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A. Additional Empirical Analysis

We provide the empirical analysis illustrated in §2 for the longer timespan from 2007 to 2018. The

same procedure was conducted for each year and for the stocks that had been the constituents of

S&P 500 throughout that year. Figure 6 shows the intraday pattern of correlation in liquidity for

each year with various ways of visualization. First of all, we observe consistently across all years

that the correlation increases over the course of the day. While the overall level of correlation

fluctuates over years1 (bottom left figure), we observe that the end-of-day increase had become

significant (bottom right figure), which can be attributable to the increasing popularity of index-

fund investing.

Figure 7 shows that the intraday pattern exists among both large-cap stocks and small-cap

stocks, and we can observe that the large-cap stocks are more correlated than the small-cap stocks.

Recall that in §5.2 we have argued that the benefit from incorporate cross-asset impact into

execution scheduling depends not only on the relative magnitude of index-fund liquidity provision

versus single-stock liquidity provision (that is captured by the proportion of index-fund liquidity

◊), but also on the intraday variation of their composition (that is captured by changes in the

ratio –t
—t

). Table 1 shows that the maximum cost savings according to the analysis of §5 have been

1We observe that the correlation is relatively higher during the period 2007–2011 that coincides with the time of
financial crisis. This will be consistent with a common belief that high volatility of markets is directly linked with
strong correlations between stocks (Junior and Franca, 2011).
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Figure 6: Intraday variations of average pairwise correlation in liquidity for years 2007–2011 (top left)
and for years 2012–2018 (top right), and their alternative visualization with ones averaged for each part
of day (bottom left) and ones further normalized by the average correlation level over the entire day
(bottom right).

increasing in recent years: although the overall proportion of index-fund liquidity was relatively

higher during the financial crisis period ‘07–‘11, the composition of liquidity was stable throughout

the day in this period, and as a result a separable VWAP execution would work fine compared to

the optimized coupled execution.

B. Change of Units

In §3 and §4, the price impact was the equilibrium expected price change �p, expressed in dollars,

required for the market to clear when executing a vector v, expressed in number of shares for each

security in the executed portfolio. We can restate the market impact in terms of the return r œ RN
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Figure 7: The average pairwise correlation for large-cap stocks (top-100 stocks in S&P 500, left) and
for small-cap stocks (bottom-100 stocks in S&P 500, right).

Year ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18

Prop. of fund liquidity (%) 26.5 29.7 24.3 26.7 27.4 20.3 19.1 21.7 20.9 22.9 17.9 23.5
Maximum cost saving (%) 8.3 3.1 7.8 7.2 6.7 11.2 16.4 8.7 12.0 6.4 7.9 14.0

Table 1: The illustrative statistics introduced in §5: the proportion of index-fund liquidity, ◊, and the
maximum cost saving, �max ≠ 1, estimated on years 2007–2018.

as a function of the vector of notional execution quantities ṽ œ RN . We let p denote the (arrival)

equilibrium price vector p œ RN , snapped at the beginning of the execution period, and define the

diagonal matrix P , diag(p) œ RN◊N . Then,

r , P≠1�p and ṽ , Pv. (49)

We redefine the liquidity variable Âid,i, Âf,k and weight vectors wk accordingly:

Ẫid,i , p2
i · Âid,i, Ẫf,k , (w€

k p)2 · Âf,k and w̃k , Pwk

p€wk
. (50)

The redefined liquidity variable Âid,i now has the following interpretation: single-stock investors

will sell (or buy) 1% · Ẫid,it dollar amount of stock i, when its price rises (or drops) by one percent.

The rescaled weight vector w̃k represents the normalized dollar-weighted portfolio. Putting it all

together, we get

r = P≠1Gv = P≠1
1
�id + W�fW€

2≠1
P≠1 · Pv

=
1
P�idP + PW�fW€P

2≠1
ṽ =

1
�̃id + W̃�̃fW̃€

2≠1
ṽ.
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The resulting expected implementation shortfall cost is unchanged:

C̄(v) , 1
2v€�p = 1

2 ṽ€r = 1
2 ṽ€

1
�̃id + W̃�̃fW̃€

2≠1
ṽ.

C. Estimation of Cross-asset Market Impact

In this section, we provide a detailed description of the estimation procedure sketched in §6, and

verify the procedure based on a carefully synthesized dataset.

C.1. Estimation Scheme

Required data. We assume that we have access to realized portfolio executions, their realized

shortfalls, and reference information about the prevailing weight vectors of popular index funds

(such as the market and sector portfolios). More specifically, we assume that the given data

contains the following information. First, the portfolio transactions ṽdt œ RN that is a portfolio

vector executed during time interval t on day d, expressed in (signed) notional dollar amounts.

Second, the realized implementation shortfalls (return) r̄tr
dt œ RN incurred in the execution of

portfolio ṽdt relative to the arrival price vector at the beginning of time interval t on day d.2 Third,

some reference information that are publicly available: (i) the realized end-to-end returns rdt œ RN

during time interval t, (ii) the intraday trading volume DVolidt that is the total market volume of

stock i during time interval t on day d, expressed in (unsigned) notional dollar amounts, and (iii)

the daily allocation of index funds W̃d = [w̃1d, . . . , w̃Kd] œ RN◊K where w̃kd is the dollar-weighted

vector of index fund k on day d, normalized (i.e., 1€w̃kd = 1, for all d and k). Optionally, a proxy

for the amount of index-fund order flows, i.e., a quantity that reflects the trade volume generated

by index-fund investors. Depending on the availability of such a proxy, we may adopt di�erent

parameterizations of the cross-impact model, (M1) or (M2), which will be introduced below.

Cross-asset impact model. The derivation in §3 predicts the following relationship between the

executed quantity ṽdt and the realized shortfall3 r̄tr
dt: analogous to (11), we derive

r̄tr
dt = 1

2G̃dtṽdt + ‘̄tr
dt, G̃dt =

1
�̃id,dt + W̃d�̃f,dtW̃€

d

2≠1
, (51)

2We require the return dataset r̄tr
dt to have no missing entries. For an entry (i, d, t) such that no execution was

made at all (i.e., ṽidt = 0), we recommend to set r̄tr
idt to be the return measured with the market volume-weighted-

average-price relative to the arrival price at the beginning of interval, or simply a half of the end-to-end market return
1
2 ridt.

3In this section, we are using the realized shortfall (return) r̄tr
dt instead of the absolute price change �pdt, and

notional traded vectors ṽdt instead of number of shares vdt. Similarly, we use dollar-weighted vectors w̃k instead
of share-weighted vectors wk. With the rescaled liquidity parameters �̃id and �̃f, the structure of the price-impact
model remains the same. See Appendix B.
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where the rescaled liquidity matrices are given by �̃id,dt = diagN
i=1(Ẫid,idt) œ RN◊N and �̃f,dt =

diagK
k=1(Ẫf,kdt) œ RK◊K , and the noise term ‘̄tr

dt œ RN describes the random fluctuation of price.

