volf,kdt. (53)

The variable θkt represents the proportion of the factor trading volume out of total market trading

volume across all stocks in sector k on the intraday time interval t.16 This formulation follows

from the assumption that individual stock’s trading volume is decomposed into an idiosyncratic

component and a factor component, i.e., MADVolidt = D̂Volid,idt + wkdi × D̂Volf,kdt, where the

sector-wide contribution of factor volume, D̂Volf,kdt∑
i∈Sk

MADVolidt
, is assumed to be constant across days.

16Compared to the parameterization introduced in §5, the variable θkt would correspond to the proportion of
index-fund order flows, βt·θ

αt·(1−θ)+βt·θ , which is plotted in Figure 3.
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Reflecting the empirical observations in §2, we make up the values of θkt’s as plotted in Figure 8.
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Figure 8: Hypothetical intraday profiles of the proportion of factor trading volume, (θkt)T
t=1, that are

plugged in (53) for synthetic dataset generation. For example, the second profile curve implies that the
index-fund investors in finance sector (k = 2) account for 15% of the total sector-wide traded volume
at the beginning of the day, and 35% of it at the end of the day.

The values of unknown coefficients γ’s are chosen as γid = 0.04 and γf = (0.30, 0.10, 0.20)>. To

gain some intuition of the magnitude of these parameters, when γ = 0.04 and σ = 0.1% ≈ 1%√
78

(five-minute volatility), the given parameterization predicts that the expected cost of executing a

trade with 2% participation rate will be 1
2 ·

σ
γ · 2% ≈ 2.5 basis points.

Given the hypothetical values of θ’s and γ’s, we assume that the true coefficient matrix of market

impact is given by

G̃true
dt =

(
diagNi=1

(
γid ·

D̂Volid,idt
σ̄idt

)
+ W̃ddiagKk=1

(
γf,k ·

D̂Volf,kdt
σ̄f,kdt

)
W̃>

d

)−1

. (54)

In what follows, we show that our proposed estimation procedure finds some approximation of

G̃true
dt with a different parameterization rather than directly estimating the values of θ’s and γ’s.

Hypothetical portfolio transactions. We imagine a situation that investing decisions are made

on a daily basis and the associated portfolio transactions are being executed over the course of the

day. More specifically, the hypothetical portfolio transactions ṽdt’s are generated according to the

following procedure: on each day d = 1, . . . , D, independently,

1. we randomly select the single stocks and the sectors to trade: A single stock is selected with

probability 5%, and a sector is selected with probability 25%.

2. For each selected single stock (or a selected sector), the trading direction (i.e., buy or sell) is

determined randomly, and the participation rate is drawn from the log-normal distribution
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with mean 1.5% and standard deviation 0.5% for single stocks, and with mean 0.5% and

standard deviation 0.1% for sectors.

3. Given the trading direction and the participation rate, we imagine a VWAP trading schedule

over the course of the day: The notional amount of transactions at time t on a selected asset

(a stock i or a sector k) is given by

qid,idt = (trading direction)id × (participation rate)id ×MADVolidt,

qf,kdt = (trading direction)kd × (participation rate)kd ×
∑
i∈Sk

MADVolidt.

Accordingly, the portfolio transactions on day d are simply given by

ṽdt = qid,dt + W̃dqf,dt, ∀t = 1, . . . , T,

where qid,dt , (qid,1dt, . . . , qid,Ndt)> ∈ RN and qf,dt , (qf,1dt, . . . , qf,Kdt)> ∈ RK .

This procedure is selected intentionally to match up to calibrating the model on a set of full day

VWAP-like executions.

Hypothetical dataset. Given the ground truth impact model G̃true
dt and the simulated portfolio

transactions ṽdt, we make perturbation on the original dataset: The realized implementation short-

falls r̄tr
dt, the realized end-to-end returns rdt and the market trading volume DVolidt are overwritten

as

r̄tr
dt ← r̄tr

dt + 1
2G̃true

dt ṽdt, rdt ← rdt + G̃true
dt ṽdt, DVolidt ← DVolidt + |ṽidt|, (55)

and we obtain a hypothetical dataset in which the effects of the transactions ṽdt are reflected. In

this hypothetical dataset, 59% of our trades are due to index-fund investing, and we pay 2.4 basis

points for the transaction cost in total.

