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Abstract

We consider a liquidation problem in which a risk-averse trader tries to liquidate a fixed
quantity of an asset in the presence of market impact and random price fluctuations. When
deciding the liquidation strategy, the trader encounters a trade-off between the transaction costs
incurred due to market impact and the volatility risk of holding the position. Our formulation
begins with a continuous-time and infinite horizon variation of the seminal model of Almgren
and Chriss (2000), but we define as the objective the conditional value-at-risk (CVaR) of the
implementation shortfall, and allow for dynamic (adaptive) trading strategies. In this setting,
remarkably, we are able to derive closed-form expressions for the optimal liquidation strategy
and its value function.

Our results yield a number of important practical insights. We are able to quantify the benefit
of adaptive policies over optimized static (pre-committed) policies. The relevant improvement
depends only on the level of risk aversion, and grows without bound as the trader becomes
more risk neutral. For moderate levels of risk aversion, the optimal dynamic policy outperforms
the optimal static policy by 5–15%, and outperforms the optimal volume weighted average price
(VWAP) policy by 15–25%. This improvement is achieved through dynamic policies that exhibit
“aggressiveness-in-the-money”: trading is accelerated when price movements are favorable (to
minimize risk), and is slowed when price movements are unfavorable (to minimize transaction
costs). Overall, the optimal dynamic policies exhibit much better performance in the right tail
of worst outcomes, relative to optimal static policies.

From a mathematical perspective, our analysis exploits the dual representation of CVaR
to convert the problem to a continuous-time, zero sum dynamic game. In this setting, we
leverage the idea of the state-space augmentation, recently applied to certain discrete-time
Markov decision processes with a CVaR objective. We obtain a partial differential equation
describing the optimal value function, which is separable and a special instance of the Emden–
Fowler equation. This leads to a closed-form solution. As our problem is a special case of a
continuous-time linear-quadratic-Gaussian control problem with a CVaR objective, these results
may be interesting in broader settings.

∗The authors wish to thank Carlos Gomez Gascon and Paul Glasserman for helpful discussions.
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1. Introduction

Optimal execution is a problem of significant importance for algorithmic traders in modern financial
markets. Here, a trader must decide an optimal trading strategy to buy (or sell) a fixed quantity
of an asset. Typically, there is a trade-off between trading quickly, which minimizes the risk of
adverse price movements, and trading slowly, which minimizes transaction costs. In their seminal
paper, Almgren and Chriss (2000) framed this liquidation problem as a mean-variance optimiza-
tion problem, that optimizes a combination of the average cost (i.e., the expected implementation
shortfall) and the variability of the cost (i.e., the variance of the implementation shortfall). In
that setting, they explicitly derive the optimal liquidation schedule, which is parameterized by the
risk-aversion level of the trader. Their framework and suggested solution have become standards
in this area, serving as a starting point for more complicated models and trading strategies, both
in the academic literature and among practitioners.

However, the Almgren and Chriss (2000) analysis is restricted to static strategies: they only
considered deterministic schedules under which the trader pre-commits to a fixed trading schedule,
i.e., algorithms that do not adapt to changing market conditions such as the price of the asset.
This restriction makes the analysis considerably more straightforward and tractable, and allows
for closed-form solutions. This leaves open possible additional benefit from dynamic, adaptive
trading strategies, however. Indeed, most practitioners utilize adaptive strategies. This is often
done through ad hoc or heuristic means, such as model predictive control (MPC), where the trader
periodically resolves for a new deterministic policy as time evolves.

Indeed, it has been an important objective to incorporate dynamic strategies into the Almgren-
Chriss framework, but in a more principled way. Some practitioners such as Kissell and Malamut
(2005) have suggested a series of heuristics that are price-adaptive in a particular way: they liquidate
more aggressively when the price moves in a favorable direction, and liquidate more slowly when the
price moves in an adverse direction. Lorenz and Almgren (2007) observed that this “aggressiveness
in-the-money” (AIM) behavior can strictly improve on the optimal deterministic strategy in the
mean-variance criterion. In a subsequent work, Lorenz and Almgren (2011) develop a dynamic
programming technique by which approximate solutions can be numerically obtained, and show
that such approximate solutions exhibit AIM, despite the lack of an analytic solution. See also
Forsyth (2011) for the continuous-time version of this analysis.

Another stream of work (including the present paper) introduces alternative risk criteria other
than the mean-variance objective, so as to formulate the problem into a more tractable form. For
example, Schied and Schöneborn (2009) formulate the problem as an expected utility maximization
problem, and derive a Hamilton-Jacobi-Bellman (HJB) equation that characterizes the optimal
adaptive strategy. They find that the optimal strategy is either aggressive- or passive-in-the-
money, respectively, if and only if the utility function displays increasing or decreasing risk aversion,
respectively, but an analytic solution is not available. Gatheral and Schied (2011) propose an
alternative risk criterion that utilizes the time-averaged risk exposure to the price change driven by
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the geometric Brownian motion (more precisely, the risk term is formulated as the time integration
of the position value process, i.e., the product of the position process and the price process), and
explicitly solve for the optimal strategy that is shown to exhibit the AIM behavior. However, their
proposed risk criteria is ad hoc, and may encourage, for example, negative positions to reduce risk.
Hence, the resulting optimal policies are not “liquidate-only”: they may trade in both directions
(buying and selling) in excess of what is strictly necessary to reduce the position to zero. Forsyth
et al. (2012) investigate the use of the quadratic variation of the position value process as a risk
criteria, and observe that the classic static solution of Almgren and Chriss (2000) is again optimal
when the price process is driven by the arithmetic Brownian motion. The authors also consider
the geometric Brownian motion, under which the optimal solution is numerically determined and
shown to be price-adaptive, and they report its AIM behavior through numerical examples. Lin
et al. (2015) introduces a composite dynamic coherent risk measures and derive the optimal solution
that is tractable but static. One can also consider an entropic risk measure introduced such as that
of Glasserman and Xu (2013), but it can be shown that the resulting strategy is also not price-
adaptive.

To summarize, the prior work in this area either (i) yields only approximate numerical solutions;
(ii) incorporates only ad hoc risk criteria; (iii) yields policies that are not liquidate-only and trade in
both directions; or (iv) illustrates no benefit from dynamic policies over static policies. In contrast,
our work simultaneously addresses all of these issues, and, to our knowledge, is the first paper to
do so.

In this paper, we consider the conditional value-at-risk (CVaR; also known as average value-at-
risk, tail conditional expectation, or expected shortfall) as an objective. CVaR is a risk measure
that quantifies the tail risk. Given a quantile value q ∈ (0, 1] and a random variable that represents
the cost, the CVaR value at level q is defined as the average of the worst q-fraction of the outcomes,
i.e., the tail average beyond the qth quantile of the cost distribution. Smaller values of q focus on
performance in the worst cases, i.e., the trader is more risk averse, while q = 1, on the other hand,
corresponds to a risk neutral trader. Starting from the pioneering work of Artzner et al. (1999),
CVaR has received much attention for its intuitive definition and for nice mathematical properties
as a convex and coherent risk measure.

From the point of view of using CVaR as an optimization objective, the (static) optimization
of the CVaR value for a single period can be done efficiently, by utilizing its primal variational
representation (Rockafellar and Uryasev, 2002). In the multi-period setting of a Markov decision
problem (MDP), however, the dynamic optimization of the CVaR value of the total cost is challeng-
ing. To begin, this objective is time-inconsistent. Moreover, as observed by Artzner et al. (2007)
and Shapiro (2009), the optimal action at a point in time may not be completely determined by
the current state of the MDP, but may depend on the entire history, and therefore the conventional
dynamic programming techniques may not work.

More recent work has adopted the idea of state augmentation to overcome this issue: by in-
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troducing an extra state variable, an optimal policy can be sufficiently characterized as a Markov
process defined on this augmented state space. Broadly speaking, these studies develop CVaR MDP
frameworks using two kinds of state augmentation. The first kind introduces an extra state variable
that represents the running cost, and derives the dynamic programming principle from the primal
variational representation of CVaR, i.e., CVaRq[C] = minc∈R{c + 1

qE[(C − c)+]} (see Rockafellar
and Uryasev, 2002). This state augmentation scheme is adopted in, for example, Bäuerle and Ott
(2011); Huang and Guo (2016); Miller and Yang (2017); Chow et al. (2018); Backhoff-Veraguas
and Tangpi (2020). The second kind of state augmentation introduces an extra state variable that
represents the quantile value, and derives the dynamic programming principle from the dual varia-
tional representation of CVaR, i.e., CVaRq[C] = supQ:Q�P, dQ

dP≤q−1 EQ[C] (see Artzner et al., 1999).
The work of Pflug and Pichler (2016); Chow et al. (2015); Chapman et al. (2018); Li et al. (2020)
belongs to this category.

This paper. In this paper, we seek an adaptive liquidation strategy that minimizes the CVaR
value of the implementation shortfall in a continuous-time, infinite-horizon variation of the classical
Almgren-Chriss framework. We adopt the second kind of state augmentation described above. More
specifically, we consider an augmented state space represented as (Xt, Qt), where Xt ∈ R is the
current remaining position size of the trader, and Qt ∈ [0, 1] is a quantile value that represents the
current level of risk neutrality. We observe that the dynamic optimization of the CVaR objective
can be represented as a (continuous-time) stochastic game between the trader who controls the
position process Xt and the adversary who controls the quantile process Qt. By analyzing the Nash
equilibrium of this game, we can identify the minimal CVaR value that the trader can achieve, and
specify the trader’s optimal policy and the adversary’s optimal policy, which are formulated as
time-stationary Markov policies on (Xt, Qt).

Practical contributions. Using our approach, we can express the optimal dynamic liquidation
strategy in an analytic closed-form. This allows us to characterize properties of the optimal strat-
egy, and yields a number of insights consistent with how optimal execution algorithms are widely
employed in practice.

First, we show that the optimal strategy is liquidate-only, i.e., trades in only one direction and
it keeps liquidating until it completes the execution. This is intuitive since, in practice, traders
typically do not want to increase their positions or establish new positions during the liquidation
process. We also observe that the optimal trading strategy becomes more aggressive and trades
more quickly as the level of risk aversion increases. This is also intuitive since price risk can be
minimized by trading quickly.

Second, and more interestingly, we show that the optimal trading strategy is dynamic and
responds to stochastic fluctuations in the price process in a way that accelerates trading (to minimize
price risk) when price movements are favorable, and slows trading (to minimize transaction costs)
when price movements are unfavorable — in other words, it exhibits aggressiveness-in-the-money
(AIM). The intuition behind the optimality of AIM is as follows:
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Recall that the CVaR measure is the tail average beyond the qth quantile — the CVaR objective is
not impacted by cost realizations below this threshold but only requires the average cost above this
threshold to be minimized. As an extreme case, imagine a situation when the price movements have
been so favorable that the trader has earned a large profit from the holding positions and the current
cumulative cost is far below the quantile threshold. The CVaR objective of a trader in this scenario
is not impacted by the cost (so long as it remains below the threshold) and the trader should thus be
willing to pay a large, deterministic transaction cost (up to the gap between the current cumulative
cost and the threshold) so as to complete the execution quickly and minimize the risk of the total
cost exceeding the threshold. In the opposite case, imagine a scenario where the current cumulative
cost is far above the threshold. Since the total cost is very likely to ultimately exceed the threshold,
the CVaR objective of the trader becomes the expected cost and is approximately risk neutral. The
trader is thus encouraged to slow down trading so as to minimize (deterministic) transaction costs
thereafter. As illustrated in these two extreme cases, the optimal strategy responds asymmetrically
to price changes, in the way that it becomes more aggressive in an adverse situation, due to the
intrinsic asymmetry of the CVaR measure.

Our stochastic game interpretation of this dynamic CVaR optimization problem provides an
alternative (and more formal) justification of AIM. On the augmented state space, the adversary’s
quantile process Qt represents the current level of risk neutrality (starting at value q), and is coupled
with the price process. In particular, the adversary’s optimal quantile process Q?t represents the
probability that the current sample path is among the q-fraction of worst outcomes for the trader,
and hence, Q?t increases when the price moves in an unfavorable direction. When Q?t increases,
consequently, the trader becomes more risk-neutral and is encouraged to trade slowly, which is
consistent with AIM.