Next we introduce a further parameterization of �̃id,dt and �̃f,dt, in which we reduce the number

of free parameters for the idiosyncratic components (as is typically done), and further simplify how

we capture the non-stationary behavior of the various terms so as to be able to rely on market

observable quantities as proxies.

A parameterization with “idiosyncratic” and “factor” trading volume. As discussed in

§3, the liquidity variable Ẫid,idt (resp., Ẫf,kdt) represents the notional amount of stock i (resp., index

fund k) that will be supplied by single-stock investors (resp., index-fund investors) in response to

a movement in the price of the stock (resp., index). We interpret that the variable Ẫ captures (i)

the number of investors, or participation intensity, present in each period, and (ii) the sensitivity of

these investors to price movements. The first factor roughly scales in proportion to trading volume,

while the second factor varies in a way that depends on the volatility of the underlying security

or index, and, specifically, it is plausible to imagine that it scales in a way that it is inversely

proportional to the volatility itself, i.e., Ẫ Ã DVol
‡ . Based on this interpretation, we consider the

parameterizations of Ẫid,idt and Ẫf,kdt with the following reduced form:

Ẫid,idt = “id ◊
[DVolid,idt

‚‡id,idt
, Ẫf,kdt = “f,k ◊

[DVolf,kdt

‚‡f,kdt
, (M1)

where (i) [DVolid,idt and ‚‡id,idt denote (forecasted) “idiosyncratic” trading volume and volatility of

stock i that describe the trading activity of single-stock investors, (ii) [DVolf,kdt and ‚‡f,kdt denote

(forecasted) “factor” trading volume and volatility of index fund k that describe the trading activity

of index-fund investors, and (iii) “id œ R and “f , (“f,1, . . . , “f,K)€ œ RK are unknown time-

invariant leading coe�cients. We have selected a simple parameterization where all single-stock

terms Ẫid,idt share the same coe�cient “id that is believed to reflect some invariant characteristic

of all single-stock investors.

We do not further formulate “idiosyncratic” and “factor” trading volumes in this paper: they

will be latent variables, i.e., they are not immediately quantifiable from the market data, since the

actual trading volume that we observe from the market is the mixture of these two components.

Someone can estimate the intraday pattern of the proportion of factor trading volume explicitly as

suggested in §5.1, or can use some additional market information such as trading volume grouped

by investor type if available. Given such proxies, K + 1 unknown parameters (“id and “f) can be

estimated via a procedure described later.
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A parameterization with observables. As an alternative of the parameterization (M1), we

propose a more specific parameterization that relies on directly observable quantities:

Ẫid,idt = ‹id,t ◊ MADVolidt

‡̄idt
, Ẫf,kdt = ‹f,kt ◊

q
iœSk

MADVolidt

‡̄f,kdt
. (M2)

The coe�cients ‹id,t and ‹f,t are the unknowns here, and the others variables are the moving-average

measures defined as

MADVolidt ,
1
·

·≠1ÿ

s=0
DVoli,d≠s,t, ‡̄idt ,

ı̂ıÙ 1
·

·≠1ÿ

s=0
r2

i,d≠s,t, ‡̄f,kdt ,
ı̂ıÙ 1

·

·≠1ÿ

s=0

1
w̃€

k,d≠srd≠s,t

22
, (52)

where · is the length of sliding window and Sk is the set of stocks that belong to the index fund

k. One can adopt di�erent averaging scheme as long as it provides reasonable forecasts for trading

volume and volatility.

Compared to the previous parameterization (M1), the leading coe�cients in (M2), ‹id,t and

‹f,t, have the subscript t (as opposed to “id and “f) so as to reflect the intraday variation in

composition of the two types of liquidity provision (i.e., Ẫid,idt vs. Ẫf,kdt) correctly. Such a varia-

tion is not well captured in the moving-averaged measures introduced above (i.e., MADVolidt vs.
q

iœSk
MADVolidt), since the observable trading volume DVolidt is a simple reflection of sum of two

types of liquidity.4 By allowing the unknown coe�cients dependent on the time of the day, we let

the estimation procedure to find the right values of ‹id,t and ‹f,t that fairly describe the expected

intraday profile of liquidity composition.

There are T ◊(K +1) values to estimate, too many considering the noise level in the dataset. We

further reduce the number of unknowns by imposing a simple intraday variation pattern: we divide

a day into three segments and assume that the coe�cients are constant within each segment.

More specifically, let Tbeg, Tend, and Tmid be the first one hour (09:30–10:30), the last one hour

(15:00–16:00), and the remaining trading session (10:30–15:00), respectively, and assume that

‹id,t =

Y
___]

___[

‹beg
id if t œ Tbeg

‹mid
id if t œ Tmid

‹end
id if t œ Tend

, ‹f,kt =

Y
___]

___[

‹beg
f,k if t œ Tbeg

‹mid
f,k if t œ Tmid

‹end
f,k if t œ Tend

. (M2-seg)

With this segmentation, we have 3 ◊ (K + 1) unknowns in total, and the intraday variation in
4Suppose that the intensity of liquidity provision by index-fund investors stays constant over time, i.e., Ẫf,kdt

does not vary over the course of the day but does Ẫid,idt only. The market-wide volume
q

iœSk
MADVolidt will still

fluctuate according to the variation of single-stock investors’ liquidity provision, and therefore, the time-variation ofq
iœSk

MADVolidt does not correctly reflect the time-variation of index-fund investors’ liquidity provision.
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liquidity composition can be represented with the change in their relative magnitude across the

segments, i.e., ‹beg
id vs. ‹beg

f , ‹mid
id vs. ‹mid

f , and ‹end
id vs. ‹end

f .

Estimation procedure. We illustrate a simple procedure that estimates the unknown coe�cients

in the parameterization (M2) for intraday segment Tend. The same procedure can apply for the

other intraday segments as well as the parameterization (M1).

We aim to find the values of ‹end
id œ R and ‹end

f œ RK such that their corresponding cross-impact

model fits the actual price changes realized during the time periods t œ Tend. Let us denote the

cross-impact matrix parameterized with ‹id and ‹f by G̃dt(‹id, ‹f): More specifically,

G̃dt(‹id, ‹f) ,
A

diagN
i=1

3
‹id · MADVolidt

‡̄idt

4
+ W̃ddiagK

k=1

A

‹f,k ·
q

iœSk
MADVolidt

‡̄f,kdt

B

W̃€
d

B≠1
.