Estimation result. We perform the estimation based on the parameterization (M2) with the seg-

mentation scheme (M2-seg). We estimate 3×(K+1) unknown coefficients (ν̂beg
id , ν̂beg

f ), (ν̂mid
id , ν̂mid

f ),

and (ν̂end
id , ν̂end

f ) by applying the four-step procedure described in §C.1 for each of intraday segments

Tbeg, Tmid, and Tend separately.

Since the estimation model is different from the model used for data generation, there are no

true parameter values that exactly correspond to the estimated parameters. Instead, we introduce
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the “effective” true coefficients for (M2) that are expressed in terms of θ and γ used in (M1):

ν̄id,t , γid ×
(

1− 1
K

K∑
k=1

θkt

)
, ν̄f,kt , γf,k × θkt.

Figure 9 (left) shows the comparison between the estimated coefficients (ν̂id,t, ν̂f,t)Tt=1 and their

effective true values (ν̄id,t, ν̄f,t)Tt=1. We observe that the estimated model approximates the intraday

variation of the ground truth market impact with piecewise constant profiles.
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Figure 9: Estimated coefficients ν̂ vs. effective true coefficients ν̄ (left). The estimation results ap-
proximate the intraday variation of the cross-impact matrix. The estimated five-minute implementation
shortfall ŷcross

dt and ŷdiag
dt vs. the true expected five-minute implementation shortfall ŷtrue

dt (right, the
data points are randomly selected for visualization).

We further investigate the performance of estimated model relative to the idiosyncratic (diago-

nal) market impact model17 that may be adopted by someone who ignores the cross-asset impact.

More specifically, we compute the realized five-minute implementation shortfall yreal
dt (expressed in

percentage) incurred by the hypothetical portfolio transaction ṽdt and the model predictions:

yreal
dt ,

r̄>dtṽdt
‖ṽdt‖1

, ŷtrue
dt ,

1
2 ṽ>dtG̃true

dt ṽdt
‖ṽdt‖1

, ŷcross
dt ,

1
2 ṽ>dtG̃dt(ν̂id,t, ν̂f,t)ṽdt

‖ṽdt‖1
, ŷdiag

dt ,
1
2 ṽ>dtG̃dt(ν̂diag

t ,0)ṽdt
‖ṽdt‖1

,

where ŷtrue
dt , ŷcross

dt , and ŷdiag
dt are the expected costs predicted with, respectively, the ground truth

model, the cross-asset (non-diagonal) model estimated above, and the idiosyncratic (diagonal)

model. We also compute associated R2 values as a performance measure of each model: with
17The idiosyncratic impact model can be seen as a special case of our estimation model where index-fund investors

do not exist (i.e., G̃dt(νdiag
t ,0)). For the estimation of the diagonal model, we find the best coefficient ν̂diag

t that
minimizes the loss Lid for each intraday segment (only steps 1 & 2 are performed).
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ȳ , 1
DT

∑
d

∑
t y

real
dt ,

R2
true , 1−

∑
d

∑
t(yreal

dt − ŷtrue
dt )2∑

d

∑
t(yreal

dt − ȳ)2 , R2
cross , 1−

∑
d

∑
t(yreal

dt − ŷcross
dt )2∑

d

∑
t(yreal

dt − ȳ)2 , R2
diag , 1−

∑
d

∑
t(yreal

dt − ŷ
diag
dt )2∑

d

∑
t(yreal

dt − ȳ)2 .

From Figure 9 (right), we can visually verify that, in this simulated setup, the estimated model

improves the accuracy of prediction compared to the prevalent idiosyncratic (diagonal) impact

model. Table 2 shows R2 values of each model for each intraday segment: while the overall R2

values are small (even for the ground truth model) due to the high noise level in return realizations,

the estimated model works better than the idiosyncratic model.

Intraday segment R2
true R2

cross R2
diag

Beginning of the day (09:30–10:30) 0.1123 0.1184 0.1043
Middle of the day (10:30–15:00) 0.0718 0.0673 0.0611

End of the day (15:00–16:00) 0.0729 0.0683 0.0639

All day (09:30–16:00) 0.1019 0.1023 0.0927

Table 2: R2 values of the ground truth model, our suggested model, and a separable diagonal impact
model on a synthetic dataset.