Third, we are also able to quantify the benefit of dynamic trading by comparing the optimal
dynamic policy to two benchmark static policies: the optimal static policy and an optimized version
of a policy that trades at a constant rate. The later policy is meant to be representative of volume
weighted average price (VWAP) polices that are popular in practice. The relative improvement of
the optimal dynamic policy depends on the problem parameters only through the risk aversion q,
and can be characterized analytically. For moderate levels of risk aversion, the optimal dynamic
policy outperforms the optimal static policy by 5–15%, and outperforms the optimal VWAP policy
by 15–25%. Moreover, relative improvement is increasing in q and grows without bound as q ↗
1, i.e., as the investor becomes more risk neutral. Since most traders using optimal execution
algorithms are large investors trading a small portion of their overall portfolio over a short time
horizon, their utility functions are nearly linear from the perspective of the optimal execution
problem, hence the nearly risk neutral regime (q ≈ 1), where the relative benefits of dynamic
trading are greatest, is also the most practically relevant regime.

Last, numerical experiments yield insight to some useful features of the dynamic optimal policy.
Namely, this policy effectively controls the worst outcomes in the (right) tail of the cost distribution,
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resulting in a cost distribution is very distinguished from the ones induced by deterministic policies.
This feature may appeal to the practitioners who are not particularly interested in optimizing the
CVaR value. For example, we observe that the class of CVaR-optimal dynamic policies achieves
better median performance and better tail probabilities than the class of deterministic policies. See
Figure 10 and the accompanying discussion for further details.

Mathematical contributions. We introduce a novel and technically sound approach to developing
the CVaR MDP framework in the continuous-time setting. To sketch our approach briefly, we first
introduce a scaled version of CVaR that allows us to avoid the ambiguity of CVaR in the corner
case (i.e., when q = 0) and inherently induces the concavity of the objective (Proposition 1). We
then utilize the martingale representation theorem, by which we can rewrite the CVaR objective as
a maximization problem for an adversary who controls the quantile process Qt against the decision
maker (Theorem 1), and the problem can be translated into a continuous-time stochastic game
between the decision maker and the adversary who are competing over the expected value of the
risk-adjusted outcome (Theorem 2). After this step, the objective now decomposes over time,
hence we can develop a CVaR dynamic programming principle (Theorem 3). This naturally leads
to the Hamilton-Jacobi-Bellman (HJB) partial differential equations that characterize the optimal
solution. The HJB equation is separable across the state variables, and hence admits a closed form
solution for the value function.

From the HJB equation, we are able to define candidate optimal control policies for the trader
and adversary. Unfortunately, we are not able to show that these policies as feasible. Instead, we
construct a series of feasible policies that converge pointwise to the candidate optimal policy and
in value to the optimal value function (see Theorem 6 and the accompanying discussion).

Our approach leverages the idea of state augmentation that incorporates the quantile value as
an extra state variable, which has been suggested and utilized in prior work (Pflug and Pichler,
2016; Chow et al., 2015; Chapman et al., 2018; Li et al., 2020), but in exclusively discrete-time
settings. To our knowledge, our work is the first to apply this in continuous-time, which introduces
new technical challenges. We clearly take advantage of the continuous-time setting: the martingale
representation theorem, which is intrinsically continuous-time, is fundamental in our analysis as it
allows us to parameterize the adversary’s control policy with a real-valued stochastic process that
can be tractably optimized. Moreover, the choice of continuous-time is critical in this application,
since the optimization of an analogous discrete-time model would involve a Bellman equation that
is not separable, and hence is unlikely to admit an analytic solution (see the discussion at the end
of §3.1).

As our problem is a special case of a continuous-time linear-quadratic-Gaussian control problem
with a CVaR objective, these technical results may be interesting in broader settings, and feed into
the broader emerging literature of continuous-time differential games.

Organization of paper. In §2, we introduce the notation and formally describe the model and
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the problem. In §3, we develop the CVaR MDP framework for which we sequentially introduce a
martingale representation of the CVaR objective, the game-theoretic representation of the problem,
and the Markov policies defined on the augmented state space. In §4, we derive the HJB equation,
identify its solution, and characterize the optimal liquidation strategy. In §5, we compare the
optimal adaptive strategy with two deterministic strategies: the optimal deterministic strategy
and the optimized VWAP strategy. In §6, we provide simulation results that illustrate the optimal
strategy. In the appendix, we provide the proofs that are deferred from §2–§5.

2. Problem

We consider a filtered probability space
(
Ω,F ,F = (Ft)t≥0,P

)
, where F is a natural filtration of a

Brownian motion (Wt)t≥0 that satisfies the usual conditions. We denote by Lp(Ω,F ,P) (or simply
by Lp) the set of F–measurable random variables X : Ω → R such that E|X|p < ∞. Given a
sequence of random variables (Xn)n∈N, it is said that Xn

Lp→ X if limn→∞ E|Xn − X|p = 0. The
time index set is denoted by T , [0,∞). We also define P to be the set of progressively measurable
stochastic processes in this filtered probability space. We denote R+ , [0,∞) and R− , (−∞, 0].

2.1. Model

We consider a continuous-time and infinite-horizon version of the setting of Almgren and Chriss
(2000). We postulate a trader who wants to liquidate x ∈ X units of an asset over an infinite-
time horizon.1 Here, x can be negative if the trader wants to acquire the asset. We define X ,
[−M,M ] ⊂ R, where M ≥ 0 is an arbitrary large number2 that represents the largest possible
position size that the trader is allowed to own.

Liquidation strategy. The trader’s liquidation policy is represented with a real-valued continuous-
time stochastic process π , (πt)t≥0, where πt ∈ R specifies the liquidation rate at time t. Given an
initial position size x and a liquidation strategy π, the trader’s position process Xx,π , (Xx,π

t )t≥0

is determined by
Xx,π
t = x−

∫ t

s=0
πsds;

i.e., the trader liquidates πt units of the asset per unit time (or acquires −πt units of the asset
per unit time if πt < 0). While deferring a formal statement to the end of this subsection, we
will restrict our attention to the policies under which the trader’s position varies continuously over
time (i.e., involves no impulse trades) and vanishes eventually (i.e., converges to zero as t goes to

1The choice of an infinite-horizon setting is important since as it will allow an analytical solution of the problem. In
particular, in an infinite-horizon setting, the optimal policy is stationary over time, and hence time can be eliminated
as a state variable. As we will see in subsequent sections, this results in a simpler Hamilton-Jacobi-Bellman (HJB)
equation that can be solved analytically. Beyond this, in some sense the infinite-horizon setting is more elegant from
a modeling perspective since it endogenizes the effective time horizon of the trader dynamically as a function of risk
aversion. That said, the optimal policy for a finite-horizon variation of our setting could be obtained via a numerical
solution of the HJB equation, and we expect the qualitative insights to be no different.

2We require that the position size be bounded in order to resolve technical difficulties (see Remark 1).
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infinity).

Liquidation cost. Following the framework of Almgren and Chriss (2000), we define the cost process
(or loss process) Cx,π , (Cx,πt )t≥0 as

Cx,πt ,
∫ t

s=0

1
2ηπ

2
sds−

∫ t

s=0
σXx,π

s dWs. (1)

The first term
∫ t
s=0

1
2ηπ

2
sds represents the (cumulative) transaction cost incurred by the temporary

price impact, where the coefficient η > 0 reflects the illiquidity of the asset. The second term∫ t
s=0 σX

x,π
s dWs represents the (cumulative) loss incurred by the random fluctuation of the market

price, where σ > 0 is the volatility of the price process and Wt is the standard Brownian motion.
The total cost (i.e., total implementation shortfall) Cx,π∞ , limt→∞C

x,π
t is a random variable of

interest that we want to minimize via a CVaR objective.

Note that we do not consider permanent price impact in our formulation. Within the continuous-
time Almgren–Chriss framework, it is well known that the contribution of permanent linear price
impact to the implementation shortfall is path-independent; i.e., it does not depend on the liquida-
tion strategy as long as the strategy clears all the positions eventually.3 Therefore, without loss of
generality, we can ignore the presence of permanent impact since it does not make any difference
in the trader’s decision making. See Almgren and Chriss (2000) for details.

Admissible strategies. We now formally define the set of admissible policies Π(x) as

Π(x) ,

π : T× Ω→ R

∣∣∣∣∣∣∣∣∣
π ∈ P,
E
[(∫∞

t=0 π
2
t dt
)2]

<∞, E
[∫∞
t=0 |X

x,π
t |2dt

]
<∞,

Xx,π
t ∈ X, ∀t ≥ 0

 . (2)

An admissible policy π ∈ Π(x) can be dynamic and so it can adjust the trading rate adaptively to the
price changes. By this definition, impulse trades are not allowed by the constraint E

[(∫∞
t=0 π

2
t dt
)2]

<

∞, and a non-vanishing position is also not allowed by the constraint E
[∫∞
t=0 |X

x,π
t |2dt

]
<∞. These

conditions are to guarantee that the limit Cx,π∞ , limt→∞C
x,π
t is an integrable random variable:

individual terms in (1) converge in L2 as t→∞, and therefore Cx,πt
L2
→ Cx,π∞ for some Cx,π∞ ∈ L2.

Remark 1. The last condition Xx,π
t ∈ X , [−M,M ] is seemingly restrictive, but enforcing bound-

edness of the position path is merely a technical condition necessary for our later analysis. In
particular, we will see that under the optimal policy, the position size will be monotonically decreas-
ing towards zero over time. Therefore, we need only choose M so that the initial position size is
feasible, i.e., |x| ≤M . Beyond this, the choice of M will not be a binding constraint: it will neither
influence the optimal policy nor the optimal value function.

3Suppose that liquidating the asset at rate v permanently shifts the market price at rate −λv, i.e., permanent
linear price impact. Given a feasible policy π, the associated transaction costs can be expressed

∫∞
t=0 λπtX

x,π
t dt,

which is always equal to 1
2λx

2, independent of the policy, given that limt→∞X
x,π
t = 0.
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2.2. Scaled Conditional Value-at-Risk

The conditional value-at-risk (CVaR) at a quantile level q ∈ (0, 1] is a mapping from L1(Ω,F ,P)
to R. While there exist several definitions of CVaR in the literature, we consider the one based on
its dual representation as a coherent risk measure (Artzner et al., 1999; Shapiro, 2009): given a
random variable C ∈ L1,

CVaRq[C] , sup
Q†∈Q†(q)

E
[
CQ†

]
where Q†(q) ,

{
Q† ∈ L∞(Ω,F ,P), 0 ≤ Q† ≤ 1

q
, EQ† = 1

}
,

(3)
i.e., it is defined as a maximization over a random variable Q† that has bounded support [0, 1/q]
and an expected value of one (or equivalently, a maximization over a probability measure such that
it is absolutely continuous with respect to P and its Radon–Nikodyn derivative with respect to P
is upper bounded by 1/q almost surely).

We introduce a scaled version of the CVaR measure, which surprisingly simplifies our analysis.

Definition 1 (Scaled Conditional Value-at-Risk). Given a random variable C ∈ L1(Ω,F ,P) and a
quantile q ∈ [0, 1], the scaled conditional value-at-risk (S-CVaR) at level q is

S-CVaRq[C] , sup
Q∈Q(q)

E [CQ] , (4)

where Q(q) represents the risk envelope:

Q(q) , {Q ∈ L∞(Ω,F ,P) | 0 ≤ Q ≤ 1, EQ = q} .

The S-CVaR measure is obtained by simply scaling the risk envelope of CVaR by q. As a result,
S-CVaRq[C] is also given by q × CVaRq[C] for q 6= 0. Nevertheless, it naturally incorporates the
case q = 0 into its definition, for which CVaR is not well defined.4 It further has the following
useful properties:

Proposition 1 (Properties of S-CVaR). For any random variable C ∈ L1, S-CVaRq[C] satisfies the
following properties:

(i) S-CVaRq[C] = q × CVaRq[C], for any q ∈ (0, 1].