We first introduce the empirical loss Lend
id with respect to the realized single-stock shortfalls r̄tr

dt: as

we expect that r̄tr
dt ¥ 1

2G̃dt(‹id, ‹f)ṽdt,

Lend
id (‹id, ‹f) ,

1
N

Dÿ

d=1

ÿ

tœTend

3
r̄tr

dt ≠ 1
2G̃dt(‹id, ‹f)ṽdt

4€
�̄≠1

dt

3
r̄tr

dt ≠ 1
2G̃dt(‹id, ‹f)ṽdt

4
,

where �̄dt , diagN
i=1(‡̄2

idt) is the empirical diagonal covariance matrix. Analogously, the empirical

loss Lend
f with respect to the realized index-fund shortfalls W̃€

d r̄tr
dt can be defined as follows:

Lend
f (‹id, ‹f) ,

1
K

Dÿ

d=1

ÿ

tœTend

3
W̃€

d r̄tr
dt ≠ 1

2W̃€
d G̃dt(‹id, ‹f)ṽdt

4€
�̄≠1

f,dt

3
W̃€

d r̄tr
dt ≠ 1

2W̃€
d G̃dt(‹id, ‹f)ṽdt

4
,

where �̄f,dt , diagK
k=1(‡̄2

kdt) is the empirical diagonal covariance matrix of index-fund returns.

Observe that minimizing Lend
id or Lend

f is identical to performing a least squares estimation with

the heteroscedastic residual terms. In particular when the index-fund investors’ contribution is

absent (i.e., when we are restricted to have ‹f = 0), minimizing Lend
id is equivalent to the esti-

mation procedure proposed in Almgren et al. (2005). Similarly, when the single-stock investors’

contribution is absent (i.e., when we are restricted to have ‹id = 0) and the index funds are or-

thogonal, minimizing Lend
f is equivalent to fitting a separable linear model under which each index

fund is treated in isolation. In other words, the loss Lend
id focuses more on the diagonal entries of

cross-impact matrix G̃dt and the loss Lf rather focuses on the non-diagonal entries of G̃dt.

Based on those loss measures, we suggest a four-step procedure that yields the estimates ‚‹end
id

and ‚‹end
f :
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1. (Initial guess) Find a single scalar value ‚‹ via an ordinary least-squares regression based on

the following linear model:

r̄tr
idt = 1

2 ◊ ‹≠1 ◊ ‡̄idt

MADVolidt
◊ ṽidt + eidt,

where eidt’s are i.i.d. Initialize the estimates with ‚‹: i.e., ‚‹end
id Ω ‚‹ and ‚‹end

f,k Ω ‚‹ for all

k = 1, . . . , K.

2. (Estimation of diagonal entries) Fix ‚‹end
f and find ‚‹end

id that best explains the realized single-

stock shortfalls by minimizing loss Lend
id :

‚‹end
id Ω argmin

‹idœR+
Lend

id (‹id, ‚‹end
f ).

3. (Estimation of non-diagonal entries) Fix ‚‹end
id and find ‚‹end

f that best explains the realized

index-fund shortfalls by minimizing loss Lend
f :

‚‹end
f Ω argmin

‹fœRK
+

Lend
f (‚‹end

id , ‹f).

4. (Fine tuning) Finally adjust the estimates by minimizing two loss measures simultaneously:

(‚‹end
id , ‚‹end

f ) Ω argmin
(‹id,‹f)œR+◊RK

+

Ó
Lend

id (‹id, ‹f) + Lend
f (‹id, ‹f)

Ô

Step 1 replicates the procedure to estimate a separable (idiosyncratic) impact model that is

commonly adopted in the literature, and the estimate ‚‹ found in step 1 is utilized as a baseline

value for ‚‹end
id and ‚‹end

f in the next steps. In steps 2 and 3, it performs further estimation of ‚‹end
id

and ‚‹end
f by minimizing the losses Lend

id and Lend
f individually, and in step 4 it performs a fine

tuning by minimizing Lend
id + Lend

f together. In the implementation, we suggest to use a simple

gradient descent method in each step: the loss minimizer needs not to be the global optimum since

the results from the previous steps will provide reasonable initial solutions to the next steps.

This four-step procedure aims to estimate the coe�cients ‹end
id and ‹end

f in a robust and e�cient

way. By sequentially improving the estimates starting from the parameter value estimated from

a simple separable impact model, it prevents the final outcomes from taking extreme values and

accelerates the optimization procedure. One may performs step 4 only, but we anticipate that

the outcome will be very sensitive to initialization values because the objective is non-convex and
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possibly multimodal. The matrix G̃dt(‹id, ‹f) can be computed e�ciently in practice by using the

Woodbury matrix identity.

Comparison with Schneider and Lillo (2019). Schneider and Lillo (2019) perform a direct

non-parametric estimation of cross-impact among Italian and European bonds (N = 33) using

high-frequency market data in an e�ort to validate their theoretical findings on no-arbitrage con-

ditions. Compared to their estimation procedure, our estimation heavily relies on the model: we

postulate a parsimonious parametric representation of cross-impact and exploit its structure to al-

leviate the di�culty of direct estimation. Since our model is based on a stylized characterization of

index-fund investors participating the stock markets, our suggested estimation scheme may not be

appropriate to estimate cross-impact among fixed-income securities that may share a di�erent kind

of commonality following from risk and term structure. On the other hand, their non-parametric

approach may not be appropriate to handle non-stationary cross-impact as opposed to our para-

metric approach that uses trading volume as a proxy for time-varying liquidity. Although it would

be an interesting research topic to adopt direct estimation methods and compare the results, we

believe that it would be beyond the scope of this paper.

C.2. Illustration with Synthetic Data

We illustrate and verify the suggested estimation procedure by using a (partly) synthetic dataset.

We construct test portfolios, one for each day d and period t. We will then simulate the execution

of these portfolios by adding some market impact on top of the actual market return in (d, t). We

pick randomly a set of market impact coe�cients for the model in (M1), and simulate execution

costs for the test portfolios by adding the expected impact cost contribution to the realized market

return. We then forget the impact cost coe�cients and the detailed specification of (M1), and

given the set of test portfolios and realized execution costs we estimate an impact model given the

(observable) parameterization (M2). Even though we use slightly di�erent market impact models

for the dataset generation and for the parameter estimation, we will illustrate that it can still

predict the transaction costs well enough in spite of the model misspecification.