We expect that the estimation may not work well in some situations. For example, if the realized

transactions account for a negligible fraction of the total market volume, their market impact will be

insignificant and hardly distinguishable from the noise, and this may result in inaccurate estimates.

If the realized transactions are mainly driven by the single-stock level investments, their aggregate

impact on the index-fund prices will be relatively smaller than their impact on the individual

stock prices, and hence the estimates related to index-fund liquidity (i.e., ν̂f,kt) will involve larger

estimation errors than the ones related to single-stock liquidity (i.e., ν̂id,t). A similar issue may

arise when the market liquidity provision is mainly driven by the index-fund investors since the

impact on the index fund prices will be relatively small. We observe relatively large estimation

errors for the last intraday segment in our numerical demonstration (Figure 9), and this would be

partly attributable to the above concern because near the end of the day a larger proportion of

liquidity is provided along the index funds.
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D. Proofs

D.1. Proof of Proposition 2

We first focus on the case where v = Wu in (15). When α = β = 1, by Woodbury’s identity we

get

G =
(
Ψid + WΨfW>

)−1
= Ψ−1

id −Ψ−1
id W

(
Ψ−1

f + W>Ψ−1
id W

)−1
W>Ψ−1

id .

Consequently,

W>GW = W>Ψ−1
id W−W>Ψ−1

id W
(
Ψ−1

f + W>Ψ−1
id W

)−1
W>Ψ−1

id W

=
((

W>Ψ−1
id W

)−1
+ Ψf

)−1
.

Next, we incorporate the effect of α and β as follows:

W>GW =
(
α ·
(
W>Ψ−1

id W
)−1

+ β ·Ψf

)−1
−→ Ψ−1

f as α→ 0 and β → 1.

Therefore, for any u ∈ RK ,

lim
α→0,β→1

C̄ (v = Wu) = lim
α→0,β→1

1
2u>W>GWu = 1

2u>Ψ−1
f u.

Next we consider the case where v /∈ span(w1, · · · ,wK). Let v = Wu+e for some e ∈ RN such

that W>e = 0 and e 6= 0. By the Woodbury matrix identity, we get

G = α−1 ·Ψ−1
id − α

−1 ·Ψ−1
id W

(
α

β
Ψ−1

f + W>Ψ−1
id W

)−1
W>Ψ−1

id .

Therefore,

lim
α→0,β→1

{α ·G} = Ψ−1
id −Ψ−1

id W
(
W>Ψ−1

id W
)−1

W>Ψ−1
id .

With r , Ψ−1/2
id e and A , Ψ−1/2

id W,

e>
(

Ψ−1
id −Ψ−1

id W
(
W>Ψ−1

id W
)−1

W>Ψ−1
id

)
e = r>r− r>A

(
A>A

)−1
A>r.

Note that A
(
A>A

)−1
A>r is a projection of r onto the space spanned by A (denoted by span(A)).

Therefore,

lim
α→0,β→1

{
α · e>Ge

}
= 0 if and only if r ∈ span(A).
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If r ∈ span(A), i.e., r = As for some s ∈ RK , then e = Ψ1/2
id r = Ψ1/2

id Ψ−1/2
id Ws = Ws, and hence

v ∈ span(W). Since we are assuming v /∈ span(W), we have r /∈ span(A), and hence

lim
α→0,β→1

{
α · e>Ge

}
> 0.

Furthermore,

GW = α−1 ·Ψ−1
id W− α−1 ·Ψ−1

id W
(
α

β
Ψ−1

f + W>Ψ−1
id W

)−1
W>Ψ−1

id W

= α−1 ·Ψ−1
id W

(
IK −

[
α

β

(
W>Ψ−1

id W
)−1

Ψ−1
f + IK

]−1
)

︸ ︷︷ ︸
−→O as α→0

.

Therefore,

lim
α→0,β→1

{
α · e>GWu

}
= 0.