(ii) S-CVaR0[C] = 0 and S-CVaR1[C] = EC.

(iii) |S-CVaRq[C]| ≤ E|C| and S-CVaRq[C] ≥ qEC for any q ∈ [0, 1].

(iv) The mapping q 7→ S-CVaRq[C] is concave and continuous on [0, 1].
4When q = 0, CVaR0[C] is typically defined as the essential supremum of C ∈ L1, which can be infinite if the

loss distribution has an unbounded support. We have defined the S-CVaR measure using the dual representation of
CVaR so that we can effectively avoid the ambiguity at q = 0.
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(v) Suppose that C is a continuous random variable whose distribution is atomless. Then,

S-CVaRq[C] = E
[
CI{C≥F−1

C (1−q)}
]
,

where F−1
C (·) is the inverse distribution function of C, and CVaRq[C] = E

[
C
∣∣∣C ≥ F−1

C (1− q)
]
.

The proof can be found in Appendix B. Properties (i)–(iii) provide basic characterizations of
S-CVaR. The property (v) provides an interpretation of S-CVaR as a truncated average as opposed
to the interpretation of CVaR as a conditional average. We particularly highlight property (iv)
that shows the concavity and continuity of the S-CVaR value with respect to q, which is a crucial
property that will be exploited in our analysis.

One can interpret the definition (4) as a maximization problem for an adversary. This adversary
selects a set of scenarios so as to maximize the average cost within the selected scenario, given a
constraint that the total measure of the selected scenarios should be q. Informally,5 the optimized
random variable Q? is an indicator random variable such that Q?(ω) = 1 if the scenario ω is among
the worst q-fraction of the scenarios, and Q?(ω) = 0 otherwise.

2.3. Risk-sensitive Execution with a CVaR Objective

We now introduce the CVaR risk criterion into the setting described in §2.1. In particular, we
seek an adaptive strategy that minimizes the CVaR value of the implementation shortfall, given an
initial position x ∈ X and a target quantile q ∈ (0, 1]. Without loss of generality, we formulate this
optimization problem via an S-CVaR objective and define the value function V : X× [0, 1]→ R as

V (x, q) , inf
π∈Π(x)

S-CVaRq [Cx,π∞ ] . (∗)

Note that the above formulation includes the case q = 0. By Proposition 1, the value function
V (x, q) is well-defined at q = 0, and the minimal CVaR value is simply given by V (x, q)/q for any
q 6= 0. We aim to identify the optimal value function V (x, q) as well as its corresponding optimal
liquidation strategy π?.

Recall that the objective S-CVaRq[Cx,π∞ ] concerns the worst q-fraction of outcomes. When
q = 1, the problem reduces to a risk-neutral liquidation problem. When q takes a smaller value,
the problem is equivalent to considering a more risk-averse trader who concerns a smaller fraction
of worst cases, being wary of more extreme cases. We anticipate that the trader uses this quantile
value q ∈ [0, 1] as an input to our algorithm so as to control the level of risk-aversion that he wants
to achieve. In practice, we do not expect the traders to use an extremely small quantile value such
as q = 0.01 or q = 0.05: since they encounter this sort of liquidation task often, possibly on a daily
basis, it would be too conservative for them to optimize their performance in the worst 1% or 5%

5When the loss distribution has an atom at the qth quantile, the extremal random variable Q?(ω) may take a
fractional value.
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of cases at a cost of sacrificing their performance in the normal 99% or 95% of cases.

3. CVaR Dynamic Programming Principle

Using the definition of the S-CVaR measure (4), the risk-sensitive optimal execution problem (∗)
can be formulated as

V (x, q) = inf
π∈Π(x)

sup
Q∈Q(q)

E [Cx,π∞ Q] .

As discussed in §2.2, we can think of an adversary who optimizes a random variable Q ∈ Q(q) so as
to select the worst q-fraction of sample paths against the trader who employs a liquidation policy
π ∈ Π(x). In this section, we reformulate the adversary’s optimization problem as an optimization
over a real-valued continuous-time stochastic process rather than a random variable, and interpret
the risk-sensitive optimal control problem as a continuous-time stochastic game between the trader
and the adversary. To this end, we develop a continuous-time dynamic programming principle by
exploiting the recursive structure of this game.

3.1. Martingale Representation of CVaR Objective

We consider an arbitrary random variable C ∈ L1(Ω,F ,P) and derive an alternative representation
of S-CVaRq[C]. The results in this subsection are valid not only in the context of the liquidation
problem, but also in any filtered probability space generated by a Brownian motion.

We define the adversary’s policy as a real-valued continuous-time stochastic process γ , (γt)t≥0,
which determines the adversary’s quantile process Qq,γ , (Qq,γt )t≥0:

Qq,γt = q +
∫ t

s=0
γs dWs,

whereW = (Wt)t≥0 is the Brownian motion that drives the random price fluctuation. We sometimes
call γt the quantile diffusion rate by analogy to the liquidation rate πt.

The set of admissible adversary’s policies is defined as

Γ(q) , {γ : T× Ω→ R | γ ∈ P, 0 ≤ Qq,γt ≤ 1,∀t ≥ 0} . (5)

Given an admissible adversary’s policy γ ∈ Γ(q), its corresponding quantile process Qq,γ is a (local)
martingale starting at q ∈ [0, 1] whose diffusion term is governed by γ. In particular, the quantile
process is required to take values within [0, 1] and, as a result, it has the following properties (the
proof is provided in Appendix C):

Proposition 2 (Properties of the adversary’s quantile process Q). For any γ ∈ Γ(q),

(i) (Qq,γt )t≥0 is a continuous and bounded martingale taking values in [0, 1], and hence E[Qq,γτ ] = q

for any stopping time τ .
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(ii) Qq,γ∞ , limt→∞Q
q,γ
t exists in [0, 1] almost surely, and also E[Qq,γ∞ ] = q.

(iii) Once Qq,γt hits 0 or 1, it never escapes thereafter.

By the martingale representation theorem, any random variable Q in the risk envelope Q(q) can
be represented as the limit of a quantile process Qq,γ for some γ ∈ Γ(q), and vice versa:

Lemma 1. For any q ∈ [0, 1], Q(q) = {Qq,γ∞ |γ ∈ Γ(q)}.

Proof. Consider an arbitrary Q̃ ∈ Q(q), and Doob martingale (Qt)t≥0 generated by Q̃, i.e., Qt ,
E[Q̃|Ft] for each t (we have limt→∞Qt = Q̃ and Q0 = EQ̃ = q). By the martingale representation
theorem (Protter, 2015, Thm. 43 in Chap. IV), there exists a predictable process γ such that
Qt = Q0 +

∫ t
s=0 γsdWs. Since Qt = E[Q̃|Ft] ∈ [0, 1] for any t, we have an admissible adversary’s

policy γ ∈ Γ(q) and therefore Q̃ ∈ {Qq,γ∞ |γ ∈ Γ(q)} and Q(q) ⊆ {Qq,γ∞ |γ ∈ Γ(q)}.

Now consider an arbitrary γ ∈ Γ(q) and let Q̃ , Qq,γ∞ . Trivially, EQ̃ = Q0 = q and Q̃ ∈ [0, 1].
Therefore, Qq,γ∞ ∈ Q(q), and hence Q(q) ⊇ {Qq,γ∞ |γ ∈ Γ(q)}. �

This alternative representation of the risk envelope Q(q) immediately leads to the following
representation of the S-CVaR value, under which the adversary optimizes over the set of stochastic
processes instead of the set of random variables:

Theorem 1 (Martingale representation of the CVaR objective). For any given random variable C ∈
L1(Ω,F ,P) and q ∈ [0, 1], we have

S-CVaRq[C] = sup
γ∈Γ(q)

E [CQq,γ∞ ] . (6)

Proof. The result immediately follows from Lemma 1 and the definition of S-CVaR (4). �

To better understand this adversary’s optimization problem, consider a discrete-time setting
with two periods, six sample paths and q = 1/2, as illustrated in Figure 1. The adversary is asked
to assign the quantile values on the individual nodes so as to maximize the objective, E[CQ2], given
a constraint that the resulting quantile process (Q0, Q1, Q2) needs to be a martingale.
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Figure 1: An illustration of the discrete-time version of the adversary’s martingale in a two-period
setting with q = 1

2 . The underlying probability space is represented with a tree, in which each node
represents the current state of the system, and each branch represents a possible transition from one
state to another. We assume that six sample paths are equally likely to be realized. The label next to
each terminal node represents the total cost C incurred along each sample path. The value in each node
represents the value of the (optimal) adversary’s martingale process at each state.

It is easy to see that the adversary’s optimal solution is to select the worst q-fraction of sample
paths, i.e., to assign the quantile value 1 to the q-fraction of terminal nodes with the largest
realized cost and assign the quantile value 0 to the rest of terminal nodes. The quantile values of
the non-terminal nodes are sequentially determined via backward induction (from t = 2 to t = 0)
by averaging the quantile values of subsequent nodes. Here, the quantile value at each node means
how likely the current sample path ends at one of the terminal nodes selected by the adversary.6

We can alternatively interpret this optimization problem as a sequential decision-making prob-
lem that the adversary assigns the quantile values in a forward direction (from t = 0 to t = 2).
It begins with assigning the quantile value q to the root node. Starting from the root node, the
adversary is asked to allocate quantile values to the subsequent nodes given a budget constraint
that the average of the quantile values assigned to these nodes should equal the quantile value
at the current node. This is repeated until all terminal nodes get assigned their quantile values.
Here, the quantile value at each node means how much fraction of sample paths can be selected
thereafter, and the budget constraint guarantees the resulting quantile process be a martingale.

The latter interpretation is closed related to Theorem 1. Indeed, for example, can consider a
binomial tree model as a discrete-time approximation of the underlying Brownian motion, in which
every node has two branches representing the events of price moving up or down by a small amount.
In this binomial approximation, the quantile value allocation problem that the adversary solves at
each node involves only one decision variable: given the current quantile value Qt, the allocation

6Consider the optimal martingale Q? that solves (6), and recall that the random variable Q?∞(ω) indicates whether
the sample path ω is among the worst q-fraction of scenarios. As a Doob martingale, the quantile process Q?t =
E[Q?∞|Ft] is its running estizmate at time t, i.e., the likelihood that the current sample path will end up with one of
the worst scenarios.
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of next quantile values is of the form
{
(1 + θt)Qt, (1− θt)Qt

}
, where θt is the real-valued decision

variable. Here, determining the value of θt is effectively equivalent to determining the diffusion rate
of Qt, which is in fact the adversary’s policy γt in our formulation.

We highlight that this martingale representation greatly simplifies the adversary’s optimization
problem and is only available in a continuous-time setting. In the discrete-time setting investigated
in Pflug and Pichler (2016); Chow et al. (2015); Chapman et al. (2018); Li et al. (2020), for example,
the adversary in each period needs to solve a much more complicated optimization that may involve
many decision variables (if there are n possible random outcomes at a state, the quantile value
allocation problem involves n− 1 real-valued decision variables). It may not easy in such cases to
solve the adversary’s optimization problem even numerically.

3.2. Risk-sensitive Liquidation as a Continuous-time Stochastic Game

We now return to the liquidation problem, and define an outcome function J as a function of the
trader’s policy π ∈ Π(x) and the adversary’s policy γ ∈ Γ(q) at each x ∈ X and q ∈ [0, 1]:

J(π, γ;x, q) , E [Cx,π∞ Qq,γ∞ ] .

By Theorem 1, the value function (∗) can be formulated as

V (x, q) = inf
π∈Π(x)

sup
γ∈Γ(q)

J(π, γ;x, q).

The following theorem characterizes this value function as an equilibrium outcome of a continuous-
time stochastic game between the trader and the adversary.