Original dataset. We consider three sectors (K = 3; energy, finance, and technology sectors) and

S&P 500 stocks that belong to these sectors (N = 153) throughout the year 2018. As in §2, we

consider five-minute intervals (T = 78) per each day, and exclude half-trading days and the days

on which FED announcements were made. In the calculation of moving-averaged measures (52),

we use the time window of · = 60 days, and therefore the estimation is performed after excluding

the first 60 days (D = 240 ≠ 60 = 180).
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Ground truth market impact model. We assume that the ground truth model is given by the

parameterization (M1) where the idiosyncratic volume forecast [DVolid,idt and the factor volume

forecast [DVolf,kdt are assumed to have the following form:

[DVolf,kdt = ◊kt ◊
ÿ

iœSk

MADVolidt, [DVolid,idt = MADVolidt ≠ wkdi ◊ [DVolf,kdt. (53)

The variable ◊kt represents the proportion of the factor trading volume out of total market trading

volume across all stocks in sector k on the intraday time interval t.5 This formulation follows

from the assumption that individual stock’s trading volume is decomposed into an idiosyncratic

component and a factor component, i.e., MADVolidt = [DVolid,idt + wkdi ◊ [DVolf,kdt, where the

sector-wide contribution of factor volume,
[DVolf,kdtq

iœSk
MADVolidt

, is assumed to be constant across days.

Reflecting the empirical observations in §2, we make up the values of ◊kt’s as plotted in Figure 8.
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Figure 8: Hypothetical intraday profiles of the proportion of factor trading volume, (◊kt)T
t=1, that are

plugged in (53) for synthetic dataset generation. For example, the second profile curve implies that the
index-fund investors in finance sector (k = 2) account for 15% of the total sector-wide traded volume
at the beginning of the day, and 35% of it at the end of the day.

The values of unknown coe�cients “’s are chosen as “id = 0.04 and “f = (0.30, 0.10, 0.20)€. To

gain some intuition of the magnitude of these parameters, when “ = 0.04 and ‡ = 0.1% ¥ 1%Ô
78

(five-minute volatility), the given parameterization predicts that the expected cost of executing a

trade with 2% participation rate will be 1
2 · ‡

“ · 2% ¥ 2.5 basis points.

Given the hypothetical values of ◊’s and “’s, we assume that the true coe�cient matrix of market
5Compared to the parameterization introduced in §5, the variable ◊kt would correspond to the proportion of

index-fund order flows, —t·◊
–t·(1≠◊)+—t·◊ , which is plotted in Figure 3.
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impact is given by

G̃true
dt =

A

diagN
i=1

A

“id ·
[DVolid,idt

‡̄idt

B

+ W̃ddiagK
k=1

A

“f,k ·
[DVolf,kdt

‡̄f,kdt

B

W̃€
d

B≠1

. (54)

In what follows, we show that our proposed estimation procedure finds some approximation of

G̃true
dt with a di�erent parameterization rather than directly estimating the values of ◊’s and “’s.

Hypothetical portfolio transactions. We imagine a situation that investing decisions are made

on a daily basis and the associated portfolio transactions are being executed over the course of the

day. More specifically, the hypothetical portfolio transactions ṽdt’s are generated according to the

following procedure: on each day d = 1, . . . , D, independently,

1. we randomly select the single stocks and the sectors to trade: A single stock is selected with

probability 5%, and a sector is selected with probability 25%.

2. For each selected single stock (or a selected sector), the trading direction (i.e., buy or sell) is

determined randomly, and the participation rate is drawn from the log-normal distribution

with mean 1.5% and standard deviation 0.5% for single stocks, and with mean 0.5% and

standard deviation 0.1% for sectors.

3. Given the trading direction and the participation rate, we imagine a VWAP trading schedule

over the course of the day: The notional amount of transactions at time t on a selected asset

(a stock i or a sector k) is given by

qid,idt = (trading direction)id ◊ (participation rate)id ◊ MADVolidt,

qf,kdt = (trading direction)kd ◊ (participation rate)kd ◊
ÿ

iœSk

MADVolidt.

Accordingly, the portfolio transactions on day d are simply given by

ṽdt = qid,dt + W̃dqf,dt, ’t = 1, . . . , T,

where qid,dt , (qid,1dt, . . . , qid,Ndt)€ œ RN and qf,dt , (qf,1dt, . . . , qf,Kdt)€ œ RK .

This procedure is selected intentionally to match up to calibrating the model on a set of full day

VWAP-like executions.

Hypothetical dataset. Given the ground truth impact model G̃true
dt and the simulated portfolio

transactions ṽdt, we make perturbation on the original dataset: The realized implementation short-

falls r̄tr
dt, the realized end-to-end returns rdt and the market trading volume DVolidt are overwritten
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as

r̄tr
dt Ω r̄tr

dt + 1
2G̃true

dt ṽdt, rdt Ω rdt + G̃true
dt ṽdt, DVolidt Ω DVolidt + |ṽidt|, (55)

and we obtain a hypothetical dataset in which the e�ects of the transactions ṽdt are reflected. In

this hypothetical dataset, 59% of our trades are due to index-fund investing, and we pay 2.4 basis

points for the transaction cost in total.

Estimation result. We perform the estimation based on the parameterization (M2) with the seg-

mentation scheme (M2-seg). We estimate 3◊(K+1) unknown coe�cients (‚‹beg
id , ‚‹beg

f ), (‚‹mid
id , ‚‹mid

f ),

and (‚‹end
id , ‚‹end

f ) by applying the four-step procedure described in §C.1 for each of intraday segments

Tbeg, Tmid, and Tend separately.

Since the estimation model is di�erent from the model used for data generation, there are no

true parameter values that exactly correspond to the estimated parameters. Instead, we introduce

the “e�ective” true coe�cients for (M2) that are expressed in terms of ◊ and “ used in (M1):

‹̄id,t , “id ◊
A

1 ≠ 1
K

Kÿ

k=1
◊kt

B

, ‹̄f,kt , “f,k ◊ ◊kt.

Figure 9 (left) shows the comparison between the estimated coe�cients (‚‹id,t, ‚‹f,t)T
t=1 and their

e�ective true values (‹̄id,t, ‹̄f,t)T
t=1. We observe that the estimated model approximates the intraday

variation of the ground truth market impact with piecewise constant profiles.
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Figure 9: Estimated coe�cients ‚‹ vs. e�ective true coe�cients ‹̄ (left). The estimation results ap-
proximate the intraday variation of the cross-impact matrix. The estimated five-minute implementation
shortfall ŷcross

dt and ŷdiag
dt vs. the true expected five-minute implementation shortfall ŷtrue

dt (right, the
data points are randomly selected for visualization).

We further investigate the performance of estimated model relative to the idiosyncratic (diago-
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nal) market impact model6 that may be adopted by someone who ignores the cross-asset impact.