To summarize, since limα→0,β→1
{
uW>GWu

}
= u>Ψ−1

f u, it follows that

lim
α→0,β→1

{
α · (Wu + e)>G (Wu + e)

}
= lim

α→0,β→1

{
α · uW>GWu

}
+ lim
α→0,β→1

{
α · 2e>GWu

}
+ lim
α→0,β→1

{
α · e>Ge

}
= 0 + 0 + lim

α→0,β→1

{
α · e>Ge

}
> 0. (56)

It then follows that limα→0,β→1
{

(Wu + e)>G (Wu + e)
}

=∞. �

D.2. Proof of Proposition 4

Note that

WΨ̄fW>Ψ̄−1
id −WΨ̄fW>Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id

= WΨ̄f ·
(
Ψ̄−1

f + W>Ψ̄−1
id W

)
·
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id

−WΨ̄f ·W>Ψ̄−1
id W ·

(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id

= WΨ̄f ·
(
Ψ̄−1

f + W>Ψ̄−1
id W−W>Ψ̄−1

id W
)
·
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id

= W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id .
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Again, using the Woodbury matrix identity, we get

G−1
t

(
T∑
s=1

G−1
s

)−1

=
(
αtΨ̄id + βtWΨ̄fW>

) (
Ψ̄id + WΨ̄fW>

)−1

=
(
αtΨ̄id + βtWΨ̄fW>

)(
Ψ̄−1

id − Ψ̄−1
id W

(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id

)
= αtIN − αtW

(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id

+βtWΨ̄fW>Ψ̄−1
id − βtWΨ̄fW>Ψ̄−1

id W
(
Ψ̄−1

id + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id

= αtIN + (βt − αt)W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id︸ ︷︷ ︸
,Ŵ>

.

�

D.3. Simple Generative Order Flow Model used in §5

We first establish an explicit relationship between intraday variation of natural liquidity and intra-

day variation of the resulting traded volume, by introducing a stochastic-process generative model

for trading volume. The underlying motivation is simple yet intuitive: single-stock and index-fund

investors create (stochastic) order flows onto the securities they wish to trade. The arrival intensity

of these order flows per type of investor in each time period is proportional to the corresponding

trading activity or liquidity provided by this investor type in this time period. This is captured by

the profiles αt and βt, respectively.

Specifically, we assume that the notional trade volume of stock i in time interval t on day d,

DVolidt, is composed of order flows made by single-stock investors Qid,idt and a |w̃1i| proportion of

order flows made by index-fund investors Qf,dt. We let |w̃1i| be dollar-weighted ownership of stock

i in the index fund so that trading one dollar amount of an index fund accumulates |w̃1i| dollar

amount of notional trade volume onto stock i. Each order flow can naturally be decomposed into

small transactions:

DVolidt = Qid,idt + |w̃1i| ·Qf,dt =
Nid,idt∑
j=1

qid,idt(j) + |w̃1i| ·
Nf,dt∑
j=1

qf,dt(j), (57)

where Nid,idt and qid,idt(j) represent the number of transactions and the absolute size of the jth

transaction made by single-stock investors in time interval t on day d. For the transactions made

by index-fund investors, Nf,dt and qf,dt(j) are defined analogously. We treat Nid,idt, Nf,dt, qid,idt(j)

and qf,dt(j) as random variables that follow particular distribution assumptions.
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The order arrival processes for the two investor types are assumed to be Poisson with time-

varying rates that are proportional to αt and βt:

Nid,idt ∼ Poisson(αt · Λ) and Nf,dt ∼ Poisson(βt · Λ). (58)

We further assume that the individual order quantities qid,idt(j)’s (and qf,dt(j)’s) are all independent

and identically distributed with the following moment conditions:

E [qid,idt(j)] = q̄id,i, Var [qid,idt(j)] = c2
v · q̄2

id,i, E [qf,dt(j)] = q̄f, Var [qid,idt(j)] = c2
v · q̄2

f , (59)

where cv represents a coefficient of variation.

Under the above assumptions, the single-stock investors’ order flow Qid,idt is a compound Poisson

process with the following mean and variance:

E [Qid,idt] = E [Nid,idt] · E [qid,idt(j)] = αt · Λ · q̄id,i, (60)

Var [Qid,idt] = E [Var (Qid,idt|Nid,idt)] + Var [E (Qid,idt|Nid,idt)] (61)

= E
[
Nid,idt · c2

v · q̄2
id,i

]
+ Var [Nid,idt · q̄id,i] (62)

= αt · Λ · (c2
v + 1) · q̄2

id,i. (63)

The mean and variance of Qf,dt can be expressed in a similar manner. Summing these flows for

each security we get that

E [DVolidt] = αt · Λ · q̄id,i + βt · Λ · |w̃1i| · q̄f, (64)

Var [DVolidt] = αt · Λ · (1 + c2
v) · q̄2

id,i + βt · Λ · |w̃1i|2 · (1 + c2
v) · q̄2

f , (65)

Cov [DVolidt,DVoljdt] = βt · Λ · |w̃1i| · |w̃1j | · (1 + c2
v) · q̄2

f . (66)

The common order flow Qf,dt made by index-fund investors results in a positive correlation between

stocks represented in the index.