Theorem 2 (CVaR optimization as a continuous-time stochastic game). The value function V (x, q)
is the outcome at the Nash equilibrium of the zero-sum game in which the trader and the adversary
compete over the outcome J ,

V (x, q) = inf
π∈Π(x)

max
γ∈Γ(q)

J(π, γ;x, q) = max
γ∈Γ(q)

inf
π∈Π(x)

J(π, γ;x, q),

where an optimal solution γ ∈ Γ(q) must exist for each maximization.

Theorem 2 states that the minimax solution equals the maximin solution. This means that the
value function is, as a saddle point, the equilibrium outcome at which each player simultaneously
plays the best response against the other player’s strategy. This may not always hold true for a
general class of risk-sensitive control problems: the convexity of the outcome function with respect
to the trader’s policy and the convexity of the policy space are required in our proof (Appendix
C.1) in order to apply Sion’s minimax theorem (Sion, 1958).

The following remark provides an alternative interpretation of this game based on the Girsanov
theorem.
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Remark 2. Recall that the dual representation of the CVaR objective (3) involves a multiplication
with a random variable Q†, which corresponds to an absolutely continuous change of measure with
Radon-Nikodym derivative Q†. In terms of the adversary’s quantile process Qq,γ, this change of
measure can by written as Q† , Qq,γ∞ /q. By the Girsanov theorem, the price process has a drift
under this new measure, and is given by

dP = σdW̃t + σ
γt
Qq,γt

dt,

where W̃ is a Brownian motion under the new measure. In other words, the trader’s optimization
problem given the adversary’s policy γ is can also be viewed as a risk-neutral liquidation problem
under altered price dynamics in the presence of adversary who can introduce drift into the price
process.

3.3. CVaR Dynamic Programming Principle

In this subsection, we develop a continuous-time dynamic programming principle. We first state a
proposition that characterizes a temporal structure of the game.

Proposition 3 (Time decomposition). Fix x ∈ X and q ∈ [0, 1]. For any trader’s policy π ∈ Π(x),
adversary’s policy γ ∈ Γ(q), and stopping time τ , we have

J(π, γ;x, q) = E
[
Cx,πτ Qq,γτ + E

[(
Cx,π∞ − Cx,πτ

)
Qq,γ∞

∣∣Fτ ]] .
Proof. Observe that Cx,πτ is Fτ -measurable and E[Qq,γ∞ |Fτ ] = Qq,γτ sinceQq,γ is a martingale. Utiliz-
ing the tower property, we obtain J(π, γ;x, q) = E [Cx,π∞ Qq,γ∞ ] = E [Cx,π∞ Qq,γ∞ − (Cx,π∞ − Cx,πτ )Qq,γ∞ ] =
E
[
E
(
Cx,πτ Qq,γ∞ |Fτ

)
+ E

(
(Cx,π∞ − Cx,πτ )Qq,γ∞ |Fτ

)]
= E

[
Cx,πτ Qq,γτ + E

(
(Cx,π∞ − Cx,πτ )Qq,γ∞ |Fτ

)]
. �

Note that Cx,π∞ − Cx,πτ represents the cost realized after time τ . Proposition 3 states that the
final outcome can be decomposed into two terms: one term describes the subgame before time τ ,
and the other term describes the subgame after time τ .

Observe that, in the subgame after time τ , the trader is liquidatingXx,π
τ shares and the adversary

is selecting a Qq,γτ -fraction of the future scenarios realized thereafter. This time decomposition
naturally leads to the following dynamic programming principle:

Theorem 3 (CVaR dynamic programming principle). For any x ∈ X, q ∈ [0, 1], and a stopping time
τ with E[τ ] <∞, we have

V (x, q) = inf
π∈Π(x)

sup
γ∈Γ(q)

E [Cx,πτ Qq,γτ + V (Xx,π
τ , Qq,γτ )] . (7)

Theorem 3 provides the optimality principle in the form of Bellman’s equation: at the equilib-
rium, the outcome after time τ can be sufficiently described by the subgame equilibrium V (Xx,π

τ , Qq,γτ ).
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The trader is minimizing the (risk-adjusted) cost up to time τ in a consideration of his future state
Xτ , while the adversary is simultaneously maximizing the (risk-adjusted) cost up to time τ in a
consideration of his future state Qτ , and the subgame starts at those future states. Like Theorem
2, Theorem 3 relies on the saddle-point characterization of the equilibrium; i.e., it does not matter
which player commits his policy first in the subgame. The formal proof can be found in Appendix
C.3.

3.4. (X, Q)-Markov Policies

Theorem 3 implies that the augmented state space (Xt, Qt) is sufficient to describe the remaining
subgame at time t. Therefore, if a policy is reasonable, its action at time t (πt or γt) should be
determined by the current position size Xt and the current quantile value Qt. To formalize this
idea, we introduce time-stationary Markov policies running on this augmented state space:

Definition 2 ( (X,Q)-Markov policies ). We say that a trader’s policy π is an (X,Q)-Markov policy
coupled with γ if

πt(ω) = f (Xx,π
t (ω), Qq,γt (ω)) , ∀t, ω (8)

for some measurable function f : R× [0, 1]→ R.

Similarly, an adversary’s policy γ is an (X,Q)-Markov policy coupled with π if

γt(ω) = g (Xx,π
t (ω), Qq,γt (ω)) (9)

for some measurable function g : R× [0, 1]→ R.

A policy pair (π, γ) is a mutually coupled (X,Q)-Markov policy pair if both (8) and (9) hold.

An (X,Q)-Markov policy is characterized by a function defined on the augmented state space.
The function f or g specifies the liquidation rate or the quantile diffusion rate when the current
position size is x and the current quantile level is q. Recall that we have defined a policy, π or γ,
as a continuous-time stochastic process adapted to the Brownian motion, i.e., as a (progressively
measurable) mapping π : T × Ω → R. Strictly speaking, the function f or g does not completely
determine one player’s policy unless the other player’s policy is specified. To avoid this ambiguity,
when we describe an (X,Q)-Markov policy, we specify the other player’s policy that is coupled with
it.

To better understand, consider the policies π and γ that are mutually coupled (X,Q)-Markov
policies induced by functions f and g. Under π and γ, the system is completely described by
the coupled processes (Xt, Qt)t≥0 on the augmented state space, whose dynamics are given by the
following stochastic differential equations:

dXt = −f (Xt, Qt) dt, dQt = g (Xt, Qt) dWt,
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with the initial states X0 = x and Q0 = q. Even if γ is not an (X,Q)-Markov policy, we can still
consider an (X,Q)-Markov policy π that is induced by f and coupled with γ, and then the position
process will be given by dXt = −f (Xt, Q

q,γ
t ) dt.

Note also that the admissibility of an (X,Q)-Markov policy is not always guaranteed: it may
fail to satisfy the admissible conditions given in (2) or (5), depending on the generating function
f or g as well as the other player’s policy coupled with it. See the discussions before and after
Theorem 6.

4. Optimal Solution

In this section, we utilize the CVaR dynamic programming principle (Theorem 3) to derive a
Hamilton–Jacobi–Bellman (HJB) equation for the risk-sensitive optimal execution problem, and
identify the functional form of the value function and the optimal policies by solving this HJB
equation. For all propositions/theorems stated in this section, we defer their proofs to Appendix
D.

4.1. Minimal CVaR Cost

We first state Dynkin’s formula that we can apply to the right-hand side of (7) in Theorem 3 so as
to represent it as a time-integration.

Proposition 4 (Dynkin’s formula). Consider a function V̂ : X × [0, 1] → R such that V̂ ∈ C1,2(X ×
[0, 1]). For any π ∈ Π(x), γ ∈ Γ(q), and stopping time τ , we have

E
[
Cx,πτ Qq,γτ + V̂ (Xx,π

τ , Qq,γτ )
]

= V̂ (x, q)

+ E
[∫ τ

t=0

{
η

2Q
q,γ
t π2

t − V̂x (Xx,π
t , Qq,γt )πt

}
dt

]
+ E

[∫ τ

t=0

{1
2 V̂qq (Xx,π

t , Qq,γt ) γ2
t − σX

x,π
t γt

}
dt

]
,

where V̂x(x, q) , ∂
∂x V̂ (x, q) and V̂qq(x, q) , ∂2

∂q2 V̂ (x, q).

For the sake of argument, suppose that the value function V can be plugged into Proposition 4
in the place of V̂ . When considering an infinitesimal time interval (i.e., τ = dt), we have

V (x, q) Thm 3= inf
π∈Π(x)

sup
γ∈Γ(q)

E [Cx,πτ Qq,γτ + V (Xx,π
τ , Qq,γτ )]

Prop 4= inf
π∈Π(x)

sup
γ∈Γ(q)

{
V (x, q) +

(
η

2qπ
2
0 − Vx (x, q)π0

)
dt+

(1
2Vqq (x, q) γ2

0 − σxγ0

)
dt

}
= V (x, q) + inf

π∈Π(x)

{
η

2qπ
2
0 − Vx (x, q)π0

}
dt+ sup

γ∈Γ(q)

{1
2Vqq (x, q) γ2

0 − σxγ0

}
dt.

Observe that the terms associated with the trader’s policy π and the terms associated with the
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adversary’s policy γ can be separated. This informal argument suggests that the value function V
has to satisfy the following HJB equation:

min
v∈R

{
η

2qv
2 − Vx (x, q) v

}
+ max

w∈R

{1
2Vqq (x, q)w2 − σxw

}
= 0.

In the following theorem, we make this argument more formally and identify the sufficient conditions
to be the optimal value function.

Theorem 4 (Verification theorem). Consider a function V ? : X× [0, 1]→ R+ satisfying

(i) V ? ∈ C1,2(X× (0, 1)), and, for any x ∈ X and q ∈ (0, 1), it satisfies

min
v∈R

{
η

2qv
2 − V ?

x (x, q) v
}

+ max
w∈R

{1
2V

?
qq (x, q)w2 − σxw

}
= 0, (10)

where V ?
x ,

∂V ?

∂x and V ?
qq ,

∂2V ?

∂q2 .

(ii) V ?(0, q) = 0 for all q ∈ [0, 1], and V ?(x, 0) = V ?(x, 1) = 0 for all x ∈ X.

(iii) V ?(x, q) = V ?(−x, q) for all x ∈ X and q ∈ [0, 1], and V ?(x, q) is increasing in x on [0,M ].

(iv) V ?x (x,q)
q is increasing in x on X for each q ∈ (0, 1), and decreasing in q on (0, 1) for each

x ∈ X.

(v) x
V ?qq(x,q)

is decreasing in x on [0,M ].

Then, V (x, q) = V ?(x, q) for all x ∈ X and q ∈ [0, 1].

In Theorem 4, conditions (i) and (ii) specify the HJB equation and the boundary conditions
that the value function has to satisfy. In fact, the value function V can be uniquely determined by
these two conditions. However, the other conditions, (iii)–(v), are also necessary to show that this
value is indeed achievable within our definition of the admissible policies, Π(x) and Γ(q). More
specifically, condition (iii) asserts the symmetry and the monotonicity of the value function with
respect to position size x, and conditions (iv) and (v) assert certain behaviors of the optimal policies
that are implied from the HJB equation (e.g., the optimal liquidation strategy should trade more
aggressively when liquidating a larger quantity). While these properties of the value function are
natural given the problem structure, they serve as regularity conditions in our proof to resolve
technical issues arising in the convergence analysis.

Observe that the optimization terms in the HJB equation (10) are separated and each of them
is a trivial quadratic optimization problem. By solving these optimizations explicitly, the HJB
equation can be translated into the following partial differential equation:

V 2
x (x, q)× Vqq(x, q) = −σ2η × x2 × q.

It turns out that this differential equation with the boundary condition (ii) admits a separable
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solution. The value function V (x, q) can be represented as a product of a function of x and a
function of q, as identified in the following theorem.