More specifically, we compute the realized five-minute implementation shortfall yreal
dt (expressed in

percentage) incurred by the hypothetical portfolio transaction ṽdt and the model predictions:

yreal
dt , r̄€

dtṽdt

ÎṽdtÎ1
, ŷtrue

dt ,
1
2 ṽ€

dtG̃true
dt ṽdt

ÎṽdtÎ1
, ŷcross

dt ,
1
2 ṽ€

dtG̃dt(‚‹id,t, ‚‹f,t)ṽdt

ÎṽdtÎ1
, ŷdiag

dt ,
1
2 ṽ€

dtG̃dt(‚‹diag
t , 0)ṽdt

ÎṽdtÎ1
,

where ŷtrue
dt , ŷcross

dt , and ŷdiag
dt are the expected costs predicted with, respectively, the ground truth

model, the cross-asset (non-diagonal) model estimated above, and the idiosyncratic (diagonal)

model. We also compute associated R2 values as a performance measure of each model: with

ȳ , 1
DT

q
d

q
t yreal

dt ,

R2
true , 1≠

q
d

q
t(yreal

dt ≠ ŷtrue
dt )2

q
d

q
t(yreal

dt ≠ ȳ)2 , R2
cross , 1≠

q
d

q
t(yreal

dt ≠ ŷcross
dt )2

q
d

q
t(yreal

dt ≠ ȳ)2 , R2
diag , 1≠

q
d

q
t(yreal

dt ≠ ŷdiag
dt )2

q
d

q
t(yreal

dt ≠ ȳ)2 .

From Figure 9 (right), we can visually verify that, in this simulated setup, the estimated model

improves the accuracy of prediction compared to the prevalent idiosyncratic (diagonal) impact

model. Table 2 shows R2 values of each model for each intraday segment: while the overall R2

values are small (even for the ground truth model) due to the high noise level in return realizations,

the estimated model works better than the idiosyncratic model.

Intraday segment R2
true R2

cross R2
diag

Beginning of the day (09:30–10:30) 0.1123 0.1184 0.1043
Middle of the day (10:30–15:00) 0.0718 0.0673 0.0611

End of the day (15:00–16:00) 0.0729 0.0683 0.0639

All day (09:30–16:00) 0.1019 0.1023 0.0927

Table 2: R2 values of the ground truth model, our suggested model, and a separable diagonal impact
model on a synthetic dataset.

We expect that the estimation may not work well in some situations. For example, if the realized

transactions account for a negligible fraction of the total market volume, their market impact will be

insignificant and hardly distinguishable from the noise, and this may result in inaccurate estimates.

If the realized transactions are mainly driven by the single-stock level investments, their aggregate

impact on the index-fund prices will be relatively smaller than their impact on the individual

stock prices, and hence the estimates related to index-fund liquidity (i.e., ‚‹f,kt) will involve larger
6The idiosyncratic impact model can be seen as a special case of our estimation model where index-fund investors

do not exist (i.e., G̃dt(‹diag
t , 0)). For the estimation of the diagonal model, we find the best coe�cient ‚‹diag

t that
minimizes the loss Lid for each intraday segment (only steps 1 & 2 are performed).
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estimation errors than the ones related to single-stock liquidity (i.e., ‚‹id,t). A similar issue may

arise when the market liquidity provision is mainly driven by the index-fund investors since the

impact on the index fund prices will be relatively small. We observe relatively large estimation

errors for the last intraday segment in our numerical demonstration (Figure 9), and this would be

partly attributable to the above concern because near the end of the day a larger proportion of

liquidity is provided along the index funds.

D. Proofs

D.1. Proof of Proposition 2

We first focus on the case where v = Wu in (15). When – = — = 1, by Woodbury’s identity we

get

G =
1
�id + W�fW€

2≠1
= �≠1

id ≠ �≠1
id W

1
�≠1

f + W€�≠1
id W

2≠1
W€�≠1

id .

Consequently,

W€GW = W€�≠1
id W ≠ W€�≠1

id W
1
�≠1

f + W€�≠1
id W

2≠1
W€�≠1

id W

=
31

W€�≠1
id W

2≠1
+ �f

4≠1
.

Next, we incorporate the e�ect of – and — as follows:

W€GW =
3

– ·
1
W€�≠1

id W
2≠1

+ — · �f

4≠1
≠æ �≠1

f as – æ 0 and — æ 1.

Therefore, for any u œ RK ,

lim
–æ0,—æ1

C̄ (v = Wu) = lim
–æ0,—æ1

1
2u€W€GWu = 1

2u€�≠1
f u.

Next we consider the case where v /œ span(w1, · · · , wK). Let v = Wu +e for some e œ RN such

that W€e = 0 and e ”= 0. By the Woodbury matrix identity, we get

G = –≠1 · �≠1
id ≠ –≠1 · �≠1

id W
3

–

—
�≠1

f + W€�≠1
id W

4≠1
W€�≠1

id .

Therefore,

lim
–æ0,—æ1

{– · G} = �≠1
id ≠ �≠1

id W
1
W€�≠1

id W
2≠1

W€�≠1
id .
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With r , �≠1/2
id e and A , �≠1/2

id W,

e€
3

�≠1
id ≠ �≠1

id W
1
W€�≠1

id W
2≠1

W€�≠1
id

4
e = r€r ≠ r€A

1
A€A

2≠1
A€r.

Note that A
1
A€A

2≠1
A€r is a projection of r onto the space spanned by A (denoted by span(A)).

Therefore,

lim
–æ0,—æ1

Ó
– · e€Ge

Ô
= 0 if and only if r œ span(A).

If r œ span(A), i.e., r = As for some s œ RK , then e = �1/2
id r = �1/2

id �≠1/2
id Ws = Ws, and hence

v œ span(W). Since we are assuming v /œ span(W), we have r /œ span(A), and hence

lim
–æ0,—æ1

Ó
– · e€Ge

Ô
> 0.

Furthermore,

GW = –≠1 · �≠1
id W ≠ –≠1 · �≠1

id W
3

–

—
�≠1

f + W€�≠1
id W

4≠1
W€�≠1

id W

= –≠1 · �≠1
id W

A

IK ≠
5

–

—

1
W€�≠1

id W
2≠1

�≠1
f + IK

6≠1B

¸ ˚˙ ˝
≠æO as –æ0

.

Therefore,

lim
–æ0,—æ1

Ó
– · e€GWu

Ô
= 0.

To summarize, since lim–æ0,—æ1
Ó

uW€GWu
Ô

= u€�≠1
f u, it follows that

lim
–æ0,—æ1

Ó
– · (Wu + e)€ G (Wu + e)

Ô

= lim
–æ0,—æ1

Ó
– · uW€GWu

Ô
+ lim

–æ0,—æ1

Ó
– · 2e€GWu

Ô
+ lim

–æ0,—æ1

Ó
– · e€Ge

Ô

= 0 + 0 + lim
–æ0,—æ1

Ó
– · e€Ge

Ô
> 0. (56)

It then follows that lim–æ0,—æ1
Ó

(Wu + e)€ G (Wu + e)
Ô

= Œ. ⌅
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D.2. Proof of Proposition 4

Note that

W�̄fW€�̄≠1
id ≠ W�̄fW€�̄≠1

id W
1
�̄≠1

f + W€�̄≠1
id W

2≠1
W€�̄≠1

id

= W�̄f ·
1
�̄≠1

f + W€�̄≠1
id W

2
·
1
�̄≠1

f + W€�̄≠1
id W

2≠1
W€�̄≠1

id

≠W�̄f · W€�̄≠1
id W ·

1
�̄≠1

f + W€�̄≠1
id W

2≠1
W€�̄≠1

id

= W�̄f ·
1
�̄≠1

f + W€�̄≠1
id W ≠ W€�̄≠1

id W
2

·
1
�̄≠1

f + W€�̄≠1
id W

2≠1
W€�̄≠1

id

= W
1
�̄≠1

f + W€�̄≠1
id W

2≠1
W€�̄≠1

id .