Define θi to be the proportion of daily traded volume generated by index-fund investors out of

the total daily traded volume of stock i:

θi ,

∑T
t=1 E [|w̃1i| ·Qf,dt]∑T
t=1 E [DVolidt]

= |w̃1i| · q̄f
q̄id,i + |w̃1i| · q̄f

. (67)

The intraday traded volume profile VolAllocit and the pairwise correlation Correlijt, defined in (1)
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and (2), can be simply expressed with θi and θj :

VolAllocit ≡
E [DVolidt]∑T
s=1 E [DVolids]

= αt · (1− θi) + βt · θi, (68)

Correlijt ≡
Cov [DVolidt,DVoljdt]√

Var [DVolidt] ·
√

Var [DVoljdt]
(69)

= βt · θi · θj√
αt · (1− θi)2 + βt · θ2

i ·
√
αt · (1− θj)2 + βt · θ2

j

. (70)

If we further assume that the proportions θi are the same across all securities,

θ ≡ θ1 = θ2 = · · · = θN , (71)

then VolAllocit is the same for all stocks i and Correlijt is identical across all pairs of stocks, i, j,

as given in (28)–(29).

D.4. Proofs for §5.2

D.4.1. Proof of Proposition 5

Note that

Υ(x0) =
∑T
t=1(αt · (1− θ) + βt · θ)2 · x>0

(
αtΨ̄id + βtWΨ̄fW>

)−1
x0

x>0
(
Ψ̄id + WΨ̄fW>

)−1
x0

=
T∑
t=1

αt · (1 + θ · (γt − 1))2 ·
x>0
(
Ψ̄id + γtWΨ̄fW>

)−1
x0

x>0
(
Ψ̄id + WΨ̄fW>

)−1
x0

.
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By Woodbury’s matrix identity,

x>0
(
Ψ̄id + γtWΨ̄fW>)−1 x0

x>0
(
Ψ̄id + WΨ̄fW>

)−1 x0

=
x>0 Ψ̄−1

id x0 − x>0 Ψ̄−1
id W

(
γ−1

t Ψ̄−1
f + W>Ψ̄−1

id W
)−1 W>Ψ̄−1

id x0

x>0 Ψ̄−1
id x0 − x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

= 1 +

(
x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

)
−
(
x>0 Ψ̄−1

id W
(
γ−1

t Ψ̄−1
f + W>Ψ̄−1

id W
)−1 W>Ψ̄−1

id x0

)
x>0 Ψ̄−1

id x0 − x>0 Ψ̄−1
id W

(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

= 1 +
x>0 Ψ̄−1

id W
((

Ψ̄−1
f + W>Ψ̄−1

id W
)−1 −

(
γ−1

t Ψ̄−1
f + W>Ψ̄−1

id W
)−1)W>Ψ̄−1

id x0

x>0 Ψ̄−1
id x0 − x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 W>Ψ̄−1
id x0

= 1 +
x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 ·
(
γ−1

t − 1
)
Ψ̄−1

f ·
(
γ−1

t Ψ̄−1
f + W>Ψ̄−1

id W
)−1 W>Ψ̄−1

id x0

x>0
(
Ψ̄id + WΨ̄fW>

)−1 x0

= 1 + (1− γt) ·
x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1 (IK + γtW>Ψ̄−1
id WΨ̄f

)−1 W>Ψ̄−1
id x0

x>0
(
Ψ̄id + WΨ̄fW>

)−1 x0
.

When K = 1, we get

(
IK + γtW>Ψ̄−1

id WΨ̄f
)−1

=
(
1 + γtw>1 Ψ̄−1

id w1ψ̄f,1
)−1

= 1
1 + γt · η1

.