Theorem 5 (Value function). Consider a function V ? : X× [0, 1]→ R defined as

V ?(x, q) , (3/4)
2
3 × σ

2
3 η

1
3 × |x|

4
3 × ϕ(q), (11)

where ϕ : [0, 1]→ R+ is the solution in C((0, 1)) to the following differential equation:

ϕ2(q)× ϕ′′(q) = −q, ∀q ∈ (0, 1), and ϕ(0) = ϕ(1) = 0. (12)

Then, V ? satisfies the conditions of Theorem 4, and hence V (x, q) = V ?(x, q) for all x ∈ X and
q ∈ [0, 1].
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Figure 2: (Left) Value function V (x, q) that represents the minimal S-CVaR loss (i.e., S-CVaRq[C∞])
at a quantile level q when liquidating x units of an asset given that σ = η = 1. The closed-form
expression is provided in (11). (Right) Function ϕ(q) that is derived in Proposition 5. The curve
{(q, ϕ(q))}q∈[0,1] is represented in parametric form, in which the left part of the curve is represented as
{(qL(θ), ϕL(θ))}θ∈[0,∞], and the right part of the curve is represented as {(qR(θ), ϕR(θ))}θ∈[0,θ̄].

The differential equation of form (12) is known as the Emden-Fowler equation (Polyanin and
Zaitsev, 2003, 2.3.27), and its solution can be expressed in parametric form as follows:

Proposition 5 (Parametric representation of ϕ(q)). The function ϕ(q) can be represented in a para-
metric form that admits a closed-form expression. Define

ZL(θ) , − 2
π
K1/3(θ), ZR(θ) ,

√
3J1/3(θ)− Y1/3(θ)

where J and Y are the first and second kinds of Bessel functions, and K is the second kind of
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modified Bessel function. Further define

θ̄ , inf{θ > 0 : ZR(θ) = 0} ≈ 2.3834, a ,
1

θ̄
4
3
(
Z ′R(θ̄)

)2 ≈ 0.2910, b , a (9/2)
1
3 ≈ 0.1763.

Then, the curve {(q, ϕ(q))}q∈[0,1] is parameterized as

{(q, ϕ(q))}q∈[0,1] = {(qL(θ), ϕL(θ))}θ∈[0,∞]
⋃
{(qR(θ), ϕR(θ))}θ∈[0,θ̄] ,

where7

qL(θ) , aθ−
2
3

[(
θZ ′L(θ) + 1

3ZL(θ)
)2
− θ2Z2

L(θ)
]
, ϕL(θ) , bθ

2
3Z2

L(θ), (13)

and
qR(θ) , aθ−

2
3

[(
θZ ′R(θ) + 1

3ZR(θ)
)2

+ θ2Z2
R(θ)

]
, ϕR(θ) , bθ

2
3Z2

R(θ). (14)

4.2. Optimal Adaptive Liquidation Strategy

Let f?(x, q) and g?(x, q) be, respectively, the minimizer and the maximizer of the optimization
terms in the HJB equation (10), i.e.,

f?(x, q) , argmin
v∈R

{
η

2qv
2 − Vx (x, q) v

}
=Vx(x, q)

ηq
= (3/4)−

1
3 × σ

2
3 η−

2
3 × x

1
3 × ϕ(q)

q
, (15)

g?(x, q) , argmax
w∈R

{1
2Vqq (x, q)w2 − σxw

}
= σx

Vqq(x, q)
= −(3/4)−

2
3 × σ

1
3 η−

1
3 × x−

1
3 × ϕ2(q)

q
,(16)

where we define x
1
3 = −|x|

1
3 for x < 0. The function f?(x, q) specifies the trader’s optimal

liquidation rate when the current position size is x and the current quantile level is q, and similarly,
the function g?(x, q) specifies the adversary’s optimal quantile diffusion rate in that situation.
We can naturally postulate mutually coupled (X,Q)-Markov policies π? and γ? induced by these
functions f? and g?, which are characterizing the equilibrium of the stochastic game.8 Under
policies π? and γ?, the system is described by the following stochastic differential equations:

dXt = −f? (Xt, Qt) dt, dQt = g? (Xt, Qt) dWt, (17)

with X0 = x and Q0 = q.
7The values of ZL(θ) and ZR(θ) are not defined when θ = 0. However, the limit points (e.g., limθ↘0(qL(θ), ϕL(θ)),

limθ↗∞(qL(θ), ϕL(θ))) do exist, and our parametric representation includes those limit points.
8This does not mean that the policy π? is optimal against any adversary’s policy γ, nor an (X,Q)-Markov policy

induced by f? and coupled with γ is the best response against γ. It merely means that π? is the best response
against γ? only, and vice versa. In order to obtain a best response against an arbitrary adversary’s policy γ ∈ Γ(q),
we may need to characterize the best possible performance against γ, e.g., V (x, q; γ) , infπ∈Π(x) J(π, γ;x, q), and
derive and solve the HJB equation associated with it. Nevertheless, the policy π? is the optimal liquidation strategy
that minimizes the CVaR value of implementation shortfall.
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Figure 3: Optimal trading rate function f?(x, q) (left) and optimal quantile diffusion rate function
g?(x, q) (right) given that σ = η = 1. The closed-form expressions are provided in (15) and (16).

However, we cannot directly show that the policies π? and γ? satisfy the admissibility conditions
introduced in (2) and (5), because the functions f? and g? exhibit extreme behaviors near the
boundaries, as shown in Figure 3. For example, if Qt ↘ 0, the liquidation rate πt may increase
unboundedly since limq↘0 f

?(x, q) =∞, and thus may violate the condition E
[(∫∞

t=0 π
2
t dt
)2]

<∞.
If Qt ↗ 1, on the other hand, the liquidation rate πt may vanish since limq↗1 f

?(x, q) = 0, and
thus may violate the condition E

[∫∞
t=0 |X

x,π
t |2dt

]
<∞.

We instead prove that the optimal value function can be achieved “asymptotically” by a sequence
of admissible policies that approximate π? and γ?.

Theorem 6 (Policy optimality). There exists a sequence of function pairs (f (n), g(n))n∈N with f (n) :
X× [0, 1]→ R and g(n) : X× [0, 1]→ R such that

lim
n→∞

f (n)(x, q) = f?(x, q), lim
n→∞

g(n)(x, q) = g?(x, q), ∀(x, q) ∈ R \ {0} × (0, 1],

and it satisfies the following properties for any x ∈ X and q ∈ [0, 1]:

(a) For any given γ ∈ Γ(q), let π(n),γ be an (X,Q)-Markov trader’s policy induced by f (n) and
coupled with γ. Then, π(n),γ is admissible and

lim sup
n→∞

J(π(n),γ , γ;x, q) ≤ V (x, q), ∀γ ∈ Γ(q).

(b) For any given π ∈ Π(x), let γ(n),π be an (X,Q)-Markov adversary’s policy induced by g(n)

and coupled with π. Then, γ(n),π is admissible and

lim inf
n→∞

J(π, γ(n),π;x, q) ≥ V (x, q), ∀π ∈ Π(x).
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(c) Let (π(n), γ(n)) be a mutually coupled (X,Q)-Markov policy pair induced by (f (n), g(n)). Then,
π(n) and γ(n) are admissible and

lim
n→∞

J(π(n), γ(n);x, q) = V (x, q).

Theorem 6 shows that we can construct a sequence of functions (f (n), g(n))n∈N that converges
to (f?, g?) pointwise except at the boundaries, and further induces (X,Q)-Markov policies that
are admissible and asymptotically optimal. More precisely, against any adversary’s policy γ, the
sequence of functions (f (n))n∈N induces a sequence of admissible policies (π(n),γ)n∈N for the trader,
and in the limit, the trader achieves an outcome that is no worse than the equilibrium outcome. And
vice versa, against any trader’s policy π, the sequence of functions (g(n))n∈N induces a sequence of
admissible policies (γ(n),π)n∈N for the adversary, and in the limit, the adversary achieves an outcome
that is no worse than the equilibrium outcome. As a combination, the sequence of function pairs
(f (n), g(n))n∈N induces a sequence of mutually admissible policy pairs (π(n), γ(n))n∈N that yields the
equilibrium outcome asymptotically.

The construction of such a sequence of function pairs (f (n), g(n))n∈N is straightforward. We con-
sider a vanishing subset of the augmented state space that contains the boundaries, i.e., {(x, q)||x| ≤
1
n , q ≤

1
n or q ≥ 1− 1

n}, and obtain f (n) and g(n) by suppressing the extreme behaviors of f? and g?

arising in this subset. Roughly speaking, the liquidation strategy induced by (f (n), g(n)) mimics the
optimal strategy until it clears almost all positions (i.e., Xt ≤ 1

n) or it becomes almost risk-neutral
(i.e., Qt ≥ 1− 1

n) or extremely risk-averse (i.e., Qt ≤ 1
n), and then liquidates according to a deter-

ministic schedule thereafter. We can show that the gap between the outcome of this approximated
strategy and the theoretical equilibrium outcome is diminishing as n goes to infinity. We refer the
readers to Appendix D for the details.

Aggressiveness-in-the-money. Despite that the admissibility of the optimal liquidation policy π?

is not guaranteed, we can still characterize its behaviors by inspecting the stochastic differential
equations (17). Without loss of generality, let us consider the task of liquidation (i.e., x ≥ 0).

First, we observe that the optimal policy liquidates only (i.e., f?(x, q) ≥ 0), until it completes
the execution9 (i.e., f?(0, q) = 0). Note that we have not imposed any constraint on the trading
direction. This formally shows that winding back the position during the liquidation process will
never be helpful in reducing the CVaR loss.

Second, when the trader becomes more risk-averse (i.e., q ↘ 0), the optimal policy trades more
aggressively (i.e., f?(x, q)↗∞). The opposite also holds true. This is because, by liquidating the
position more quickly, it can reduce the risk exposure to the changes in price more effectively. Even
though it will be more costly in terms of market impact, it can make sure that the transactions

9We are not sure if the completion time is almost surely finite even though the position will be vanishing eventually
(i.e., Xt ↘ 0). In particular, when Qt ≈ 1, the optimal policy trades very slowly (πt ≈ 0) and the position process
may never hit zero. We believe that the completion time is finite with a probability of at least 1− q.
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will be made at a certain level, which is more beneficial to a risk-averse trader than a risk-neutral
trader. We can also understand this behavior based on the alternative interpretation of the problem
discussed in Remark 2: when the risk-averse liquidation problem is cast as a risk-neutral execution
problem that involves an adverse price drift, being more risk-averse is equivalent to facing a more
adverse price drift, which encourages the risk-neutral trader to trade more aggressively.

Most interestingly, we observe that when the price moves in a favorable direction toward in-the-
money (i.e., dWt > 0), the policy becomes more risk-averse (i.e., dQt < 0 since g?(x, q) < 0) and
hence it trades more aggressively. This formally characterizes aggressiveness-in-the-money, which
has been observed by Lorenz and Almgren (2007, 2011); Gatheral and Schied (2011); Forsyth et al.
(2012). Intuitively, if the trader has made some “free” money due to the price change, he would
have an additional incentive to complete the liquidation early so as to secure his current profit, and
thus he would be willing to pay an additional deterministic cost for aggressive execution.

This behavior can also be understood in the context of a more general risk-sensitive optimal
control problem. Recall that the optimal adversary’s martingale Qq,γ

?

t represents the likelihood
that the current sample path leads to one of the worst q-fraction of outcomes. When something
favorable happens, it becomes less likely that the sample path is in the worst qth quantile, and
therefore Qt decreases. This means that the trader will need to pay attention to a smaller fraction
of adverse scenarios; i.e., he will become more risk-averse.

Threshold behavior. While we do not have a formal characterization here, we observe that the
optimal strategy exhibits some threshold behavior, particularly near the end of the liquidation. We
observe that the policy trades aggressively when the cumulative cost Ct is below some threshold,
and it trades passively when the cumulative cost Ct is above the threshold. Near the end of the
liquidation, such a threshold corresponds to VaRq[C∞] (the value-at-risk, i.e., the qth quantile of
the loss distribution), and the liquidation rate sharply changes around VaRq[C∞]. This behavior is
related to an alternative representation of CVaR (Rockafellar and Uryasev, 2002): CVaRq[C∞] =
maxc∈R{c + 1

qE
[
(C∞ − c)+]}, where the maximizer c? is in fact VaRq[C∞], and CVaRq[C∞] only

concerns the cases where C∞ > c?.