Again, using the Woodbury matrix identity, we get

G≠1
t

A
Tÿ

s=1
G≠1

s

B≠1

=
1
–t�̄id + —tW�̄fW€

2 1
�̄id + W�̄fW€

2≠1

=
1
–t�̄id + —tW�̄fW€

2 3
�̄≠1

id ≠ �̄≠1
id W

1
�̄≠1

f + W€�̄≠1
id W

2≠1
W€�̄≠1

id

4

= –tIN ≠ –tW
1
�̄≠1

f + W€�̄≠1
id W

2≠1
W€�̄≠1

id

+—tW�̄fW€�̄≠1
id ≠ —tW�̄fW€�̄≠1

id W
1
�̄≠1

id + W€�̄≠1
id W

2≠1
W€�̄≠1

id

= –tIN + (—t ≠ –t)W
1
�̄≠1

f + W€�̄≠1
id W

2≠1
W€�̄≠1

id
¸ ˚˙ ˝

,„W€

.

⌅

D.3. Simple Generative Order Flow Model used in §5

We first establish an explicit relationship between intraday variation of natural liquidity and intra-

day variation of the resulting traded volume, by introducing a stochastic-process generative model

for trading volume. The underlying motivation is simple yet intuitive: single-stock and index-fund

investors create (stochastic) order flows onto the securities they wish to trade. The arrival intensity

of these order flows per type of investor in each time period is proportional to the corresponding

trading activity or liquidity provided by this investor type in this time period. This is captured by

the profiles –t and —t, respectively.

Specifically, we assume that the notional trade volume of stock i in time interval t on day d,

DVolidt, is composed of order flows made by single-stock investors Qid,idt and a |w̃1i| proportion of

order flows made by index-fund investors Qf,dt. We let |w̃1i| be dollar-weighted ownership of stock
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i in the index fund so that trading one dollar amount of an index fund accumulates |w̃1i| dollar

amount of notional trade volume onto stock i. Each order flow can naturally be decomposed into

small transactions:

DVolidt = Qid,idt + |w̃1i| · Qf,dt =
Nid,idtÿ

j=1
qid,idt(j) + |w̃1i| ·

Nf,dtÿ

j=1
qf,dt(j), (57)

where Nid,idt and qid,idt(j) represent the number of transactions and the absolute size of the jth

transaction made by single-stock investors in time interval t on day d. For the transactions made

by index-fund investors, Nf,dt and qf,dt(j) are defined analogously. We treat Nid,idt, Nf,dt, qid,idt(j)

and qf,dt(j) as random variables that follow particular distribution assumptions.

The order arrival processes for the two investor types are assumed to be Poisson with time-

varying rates that are proportional to –t and —t:

Nid,idt ≥ Poisson(–t · �) and Nf,dt ≥ Poisson(—t · �). (58)

We further assume that the individual order quantities qid,idt(j)’s (and qf,dt(j)’s) are all independent

and identically distributed with the following moment conditions:

E [qid,idt(j)] = q̄id,i, Var [qid,idt(j)] = c2
v · q̄2

id,i, E [qf,dt(j)] = q̄f, Var [qid,idt(j)] = c2
v · q̄2

f , (59)

where cv represents a coe�cient of variation.

Under the above assumptions, the single-stock investors’ order flow Qid,idt is a compound Poisson

process with the following mean and variance:

E [Qid,idt] = E [Nid,idt] · E [qid,idt(j)] = –t · � · q̄id,i, (60)

Var [Qid,idt] = E [Var (Qid,idt|Nid,idt)] + Var [E (Qid,idt|Nid,idt)] (61)

= E

Ë
Nid,idt · c2

v · q̄2
id,i

È
+ Var [Nid,idt · q̄id,i] (62)

= –t · � · (c2
v + 1) · q̄2

id,i. (63)

The mean and variance of Qf,dt can be expressed in a similar manner. Summing these flows for
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each security we get that

E [DVolidt] = –t · � · q̄id,i + —t · � · |w̃1i| · q̄f, (64)

Var [DVolidt] = –t · � · (1 + c2
v) · q̄2

id,i + —t · � · |w̃1i|2 · (1 + c2
v) · q̄2

f , (65)

Cov [DVolidt, DVoljdt] = —t · � · |w̃1i| · |w̃1j | · (1 + c2
v) · q̄2

f . (66)

The common order flow Qf,dt made by index-fund investors results in a positive correlation between

stocks represented in the index.

Define ◊i to be the proportion of daily traded volume generated by index-fund investors out of

the total daily traded volume of stock i:

◊i ,
qT

t=1 E [|w̃1i| · Qf,dt]qT
t=1 E [DVolidt]

= |w̃1i| · q̄f
q̄id,i + |w̃1i| · q̄f

. (67)

The intraday traded volume profile VolAllocit and the pairwise correlation Correlijt, defined in (1)

and (2), can be simply expressed with ◊i and ◊j :

VolAllocit © E [DVolidt]qT
s=1 E [DVolids]

= –t · (1 ≠ ◊i) + —t · ◊i, (68)

Correlijt © Cov [DVolidt, DVoljdt]


Var [DVolidt] ·
Ò

Var [DVoljdt]
(69)

= —t · ◊i · ◊jÒ
–t · (1 ≠ ◊i)2 + —t · ◊2

i ·
Ò

–t · (1 ≠ ◊j)2 + —t · ◊2
j

. (70)

If we further assume that the proportions ◊i are the same across all securities,

◊ © ◊1 = ◊2 = · · · = ◊N , (71)

then VolAllocit is the same for all stocks i and Correlijt is identical across all pairs of stocks, i, j,

as given in (28)–(29).
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D.4. Proofs for §5.2

D.4.1. Proof of Proposition 5

Note that

�(x0) =
qT

t=1(–t · (1 ≠ ◊) + —t · ◊)2 · x€
0

1
–t�̄id + —tW�̄fW€

2≠1
x0

x€
0

1
�̄id + W�̄fW€

2≠1
x0

=
Tÿ

t=1
–t · (1 + ◊ · (“t ≠ 1))2 ·

x€
0

1
�̄id + “tW�̄fW€

2≠1
x0

x€
0

1
�̄id + W�̄fW€

2≠1
x0

.