Consequently,

x>0
(
Ψ̄id + γtWΨ̄fW>

)−1
x0

x>0
(
Ψ̄id + WΨ̄fW>

)−1
x0

= 1 + 1− γt
1 + η1 · γt

·
x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id x0

x>0 Ψ̄−1
id x0 − x>0 Ψ̄−1

id W
(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id x0

= 1 + 1− γt
1 + η1 · γt

·

 x>0 Ψ̄−1
id x0

x>0 Ψ̄−1
id W

(
Ψ̄−1

f + W>Ψ̄−1
id W

)−1
W>Ψ̄−1

id x0

− 1


−1

= 1 + 1− γt
1 + η1 · γt

·

 x>0 Ψ̄−1
id x0

x>0 Ψ̄−1
id w1 ·

ψ̄f,1
1+ψ̄f,1w>1 Ψ̄−1

id w1
·w>1 Ψ̄−1

id x0
− 1


−1

= 1 + 1− γt
1 + η1 · γt

·

 x>0 Ψ̄−1
id x0(

w>1 Ψ̄−1
id x0

)2 ·
1 + η1

ψ̄f,1
− 1


−1

.
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To simplify notation, define

f(x) ,

 x>0 Ψ̄−1
id x0(

w>1 Ψ̄−1
id x0

)2 ·
1 + η1

ψ̄f,1
− 1


−1

.

Then,

Υ(x0) =
T∑
t=1

αt · (1 + θ · (γt − 1))2 ·
(

1 + 1− γt
1 + η1 · γt

· f(x0)
)
.

Note that

T∑
t=1

αt · (1 + θ · (γt − 1))2 =
T∑
t=1

αt · (1 + 2θ · (γt − 1) + θ2 · (γ2
t − 2γt + 1))

=
T∑
t=1

αt + 2θ · (βt − αt) + θ2 ·
(
β2
t

αt
− 2βt + αt

)

= 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
.

As a result,

Υ(x0) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+
(

T∑
t=1

αt · (1− θ · (1− γt))2 (1− γt)
1 + η1 · γt

)
︸ ︷︷ ︸

,∆

×f(x0).

�

D.5. Proof of Remarks 1 – 3

Maximum/minimum cost ratio. Note that f(x0) is a decreasing function of x>0 Ψ̄−1
id x0

(w>1 Ψ̄−1
id x0)2 , and

min
x0∈RN

x>0 Ψ̄−1
id x0(

w>1 Ψ̄−1
id x0

)2 =

 max
x0∈RN

(
w>1 Ψ̄−1

id x0
)2

x>0 Ψ̄−1
id x0


−1

=

max
y∈RN

(
w>1 Ψ̄−1/2

id y
)2

y>y


−1

=
(
w>1 Ψ̄−1

id w1
)−1

= ψ̄f,1
η1

.

The above value is obtained at x0 = w1. Therefore,

max
x0∈RN

f(x0) = f(x0 = w1) =
(
ψ̄f,1
η1
· 1 + η1

ψ̄f,1
− 1

)−1

= η1.
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On the other hand, since minx0∈RN
(w>1 Ψ̄−1

id x0)2

x>0 Ψ̄−1
id x0

= 0 at x0 = w⊥1 , it follows that

min
x0∈RN

f(x0) = f(x0 = w⊥1 ) = 0.

Combining these two results, we have that

max
x0∈RN

Υ(x0) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+ max

x0∈RN
{∆ · f(x0)} = max{Υmarket,Υorth}

min
x0∈RN

Υ(x0) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+ min

x0∈RN
{∆ · f(x0)} = min{Υmarket,Υorth},

and, trivially, Υmarket ≥ Υorth if and only if ∆ ≥ 0.

Sign of ∆ with respect to θ. Note that ∆(θ) is a quadratic function of θ. It suffices to show

that ∆(θ = 0) ≥ 0 and ∆(θ = 1) ≤ 0. Note that for an arbitrary function h(·),

 if h(·) is non-decreasing, h(γ) · (1− γ) ≤ h(1) · (1− γ), ∀γ

if h(·) is non-increasing, h(γ) · (1− γ) ≥ h(1) · (1− γ), ∀γ
. (72)

In the case of θ = 0, by setting h(γt) , 1
1+η1·γt which is a non-increasing function, we get

∆(θ = 0) =
T∑
t=1

αt · (1− γt)
1 + η1 · γt

(72)
≥

T∑
t=1

αt · (1− γt)
1 + η1

= (1 + η1)−1
T∑
t=1

(αt − βt) = 0.