To better illustrate, suppose that the trader is currently left with a small amount of position to
liquidate. If Ct < c?, the trader is willing to pay a large transaction cost (up to c?−Ct) to complete
the execution as soon as possible, thereby making sure that the total loss C∞ won’t exceed the
threshold c?. If Ct > c?, the trader may believe that the total loss C∞ will inevitably exceed the
threshold c?, and then tries to minimize the expected future cost by slowing down the liquidation.
One can make a connection with aggressiveness-in-the-money, since having Ct < c? implies that
the price has moved in a favorable direction.

We believe that the threshold value is a function of remaining position size such that it increases
as the position size decreases and converges to VaRq[C∞] as the position vanishes. Moreover, the
change in the aggressiveness around the threshold also depends on the remaining position size. To
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formalize this behavior, one may adopt an alternative formulation of the problem with an extra
state variable representing the cost realized so far (i.e., a Markov policy defined on the augmented
state space (Xt, Ct)), which is in fact the approach suggested by Bäuerle and Ott (2011) for a
general class of control problems with a CVaR objective. This might be a topic of future research.

5. Cost Analysis: Adaptive vs. Deterministic Strategy

In this section, we provide a comparison between the optimal adaptive strategy derived in §4 and
the (optimized) deterministic schedules under which the liquidation is executed according to a
deterministic schedule committed at the beginning of the liquidation process.

5.1. Optimized Deterministic Schedules

First observe that any deterministic schedule will yield a normally distributed implementation short-
fall; i.e., given a deterministic schedule π, the total implementation shortfall Cx,π∞ =

∫∞
0

η
2π

2
t dt −∫∞

0 σXtdWt follows a normal distribution with mean and variance given by

E[Cx,π∞ ] =
∫ ∞

0

η

2π
2
t dt, Var[Cx,π∞ ] =

∫ ∞
0

σ2X2
t dt.

To understand the performance of deterministic schedules, therefore, it suffices consider the CVaR
value of a normal distribution.

Given a normal random variable C ∼ N (µ, σ2), it is easy to verify that

CVaRq[C] = µ+ σ
κ(q)
q
, (18)

where
κ(q) , φ(Φ−1(1− q)), (19)

and φ(·) and Φ(·) are the p.d.f. and the c.d.f. of a standard normal distribution, respectively. Thus,

CVaRq[Cx,π∞ ] =
∫ ∞

0

η

2π
2
t dt+ κ(q)

q

√∫ ∞
0

σ2X2
t dt,

for any deterministic schedule π.

We first focus on the set of all deterministic schedules and find the optimal one that minimizes
the CVaR cost. The next proposition shows that such an optimal schedule has the form of an
exponential schedule under which the trader’s position decays exponentially over time (i.e., the
liquidation rate is proportional to the current position size).

Proposition 6 (Optimized deterministic schedule). Given an initial position x ∈ R and a target
quantile q ∈ (0, 1), the optimal deterministic schedule is given by an exponential schedule Xt =
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X0e
−t/τ? where the optimal time constant τ? is given by

τ? =
(

ηxq√
2σκ(q)

) 2
3

.

Let exp be this optimized exponential schedule. Then, its performance V exp(x, q) is given by

V exp(x, q) , S-CVaRq [Cx,exp
∞ ] = 3

2
5
3
× σ

2
3 η

1
3 × |x|

4
3 × q

1
3
(
κ(q)

) 2
3 . (20)

While the proof is provided in Appendix A, we remark that the optimality of the exponential
schedule can be directly inferred from the result of Almgren and Chriss (2000): it was shown
that, given a finite time-horizon of length T , a mean-variance optimization results in a trajectory
Xt = sinh(κ(T−t))

sinh(κT ) X0 for some constant κ > 0. As T ↗ ∞, we can observe that the optimized
trajectory converges to an exponential schedule Xt = e−κtX0.

We next examine the volume-weighted average price (VWAP) schedules, under which the trader
liquidates the asset at a constant rate until completion so that the trader’s position decreases linearly
over time.10 The next proposition identifies the optimized VWAP schedule (see Appendix A for
the proof).

Proposition 7 (Optimized VWAP schedule). Given an initial position x ∈ R and a target quantile
q ∈ (0, 1), the best VWAP schedule is given by Xt = X0

(
1− t

T ?
)+, where the optimal execution

period T ? is as follows:

T ? =
(√

3ηxq
σκ(q)

) 2
3

.

Let vwap be this optimized VWAP schedule. Then, its performance V vwap(x, q) is given by

V vwap(x, q) , S-CVaRq [Cx,vwap
∞ ] = 3

2
3

2 × σ
2
3 η

1
3 × |x|

4
3 × q

1
3
(
κ(q)

) 2
3 . (21)

5.2. Cost Analysis

We now compare three liquidation strategies: the optimal adaptive strategy (opt) derived in §4,
the optimized deterministic strategy (exp), and the optimized VWAP strategy (vwap). We have
derived closed-form expressions (11), (20), and (21) that represent their S-CVaR performance V ,
V exp, and V vwap, respectively. Given that V (x, q) ≤ V exp(x, q) ≤ V vwap(x, q) by their definitions,

10A VWAP schedule typically refers to a liquidation schedule that is proportional to the average market volume
profile, aiming to make its average transaction price close to the market volume-weighted average price. As we assume
a time-stationary market in this paper, the VWAP schedule is equivalent to a constant liquidation rate schedule (also
known as a TWAP schedule).
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we particularly consider the following ratios that are useful for pairwise comparison:

Υexp
opt ,

V exp(x, q)
V (x, q) − 1 =

(3/2)
1
3 q

1
3
(
κ(q)

) 2
3

ϕ(q) − 1,

Υvwap
opt ,

V vwap(x, q)
V (x, q) − 1 =

2
1
3 q

1
3
(
κ(q)

) 2
3

ϕ(q) − 1,

Υvwap
exp ,

V vwap(x, q)
V exp(x, q) − 1 = (4/3)

1
3 − 1 ≈ 10%.

(22)

Note that these ratios do not change even if we compare CVaR performance instead of S-CVaR
performance since S-CVaR is merely a scaled version of CVaR (see Remark 1(i)).
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Figure 4: The pairwise comparison among three liquidation strategies – the optimal adaptive strategy,
the optimal deterministic strategy (exp), and the optimized VWAP strategy – measured with the ratios
Υexp

opt, Υvwap
opt , and Υvwap

exp defined in (22). These ratios represent the relative percentage reductions in
CVaR cost, and depend on the target quantile q only. Each curve shows the value of each ratio when q
ranges from zero to one.

These ratios can be expressed in closed form, and we observe the following. First, all the ratios
depend only on the quantile q, but not on the other problem parameters such as the quantity to
liquidate x, the price volatility σ, and the market impact factor η. Figure 4 plots these ratios
as functions of q. Second, the optimal deterministic schedule always outperforms to the best
VWAP schedule by ≈ 10.0%, irrespective of the value of q. Finally, in a moderate range of q,
from 0.2 to 0.8, the adaptive strategy outperforms the optimal deterministic strategy by 5% to
15%, and outperforms the optimized VWAP strategy by 15% to 25%. This gap increases as q
increases (i.e., becomes more risk-neutral). More specifically, it explodes as q approaches one, and
vanishes as q approaches zero.11 Note that most traders using optimal execution algorithms are
large investors trading a small portion of their overall portfolio over a short time horizon. Thus,
from the perspective of optimal decision making, their utility functions are nearly linear, hence the

11The absolute performance (i.e., the CVaR cost) of all three policies converges to zero as q ↗ 1, and diverges to
infinity as q ↘ 0.
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nearly risk neutral regime (q ≈ 1), where the relative benefits of dynamic trading are greatest, is
also the most practically relevant regime. See also §6.2 for a more illustrative comparison between
the adaptive strategy and the deterministic strategies.

6. Numerical Simulations

Throughout this section, we denote the optimal adaptive strategy by opt, the optimized determin-
istic schedule by exp, and the optimized VWAP schedule by vwap.

6.1. Illustration of Optimal Adaptive Strategy

We consider a situation where the trader wants to liquidate x = 1 unit of an asset given the
volatility σ = 5.06 basis points per minute (1% per day), the market impact factor η = 1.56× 103

(liquidating one unit over a day at a constant rate incurs 2 basis points loss in average), and the
target quantile q varying from 0.10 to 0.99.

We simulate the optimal policy opt as follows. We first discretize the time horizon into subin-
tervals of equal length ∆t = 10−4, and generate a sample path of the standard Brownian motion
W0,W∆t,W2∆t, . . .. Starting from X0 = x and Q0 = q, at each time t = 0,∆t, 2∆t, . . ., we compute
the liquidation rate πt = f?(Xt, Qt) and the quantile diffusion rate γt = g?(Xt, Qt) and then update
the position size Xt+∆t = Xt − πt∆t and the quantile Qt+∆t = Qt + γt∆Wt accordingly, where
∆Wt , Wt+∆t −Wt. The expressions for f? and g? are given in (15) and (16), and the value of
ϕ(q) can be computed using linear interpolation based on its parametric representation derived in
Proposition 5. In order to prevent numerical instability, we keep the value of quantile process Qt
between ε and 1− ε via truncation (we take ε = 10−5); i.e., if Qt < ε or Qt > 1− ε, it is set to ε or
1− ε, respectively. This procedure is repeated until the remaining position size Xt becomes smaller
than 10−2.

Figure 5 illustrates the sample paths of the price process σWt, the position process Xt, and the
quantile process Qt under opt for different values of target quantile q ∈ {0.1, 0.2, . . . , 0.99} in the
following two scenarios: when the price moves in an adverse direction (left), and when the price
moves in a favorable direction (right). From these results, we confirm the behaviors of the optimal
strategy characterized in §4.2. In every case, the position monotonically decreases over time; i.e., the
optimal policy keeps trading in one direction. Also observe that the policy liquidates the position
more aggressively as we take a smaller value for q (i.e., as the policy becomes more risk-averse).
In a comparison between two scenarios (left vs. right), we observe “aggressiveness-in-the-money”;
i.e., the policy trades more aggressively when the price moves in a favorable direction (right). This
behavior can also be observed within each sample path: during the execution process, the quantile
process Qt decreases when the price moves upward and the policy trades more aggressively. In
addition, the quantile process Qt converges to either zero or one, indicating whether the realized
price process is among the worst q-fraction of the scenarios. While not reported here, we observe
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that Qt converges to one in the q-fraction of simulations and converges to zero in the other (1− q)-
fraction of simulations (recall that Qt is a martingale starting at q).
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Figure 5: Illustration of the optimal adaptive liquidation processes with different values for target
quantile q ∈ {0.1, 0.2, 0.5, 0.8, 0.9} in two scenarios: when the price moves in an adverse direction (left),
and when the price moves in a favorable direction (right). The plots in the top row show the realized
price process over time, the plots in the middle row show the position processes Xt, and the plots in
the bottom row show the quantile processes Qt associated with these strategies.

6.2. Comparison with Deterministic Strategies

We provide the detailed simulation results of the optimal adaptive strategy (opt) in a comparison
with those of the deterministic strategies (exp, vwap) introduced in §5.1.