By Woodbury’s matrix identity,

x€
0

!
�̄id + “tW�̄fW€"≠1 x0

x€
0

!
�̄id + W�̄fW€

"≠1 x0

=
x€

0 �̄≠1
id x0 ≠ x€

0 �̄≠1
id W

!
“≠1

t �̄≠1
f + W€�̄≠1

id W
"≠1 W€�̄≠1

id x0

x€
0 �̄≠1

id x0 ≠ x€
0 �̄≠1

id W
!
�̄≠1

f + W€�̄≠1
id W

"≠1 W€�̄≠1
id x0

= 1 +

1
x€

0 �̄≠1
id W

!
�̄≠1

f + W€�̄≠1
id W

"≠1 W€�̄≠1
id x0

2
≠

1
x€

0 �̄≠1
id W

!
“≠1

t �̄≠1
f + W€�̄≠1

id W
"≠1 W€�̄≠1

id x0
2

x€
0 �̄≠1

id x0 ≠ x€
0 �̄≠1

id W
!
�̄≠1

f + W€�̄≠1
id W

"≠1 W€�̄≠1
id x0

= 1 +
x€

0 �̄≠1
id W

1!
�̄≠1

f + W€�̄≠1
id W

"≠1 ≠
!
“≠1

t �̄≠1
f + W€�̄≠1

id W
"≠12

W€�̄≠1
id x0

x€
0 �̄≠1

id x0 ≠ x€
0 �̄≠1

id W
!
�̄≠1

f + W€�̄≠1
id W

"≠1 W€�̄≠1
id x0

= 1 +
x€

0 �̄≠1
id W

!
�̄≠1

f + W€�̄≠1
id W

"≠1 ·
!
“≠1

t ≠ 1
"

�̄≠1
f ·

!
“≠1

t �̄≠1
f + W€�̄≠1

id W
"≠1 W€�̄≠1

id x0

x€
0

!
�̄id + W�̄fW€

"≠1 x0

= 1 + (1 ≠ “t) ·
x€

0 �̄≠1
id W

!
�̄≠1

f + W€�̄≠1
id W

"≠1 !
IK + “tW€�̄≠1

id W�̄f
"≠1 W€�̄≠1

id x0

x€
0

!
�̄id + W�̄fW€

"≠1 x0
.

When K = 1, we get

1
IK + “tW€�̄≠1

id W�̄f
2≠1

=
1
1 + “tw€

1 �̄≠1
id w1Â̄f,1

2≠1
= 1

1 + “t · ÷1
.
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Consequently,

x€
0

1
�̄id + “tW�̄fW€

2≠1
x0

x€
0

1
�̄id + W�̄fW€

2≠1
x0

= 1 + 1 ≠ “t

1 + ÷1 · “t
·

x€
0 �̄≠1

id W
1
�̄≠1

f + W€�̄≠1
id W

2≠1
W€�̄≠1

id x0

x€
0 �̄≠1

id x0 ≠ x€
0 �̄≠1

id W
1
�̄≠1

f + W€�̄≠1
id W

2≠1
W€�̄≠1

id x0

= 1 + 1 ≠ “t

1 + ÷1 · “t
·

Q

ca
x€

0 �̄≠1
id x0

x€
0 �̄≠1

id W
1
�̄≠1

f + W€�̄≠1
id W

2≠1
W€�̄≠1

id x0
≠ 1

R

db

≠1

= 1 + 1 ≠ “t

1 + ÷1 · “t
·

Q

ca
x€

0 �̄≠1
id x0

x€
0 �̄≠1

id w1 · Â̄f,1
1+Â̄f,1w€

1 �̄
≠1
id w1

· w€
1 �̄≠1

id x0
≠ 1

R

db

≠1

= 1 + 1 ≠ “t

1 + ÷1 · “t
·

Q

ca
x€

0 �̄≠1
id x0

1
w€

1 �̄≠1
id x0

22 · 1 + ÷1
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R

db
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.

To simplify notation, define

f(x) ,

Q

ca
x€

0 �̄≠1
id x0

1
w€

1 �̄≠1
id x0

22 · 1 + ÷1
Â̄f,1

≠ 1

R

db

≠1

.

Then,

�(x0) =
Tÿ

t=1
–t · (1 + ◊ · (“t ≠ 1))2 ·

3
1 + 1 ≠ “t

1 + ÷1 · “t
· f(x0)

4
.

Note that

Tÿ

t=1
–t · (1 + ◊ · (“t ≠ 1))2 =

Tÿ

t=1
–t · (1 + 2◊ · (“t ≠ 1) + ◊2 · (“2

t ≠ 2“t + 1))

=
Tÿ

t=1
–t + 2◊ · (—t ≠ –t) + ◊2 ·

A
—2

t

–t
≠ 2—t + –t

B

= 1 + ◊2 ·
A

Tÿ

t=1

—2
t

–t
≠ 1

B

.
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As a result,

�(x0) = 1 + ◊2 ·
A

Tÿ

t=1

—2
t

–t
≠ 1

B

+
A

Tÿ

t=1

–t · (1 ≠ ◊ · (1 ≠ “t))2 (1 ≠ “t)
1 + ÷1 · “t

B

¸ ˚˙ ˝
,�

◊f(x0).

⌅

D.5. Proof of Remarks 1 – 3

Maximum/minimum cost ratio. Note that f(x0) is a decreasing function of x
€
0 �̄

≠1
id x0

(w€
1 �̄

≠1
id x0)2 , and

min
x0œRN

x€
0 �̄≠1

id x0
1
w€

1 �̄≠1
id x0

22 =

Q

ca max
x0œRN

1
w€

1 �̄≠1
id x0

22

x€
0 �̄≠1

id x0

R

db

≠1

=

Q

ca max
yœRN

1
w€

1 �̄≠1/2
id y

22

y€y

R

db

≠1

=
1
w€

1 �̄≠1
id w1

2≠1
= Â̄f,1

÷1
.

The above value is obtained at x0 = w1. Therefore,

max
x0œRN

f(x0) = f(x0 = w1) =
A

Â̄f,1
÷1

· 1 + ÷1
Â̄f,1

≠ 1
B≠1

= ÷1.

On the other hand, since minx0œRN
(w

€
1 �̄

≠1
id x0)2

x€
0 �̄

≠1
id x0

= 0 at x0 = w‹
1 , it follows that

min
x0œRN

f(x0) = f(x0 = w‹
1 ) = 0.