In the case of θ = 1, by setting h(γt) , γ2
t

1+η1·γt , which is a non-decreasing function, we get

∆(θ = 1) =
T∑
t=1

αt · γ2
t (1− γt)

1 + η1 · γt

(72)
≤

T∑
t=1

αt · (1− γt)
1 + η1

= 0.

Change of Υmarket with respect to η1. Note that

∂Υmarket
∂η1

= ∂

∂η1
(η1 ·∆(η1))

= ∂

∂η1

(
T∑
t=1

αt · (1− θ · (1− γt))2 (1− γt)
η−1

1 + γt

)

=
T∑
t=1

αt · (1− θ · (1− γt))2 (1− γt)
η2

1 · (η
−1
1 + γt)2

= θ2

η2
1
·
T∑
t=1

αt ·
(

1 + θ−1 − 1− η−1
1

η−1
1 + γt

)2

(1− γt).
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Set h(γt) ,
(

1 + θ−1−1−η−1
1

η−1
1 +γt

)2
. If η1 ≤ θ

1−θ , then θ−1 − 1 − η−1
1 ≤ 0, and hence h(·) is non-

decreasing. Therefore,

∂Υmarket
∂η1

= θ2

η2
1
·
T∑
t=1

αt ·
(

1 + θ−1 − 1− η−1
1

η−1
1 + γt

)2

(1− γt)

(72)
≤ θ2

η2
1
·
T∑
t=1

αt ·
(

1 + θ−1 − 1− η−1
1

η−1
1 + 1

)2

(1− γt)

= θ2

η2
1
·
(

1 + θ−1 − 1− η−1
1

η−1
1 + 1

)2

·
T∑
t=1

αt(1− γt)

= θ2

η2
1
·
(

1 + θ−1 − 1− η−1
1

η−1
1 + 1

)2

·
T∑
t=1

(αt − βt)

= 0.

If η1 ≥ θ
1−θ , then h(·) is non-increasing, and hence the sign of the inequality reverses. Therefore,

∂Υmarket
∂η1

≤ 0 if η1 ≤
θ

1− θ , and ∂Υmarket
∂η1

≥ 0 if η1 ≥
θ

1− θ .

�

When η1 = 0,

Υmarket(η1 = 0) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
.

Note that Υmarket(η1 = 0) = Υorth. Since Υmarket(η1) is decreasing in [0, θ
1−θ ], this completes proof

of (40). When η1 = θ
1−θ , since (1−θ+θ·γt)2

1+η1·γt = (1− θ) · (1− θ + θ · γt), it follows that

Υmarket(η1 = θ

1− θ ) = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+ θ

1− θ · (1− θ) ·
T∑
t=1

αt · (1− θ · (1− γt)) (1− γt)

= 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
− θ2 ·

(
T∑
t=1

β2
t

αt
− 1

)
= 1.
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As η1 →∞,

lim
η1→∞

Υmarket = 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+ lim
η1→∞

(η1 ·∆(η1))

= 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+

T∑
t=1

αt · (1− θ · (1− γt))2 (1− γt)
γt

= 1 + θ2 ·
(

T∑
t=1

β2
t

αt
− 1

)
+ (1− θ)2 ·

(
T∑
t=1

α2
t

βt

)
− 1 + 2θ − θ2 ·

(
T∑
t=1

β2
t

αt

)

= 1 + (1− θ)2 ·
(

T∑
t=1

α2
t

βt
− 1

)
.

�

Cost ratio of single-stock trading. Note that

f(ei) =

 e>i Ψ̄−1
id ei(

w>1 Ψ̄−1
id ei

)2 ·
1 + η1

ψ̄f,1
− 1


−1

=

 ψ̄−1
id,i(

w1i · ψ̄−1
id,i

)2 ·
1 + η1

ψ̄f,1
− 1


−1

=
(

1 + η1
η1,i

− 1
)−1

= η1,i
1 + η1 − η1,i

.

Also note that
η1,i

1 + η1 − η1,i
≥ η1,j

1 + η1 − η1,j
if and only if w2

1i
ψ̄id,i

≥
w2

1j

ψ̄id,j
.

The results immediately follow from (34). �
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