Figure 6 illustrates the position process trajectories under these three strategies with target
quantile q = 0.5 in the two scenarios as in Figure 5. One can immediately observe that the
deterministic strategies are not adaptive to the price changes. The optimal adaptive strategy
opt liquidates at a similar rate to the exponential schedule exp during the initial periods, but
it deviates as soon as it adjusts its aggressiveness adaptively to the price changes. In particular,
it slows down when the price moves in the adverse direction (i.e., the quantile process Qt moves
toward one). Figure 7 shows the average position trajectories under these three strategies given the
target quantile q ∈ {0.1, 0.5, 0.8}, aggregated across 100,000 runs of simulations. Similarly to the
above, we observe that opt trades more aggressively than exp when the target quantile is small
and less aggressively when the target quantile is large.
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Figure 6: Illustration of liquidation processes under the optimal adaptive strategy (opt, red solid
lines), the optimized deterministic schedule (exp, blue dashed lines), and the optimized VWAP schedule
(vwap, green dashed lines) with the target quantile q = 0.5, and in two scenarios: when the price moves
in an adverse direction (left), and when the price moves in a favorable direction (right).
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Figure 7: Average liquidation processes under the optimal adaptive strategy (opt, red), the opti-
mized deterministic schedule (exp, blue), and the optimized VWAP schedule (vwap, green) given
the target quantile q = 0.1 (left), q = 0.5 (middle), and q = 0.8 (right). Each curve reports
the average time that the position process under each strategy falls behind a certain level, i.e.,
{(E[mint{Xπ

t ≤ y}], y)}y∈{0.9,0.8,...,0.05}.

Figure 8 shows the implementation shortfall distributions (i.e., the histograms of C∞) resulting
from opt (top) and exp (bottom) with different values of the target quantile q ∈ {0.1, 0.5, 0.8}.
These histograms are obtained from 100,000 simulation trials, where all the strategies see the same
price process realization per simulation. The resulting distributions are visually very different: exp
yields a normal distribution whereas opt yields a distribution that has a sharp peak at the qth

quantile. Such a sharp peak can be explained by the threshold behavior of the optimal adaptive
strategy, discussed at the end of §4.2. Figure 9 visualizes these distributions for a wider range of
target quantiles q ∈ {0.1, 0.2, . . . , 0.99}. We observe that the implementation shortfall distribution
induced by opt is more concentrated than the ones induced by exp and vwap when the target
quantile q is small, and it is the opposite when the target quantile q is large (roughly speaking, it
has a longer right tail, visually similar to an exponential distribution).

Table 1 reports in detail the summary statistics of those implementation shortfall distributions.
We first confirm that the simulation results are consistent with our theoretic predictions, i.e., the
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measured CVaR values match with the values calculated from the expressions (11), (20), and (21).
We also see that the optimal adaptive strategy does not make an improvement over the deterministic
strategies in terms of the average nor the variance as it specifically targets to minimize the CVaR
value at a given target quantile. But, it significantly improves the median value particularly in the
risk-neutral regime (when q ≈ 1). See also a discussion on Figure 10 below.
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Figure 8: The distributions of the implementation shortfall (i.e., the histogram of C∞) incurred by the
optimal adaptive liquidation strategy (top) and the optimized deterministic schedule (bottom) given the
target quantile q ∈ {0.1, 0.5, 0.8} (left, middle, and right, respectively). In each plot, the solid vertical
line represents the q-quantile (i.e., the value-at-risk VaRq[C∞]), and the dashed vertical line represents
the tail average beyond the q-quantile (i.e., the conditional value-at-risk CVaRq[C∞]). The highlighted
area represents the worst q-fraction of the outcomes whose average corresponds to CVaRq[C∞]. These
are obtained from 100,000 runs of simulations.
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Figure 9: Alternative visualization of the implementation shortfall distributions induced by the optimal
adaptive strategy (opt, red), the optimized deterministic schedule (exp, blue), and the optimized
VWAP schedule (vwap, green) given the target quantile q ∈ {0.1, 0.2, . . . , 0.99}. Each distribution is
represented with a colored bar with seven segments whose edges are 0.1, 0.2, . . . , 0.9-quantiles, e.g., the
brightest segment on the top represents the range of the implementation shortfall between 0.1-quantile
and 0.2-quantile, and the darkest segment represents the range of implementation shortfall between
0.4-quantile and 0.6-quantile. The diamond-shaped dots report the CVaR values of these distributions.
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Target
quantile Policy CVaR (theo.) VaR Average Median Std.

dev.
50%
time

95%
time

q = 0.10
opt 45.37 (44.96) 36.42 28.61 29.11 10.34 14 71
exp 47.24 (47.02) 38.75 15.79 15.77 17.86 17 75

vwap 52.00 (51.75) 42.61 17.37 17.30 19.65 23 43

q = 0.20
opt 38.55 (38.26) 27.40 23.95 23.62 12.93 18 145
exp 40.62 (40.44) 29.72 13.60 13.57 19.26 20 87

vwap 44.69 (44.51) 32.74 14.96 14.88 21.18 26 50

q = 0.30
opt 33.62 (33.40) 20.28 20.33 18.52 16.29 22 241
exp 35.80 (35.66) 22.76 12.02 11.99 20.51 23 98

vwap 39.41 (39.25) 24.98 13.21 13.15 22.56 30 57

q = 0.40
opt 29.44 (29.28) 13.67 17.20 13.02 20.23 27 363
exp 31.72 (31.58) 16.22 10.66 10.66 21.80 26 111

vwap 34.91 (34.75) 17.76 11.72 11.64 23.98 34 64

q = 0.50
opt 25.65 (25.48) 6.95 14.38 6.95 24.86 34 518
exp 27.96 (27.80) 9.39 9.41 9.39 23.24 29 126

vwap 30.74 (30.60) 10.30 10.34 10.30 25.56 38 73

q = 0.60
opt 21.95 (21.79) −0.42 11.72 0.40 30.46 44 722
exp 24.27 (24.10) 1.79 8.19 8.20 24.97 34 145

vwap 26.67 (26.52) 1.94 8.98 9.00 27.46 44 84

q = 0.70
opt 18.17 (18.01) −9.23 9.17 −6.21 37.56 60 998
exp 20.44 (20.27) −7.46 6.92 6.95 27.24 40 173

vwap 22.48 (22.31) −8.21 7.59 7.62 29.97 52 100

q = 0.80
opt 14.07 (13.92) −21.12 6.62 −13.14 47.48 90 1404
exp 16.24 (16.05) −20.25 5.53 5.51 30.62 51 218

vwap 17.89 (17.66) −22.28 6.09 6.07 33.71 66 126

q = 0.90
opt 9.16 (9.03) −41.76 3.92 −21.65 64.62 169 2125
exp 11.08 (10.87) −43.93 3.83 3.78 37.22 75 323

vwap 12.22 (11.96) −48.20 4.23 4.20 41.02 98 186

q = 0.95
opt 5.92 (5.85) −64.35 2.35 −28.15 82.52 294 2874
exp 7.59 (7.35) −71.53 2.68 2.59 45.23 110 477

vwap 8.34 (8.09) −78.99 2.93 2.93 49.82 145 275

q = 0.99
opt 1.94 (2.09) −132.60 0.59 −37.62 129.72 873 4740
exp 3.16 (2.90) −167.00 1.20 1.12 71.96 279 1207

vwap 3.47 (3.19) −183.10 1.33 1.49 79.16 366 696

Table 1: Summary statistics of implementation shortfall C∞ incurred by the optimal adaptive strategy
(opt), the optimized deterministic schedule (exp), and the optimized VWAP schedule (vwap), given
x = 1, σ = 5.06, η = 1.56× 103, and the target quantile q ∈ {0.1, 0.2, . . . , 0.99}. For each combination
of a policy and a target quantile, it reports the CVaR value, the VaR value, the average, the median,
and the standard deviation of implementation shortfall C∞, represented in basis points. It additionally
reports the average time to complete 50% of the execution and the average time to complete 95% of the
execution, represented in minutes. These statistics are measured from 100,000 runs of simulations. The
numbers in parentheses in the third column report the theoretically predicted CVaR values, computed
with the expressions (11), (20), and (21).
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Figure 10 demonstrates some additional advantages of the adaptive strategy other than min-
imizing the CVaR value. Here, the target quantile q is considered as a control parameter to the
strategies on the behalf of a trader who may not be particularly interested in minimizing the CVaR
value, and we compare three families of strategies (opt, exp, and vwap with the target quantile
ranging from 0.1 to 0.99) in terms of the mean, the median, and the tail probability of the result-
ing implementation shortfall distributions. It is shown in the left plot that, by implementing the
adaptive strategy opt with a suitably chosen target quantile, it can achieve a smaller median value
than any of deterministic strategies that yield the same average loss value. Similarly, it is shown
in the right plot that a smaller tail probability can be achieved by opt for a given target threshold
level: for example, when wanting to avoid the event that the implementation shortfall exceeds 25
basis points, the trader can implement opt with the target quantile q = 0.4 so that such event
takes place with probability 12.9%, whereas the probability is 25.3% under the best deterministic
schedule (exp with q = 0.6).
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Figure 10: Plots that characterize three families of implementation shortfall distributions produced
by the optimal adaptive strategy (opt, red), the optimized deterministic schedule (exp, blue), and
the optimized VWAP schedule (vwap, green). The left plot shows the average and the median
loss values that can be obtained by a strategy (either opt, exp, or vwap) when q varies, i.e.,
{(E[Cπq

∞ ],Median[Cπq
∞ ])}q∈{0.1,...,0.99} where πq denotes the strategy with a target quantile q. The right

plot reports the pointwise minimum of the complementary cumulative distribution functions induced by
a strategy with the different values of target quantiles, i.e., minq∈{0.1,...,0.99} P[Cπq

∞ > c], the lowest tail
probability that the implementation shortfall exceeds a given threshold level c when the target quantile
q for the strategy can be arbitrarily chosen.
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Organization of appendix. The appendix is organized as follows. In Appendix A, we identify
the optimal deterministic strategy and its performance for §5.1. The CVaR performance of the
optimal deterministic strategy is utilized as an upper bound on the CVaR performance of the
optimal adaptive strategy. In Appendix B, we provide the basic characterizations of S-CVaR
measure introduced in §2. In Appendix C, we provide the preliminary characterizations of the
value function, and by applying Sion’s minimax theorem, we prove Theorem 2 and Theorem 3
stated in §3. The main challenge here is to verify the conditions of Sion’s minimax theorem. In
Appendix D, we provide proofs for §4. We first state and prove Theorem 7 from which Theorem 4
and Theorem 6 follow almost immediately. Proposition 4, Proposition 5 and Theorem 5 are proven
separately.

A. Optimal Deterministic Schedules

Lemma 2. For any a, b > 0,

min
x∈R+

{
a

x
+ b
√
x

}
= a

x
+ b
√
x

∣∣∣∣
x=( 2a

b )
2
3

= 3a
1
3 b

2
3

2
2
3

.

Proof. Let f(x) , a
x +b
√
x. Since f ′(x) = − a

x2 + b
2
√
x
, the equation f ′(x) = 0 has a unique solution

at x =
(

2a
b

) 2
3 . �

Proof of Proposition 6. We prove the optimality of exponential schedules and identify the optimal
decaying rate.

First we consider a mean-variance optimization problem:

minimize
π∈D(x)

E[Cx,π∞ ] + λVar[Cx,π∞ ],

where D(x) is the set of all deterministic policies and λ ∈ (0,∞) is a penalty for variance term.
Applying (18), this is equivalent to an optimization over the deterministic trajectories of (Xt)t≥0:

inf
X:X0=x

∫ ∞
t=0

(
η

2 Ẋ
2
t + λσ2X2

t

)
dt,

where Ẋt , dXt/dt. By applying standard calculus of variations arguments (Courant and Hilbert,
1953), we deduce that the optimal scheduleX? has to satisfy the Euler-Lagrange equation 2λσ2X?

t −
ηẌ?

t = 0, at each time t, with boundary conditions X?
0 = x and limt→∞X

?
t = 0. The solution is

uniquely given by an exponential schedule

X?
t = x exp (−t/ρλ) ,
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with the decay rate ρλ ,
√

η
2λσ2 ∈ (0,∞), and such a schedule yields

E[Cx,π?∞ ] = ηx2

4ρλ
, Var[Cx,π?∞ ] = σ2x2ρλ

2 . (23)

In other words, the efficient frontier of the range of mean and variance achievable by determin-
istic schedules,

{(
E[Cx,π∞ ],Var[Cx,π∞ ]

)}
π∈D(x), is given by

{(ηx2

4ρ ,
σ2x2ρ

2
)}
ρ∈(0,∞) and is attained by

exponential schedules.