Combining these two results, we have that

max
x0œRN

�(x0) = 1 + ◊2 ·
A

Tÿ

t=1

—2
t

–t
≠ 1

B

+ max
x0œRN

{� · f(x0)} = max{�market, �orth}

min
x0œRN

�(x0) = 1 + ◊2 ·
A

Tÿ

t=1

—2
t

–t
≠ 1

B

+ min
x0œRN

{� · f(x0)} = min{�market, �orth},

and, trivially, �market Ø �orth if and only if � Ø 0.

Sign of � with respect to ◊. Note that �(◊) is a quadratic function of ◊. It su�ces to show

that �(◊ = 0) Ø 0 and �(◊ = 1) Æ 0. Note that for an arbitrary function h(·),

Y
]

[
if h(·) is non-decreasing, h(“) · (1 ≠ “) Æ h(1) · (1 ≠ “), ’“

if h(·) is non-increasing, h(“) · (1 ≠ “) Ø h(1) · (1 ≠ “), ’“
. (72)
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In the case of ◊ = 0, by setting h(“t) , 1
1+÷1·“t

which is a non-increasing function, we get

�(◊ = 0) =
Tÿ

t=1

–t · (1 ≠ “t)
1 + ÷1 · “t

(72)
Ø

Tÿ

t=1

–t · (1 ≠ “t)
1 + ÷1

= (1 + ÷1)≠1
Tÿ

t=1
(–t ≠ —t) = 0.

In the case of ◊ = 1, by setting h(“t) , “2
t

1+÷1·“t
, which is a non-decreasing function, we get

�(◊ = 1) =
Tÿ

t=1

–t · “2
t (1 ≠ “t)

1 + ÷1 · “t

(72)
Æ

Tÿ

t=1

–t · (1 ≠ “t)
1 + ÷1

= 0.

Change of �market with respect to ÷1. Note that

ˆ�market
ˆ÷1

= ˆ

ˆ÷1
(÷1 · �(÷1))

= ˆ

ˆ÷1

A
Tÿ

t=1

–t · (1 ≠ ◊ · (1 ≠ “t))2 (1 ≠ “t)
÷≠1

1 + “t

B

=
Tÿ

t=1

–t · (1 ≠ ◊ · (1 ≠ “t))2 (1 ≠ “t)
÷2

1 · (÷≠1
1 + “t)2

= ◊2

÷2
1

·
Tÿ

t=1
–t ·

A

1 + ◊≠1 ≠ 1 ≠ ÷≠1
1

÷≠1
1 + “t

B2
(1 ≠ “t).

Set h(“t) ,
3

1 + ◊≠1≠1≠÷≠1
1

÷≠1
1 +“t

42
. If ÷1 Æ ◊

1≠◊ , then ◊≠1 ≠ 1 ≠ ÷≠1
1 Æ 0, and hence h(·) is non-

decreasing. Therefore,

ˆ�market
ˆ÷1

= ◊2

÷2
1

·
Tÿ

t=1
–t ·

A

1 + ◊≠1 ≠ 1 ≠ ÷≠1
1

÷≠1
1 + “t

B2
(1 ≠ “t)

(72)
Æ ◊2

÷2
1

·
Tÿ

t=1
–t ·

A

1 + ◊≠1 ≠ 1 ≠ ÷≠1
1

÷≠1
1 + 1

B2
(1 ≠ “t)

= ◊2

÷2
1

·
A

1 + ◊≠1 ≠ 1 ≠ ÷≠1
1

÷≠1
1 + 1

B2
·

Tÿ

t=1
–t(1 ≠ “t)

= ◊2

÷2
1

·
A

1 + ◊≠1 ≠ 1 ≠ ÷≠1
1

÷≠1
1 + 1

B2
·

Tÿ

t=1
(–t ≠ —t)

= 0.

If ÷1 Ø ◊
1≠◊ , then h(·) is non-increasing, and hence the sign of the inequality reverses. Therefore,

ˆ�market
ˆ÷1

Æ 0 if ÷1 Æ ◊

1 ≠ ◊
, and ˆ�market

ˆ÷1
Ø 0 if ÷1 Ø ◊

1 ≠ ◊
.
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⌅

When ÷1 = 0,

�market(÷1 = 0) = 1 + ◊2 ·
A

Tÿ

t=1

—2
t

–t
≠ 1

B

.

Note that �market(÷1 = 0) = �orth. Since �market(÷1) is decreasing in [0, ◊
1≠◊ ], this completes proof

of (40). When ÷1 = ◊
1≠◊ , since (1≠◊+◊·“t)2

1+÷1·“t
= (1 ≠ ◊) · (1 ≠ ◊ + ◊ · “t), it follows that

�market(÷1 = ◊

1 ≠ ◊
) = 1 + ◊2 ·

A
Tÿ

t=1

—2
t

–t
≠ 1

B

+ ◊

1 ≠ ◊
· (1 ≠ ◊) ·

Tÿ

t=1
–t · (1 ≠ ◊ · (1 ≠ “t)) (1 ≠ “t)

= 1 + ◊2 ·
A

Tÿ

t=1

—2
t

–t
≠ 1

B

≠ ◊2 ·
A

Tÿ

t=1

—2
t

–t
≠ 1

B

= 1.

As ÷1 æ Œ,

lim
÷1æŒ

�market = 1 + ◊2 ·
A

Tÿ

t=1

—2
t

–t
≠ 1

B

+ lim
÷1æŒ

(÷1 · �(÷1))

= 1 + ◊2 ·
A

Tÿ

t=1

—2
t

–t
≠ 1

B

+
Tÿ

t=1

–t · (1 ≠ ◊ · (1 ≠ “t))2 (1 ≠ “t)
“t

= 1 + ◊2 ·
A

Tÿ

t=1

—2
t

–t
≠ 1

B

+ (1 ≠ ◊)2 ·
A

Tÿ

t=1

–2
t

—t

B

≠ 1 + 2◊ ≠ ◊2 ·
A

Tÿ

t=1

—2
t

–t

B

= 1 + (1 ≠ ◊)2 ·
A

Tÿ

t=1

–2
t

—t
≠ 1

B

.

⌅

Cost ratio of single-stock trading. Note that

f(ei) =

Q

ca
e€

i �̄≠1
id ei

1
w€

1 �̄≠1
id ei

22 · 1 + ÷1
Â̄f,1

≠ 1

R

db

≠1

=

Q

ca
Â̄≠1

id,i1
w1i · Â̄≠1

id,i

22 · 1 + ÷1
Â̄f,1

≠ 1

R

db

≠1

=
A

1 + ÷1
÷1,i

≠ 1
B≠1

= ÷1,i

1 + ÷1 ≠ ÷1,i
.

Also note that
÷1,i

1 + ÷1 ≠ ÷1,i
Ø ÷1,j

1 + ÷1 ≠ ÷1,j
if and only if w2

1i

Â̄id,i
Ø

w2
1j

Â̄id,j
.

The results immediately follow from (34). ⌅
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