Let us now consider the achievable range of mean and standard deviation,
{(
E[Cx,π∞ ],

√
Var[Cx,π∞ ]

)}
π∈D(x).

Observe that its efficient frontier is still characterized by
{(ηx2

4ρ ,
√

σ2x2ρ
2
)}
ρ∈(0,∞). Therefore, the

optimal solution of the following mean-standard deviation optimization problem

minimize
π∈D(x)

E[Cx,π∞ ] + θ
√

Var[Cx,π∞ ],

is also given by an exponential schedule, for any given θ ∈ (0,∞).

Finally, observe that for any deterministic schedule π ∈ D(x) the resulting cost Cx,π∞ is normally
distributed, thus CVaRq [Cx,π∞ ] is minimized by an exponential schedule. Applying (18), for any
π ∈ D(x) and q ∈ (0, 1), we have

CVaRq [Cx,π∞ ] = E [Cx,π∞ ] + κ(q)
q

√
Var [Cx,π∞ ],

Using (23), the optimal time constant can be determined as

τ? , argmin
ρ

ηx2

4ρ + κ(q)
q

√
σ2x2ρ

2

 =
(

ηxq√
2σκ(q)

) 2
3

.

This concludes the proof. �

Proof of Proposition 7. With some calculation, it can be easily shown that a VWAP schedule
Xt = x

(
1− t

T

)+ yields

E[Cx,π∞ ] = ηx2

2T , Var[Cx,π∞ ] = σ2x2T

3 .

Therefore, the optimal execution horizon T ? is given by

T ? , argmin
T

ηx2

2T + κ(q)
q

√
σ2x2T

3

 =
(√

3ηxq
σκ(q)

) 2
3

.

�

We state the following lemma that identifies the boundary values of S-CVaRq[Cx,exp
∞ ], which is

useful to characterize the optimal value function.
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Lemma 3. The function κ(q) given in (19) satisfies

sup
q∈[0,1]

κ(q) <∞, lim
n→∞

√
nκ(1/n) = lim

n→ε

√
nκ(1− 1/n) = 0.

Proof. Recall that κ(q) , φ
(
Φ−1(1− q)

)
. Since φ(z) = 1√

2πe
−x2/2 ≤ 1√

2π for any z ∈ R, we have
supq∈[0,1] κ(q) ≤ 1√

2π < ∞. Also note that κ(q) = κ(1 − q) since Φ−1(q) = −Φ−1(1 − q) and
φ(z) = φ(−z). Therefore, it suffices to show that limn→∞

√
nκ(1/n) = 0.

We have the following tail bounds of standard normal distribution (Durrett, 2010, Theorem 1.2.3):
for any z > 0, (

z−1 − z−3
)
φ(z) ≤ 1− Φ(z) ≤ z−1φ(z).

Define zn , Φ−1(1− 1/n) > 0, and then we have

φ(zn)
2zn

≤ 1
n
≤ φ(zn)

zn
,

for large enough n (such that z−3
n ≤ 1

2z
−1
n ) since limn→∞ zn =∞. Observe that 1/n ≤ φ(zn)/zn ≤

φ(zn) = exp(−z2
n/2)/

√
2π ≤ exp(−z2

n/2) and thus zn ≤
√

2 logn. We further deduce that, since
κ(1/n) = φ(Φ−1(1− 1/n)) = φ(zn),

√
nκ(1/n) =

√
nφ(zn) = 2

√
nzn ×

φ(zn)
2zn

≤ 2
√
nzn ×

1
n
≤ 2zn√

n
≤ 2

√
2 logn
n

.

Therefore, limn→∞
√
nκ(1/n) = 0. �
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B. Preliminary Characterizations of S-CVaR

We begin with a technical lemma:

Lemma 4. The risk envelope Q(q) is a non-empty, convex, and weak-* compact subset of L∞.

Proof. It is non-empty because Q(ω) = q is always feasible.

Consider Q1, Q2 ∈ Q(q) and Qλ , λQ1 + (1 − λ)Q2 for some λ ∈ [0, 1]. Since Q1(ω), Q2(ω) ∈
[0, 1], we have Qλ(ω) ∈ [0, 1], and by the linearity of expectation, E[Qλ] = λE[Q1]+(1−λ)E[Q2] = q.
Therefore, Qλ ∈ Q(q) and thus Q(q) is convex.

Finally, note that Q(q) is a closed subset of the unit ball in L∞(Ω,F ,P). Given that L∞ is the
dual space of L1, it is weak-* compact by Banach-Alaoglu theorem. �

Proof of Proposition 1. Proof of claim (i) and (v). Claim (i) immediately follows from our defi-
nition of CVaR. Claim (v) follows from the following identity (Shapiro, 2009, Theorem 6.2):

CVaRq[C] = E
[
C
∣∣∣C ≥ F−1

C (1− q)
]

=
E
[
C I{C≥F−1

C (1−q)}
]

P[C ≥ F−1
C (1− q)]

=
E
[
C I{C≥F−1

C (1−q)}
]

q
.

Proof of claim (ii). When q = 0, the risk envelope Q(q) has a single element Q(ω) = 0, and hence,
supQ∈Q(0) E[CQ] = 0. When q = 1, the risk envelope Q(q) also has a single element Q(ω) = 1, and
hence, supQ∈Q(0) E[CQ] = EC.

Proof of claim (iii). For any Q ∈ Q(q), we have |E[CQ]| ≤ E [|CQ|] ≤ E|C| since |Q| ≤ 1 almost
surely, and therefore, |S-CVaRq[C]| ≤ E|C|. Furthermore, Q(q) contains Q(ω) = q, and therefore,
CVaRq[C] ≥ E[qC] = qEC.

Proof of claim (iv). Consider q1, q2 ∈ [0, 1] and qλ , λq1 + (1 − λ)q2 for some λ ∈ [0, 1]. Let
Q∗1 ∈ argmaxQ∈Q(q1) E[CQ] and Q∗2 ∈ argmaxQ∈Q(q2) E[CQ] (the maximum is attained since Q(q)
is weak-* compact). Let Qλ , λQ∗1 + (1 − λ)Q∗2. Observe that Qλ ∈ [0, 1] a.s. and E[Qλ] =
λE[Q∗1] + (1 − λ)E[Q∗2] = λq1 + (1 − λ)q2 = qλ. Therefore, Qλ ∈ Q(qλ). Trivially, E[CQλ] =
E[λCQ∗1 + (1− λ)CQ∗2] = λE[CQ∗1] + (1− λ)E[CQ∗2], and thus

S-CVaRqλ [C] = sup
Q∈Q(qλ)

E[CQ] ≥ E[CQλ] = λE[CQ∗1] + (1− λ)E[CQ∗2]

= λ S-CVaRq1 [C] + (1− λ) S-CVaRq2 [C].

Continuity follows from concavity since the function is bounded on its domain from (iii). �
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C. Proofs for §3

From now on, we characterize S-CVaRq[ · ] as a mapping from L2 to R. This can be done without
loss generality since we have Cx,π∞ ∈ L2 for any feasible policy π ∈ Π(x). This is to utilize the fact
that L2 is reflexive so that its weak-* topology coincides with its weak topology.

Lemma 5. The risk envelope Q(q) is a weakly compact subset of L2.

Proof. As stated in the proof of Lemma 4, Q(q) is a closed subset of the unit ball in L∞, which is a
subset of L2. By Banach–Alaoglu theorem, it is weak-* compact in L2 and hence weakly compact
since L2 is reflexive. �

Proof of Proposition 2. Proof of claim (i). Note that (Qq,γt )t≥0 is a continuous local martingale
since it is a stochastic integral of a progressively measurable process with respect to Brownian
motion (Protter, 2015, Theorem 33 in Chap. III). Since Qq,γt ∈ [0, 1] for any t ∈ [0,∞) by the
definition of Γ(q), it is a bounded local martingale, which is indeed a martingale (Protter, 2015,
Thm. 51 in Chap. I).

Proof of claim (ii). The limit limt→∞Q
q,γ
t exists due to martingale convergence theorem (Protter,

2015, Theorem 10 in Chap. I).

Proof of claim (iii). Recall that
(
Qq,γt

)
t≥0 is a martingale taking values in [0, 1]. Define a stopping

time τ , inft≥0 {Qq,γt = 0}. Then, for any τ ′ ≥ τ , we have E[Qq,γτ ′ |Fτ ] = Qq,γτ = 0 and therefore
Qq,γτ ′ = 0 almost surely (otherwise, we would have E[Qq,γτ ′ |Fτ ] > 0). In words, once

(
Qq,γt

)
t≥0 hits

zero, it never escapes thereafter, and the same argument holds for the other boundary. �

C.1. Proof of Theorem 2

Within this subsection, we characterize the trader’s policy with its position process (Xt)t≥0 rather
than dealing with the liquidation rate process (πt)t≥0: the set of admissible policies is represented
as

X (x) ,
{
X : T× Ω→ R

∣∣∣∣∣X ∈ P, X0 = x,E
[(∫ ∞

t=0
Ẋ2
t dt

)2
]
<∞,E

[∫ ∞
t=0

X2
t dt

]
<∞, sup

t≥0
|Xt| ≤M

}
,

where we require that each sample path X ∈ X (x) is differentiable so that we can define Ẋt ,

dXt/dt. Then, Π(x) = {π = Ẋ|X ∈ X (x)}. Accordingly, we represent the loss process as

CXt ,
∫ t

s=0

1
2η|Ẋs|2ds−

∫ t

s=0
σXsdWs,

so that we have CXt = Cx,πt if X ∈ X (x) and π = Ẋ.

We aim to prove Theorem 2 by utilizing Sion’s minimax theorem:

Lemma 6 (Sion’s minimax theorem (Sion, 1958)). Let X be a convex subset of a linear topological
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space and Y a compact convex subset of a linear topological space. If f is a real-valued function
on X × Y with f(x, ·) upper semicontinuous and quasi-concave on Y , for each x ∈ X , and f(·, y)
lower semicontinuous and quasi-convex on X, for each y ∈ Y, then,

inf
x∈X

max
y∈Y

f(x, y) = max
y∈Y

inf
x∈X

f(x, y),

where an optimal solution y ∈ Y must exist for each maximization.

Lemma 7. X (x) is a convex subset of a linear space endowed with a norm ‖ · ‖X :

‖X‖X ,
√
E
[∫ ∞
t=0

Ẋ2
t dt

]
+
√
E
[∫ ∞
t=0

X2
t dt

]
.

Proof. It can be easily verified that ‖ ·‖X is a valid norm (as a norm of a Sobolev space). Also note
that ‖X‖X <∞ for any X ∈ X (x). Now consider X(1), X(2) ∈ X (x) and X(λ) , λX(1)+(1−λ)X(2)

for some λ ∈ [0, 1]. Observe that (i) X(λ)
0 = x, (ii)

√∫∞
t=0

(
Ẋ

(λ)
t

)2
dt ≤ λ

√∫∞
t=0

(
Ẋ

(1)
t

)2
dt + (1 −

λ)
√∫∞

t=0
(
Ẋ

(2)
t

)2
dt ∈ L4, and thus E

[(∫∞
t=0

(
Ẋ

(λ)
t

)2
dt
)2
]
< ∞, (iii) similarly, E

[∫∞
t=0

(
X

(λ)
t

)2
dt
]
<

∞, and (iv) supt≥0 |X
(λ)
t | ≤ λ supt≥0 |X

(1)
t | + (1 − λ) supt≥0 |X

(2)
t | ≤ M . Therefore, X(λ) ∈ X (x),

and hence X (x) is a convex set. �

Proof of Theorem 2. By Lemma 1, it is equivalent to show that

inf
X∈X (x)

max
Q∈Q(q)

E
[
CX∞Q

]
= max

Q∈Q(q)
inf

X∈X (x)
E
[
CX∞Q

]
.

We aim to prove this by utilizing Sion’s minimax theorem (Lemma 6), so it suffices to check the
conditions of Lemma 6. We have shown that X (x) is a convex subset of a linear space endowed
with a norm ‖ · ‖X (Lemma 7), and Q(q) is a compact convex subset of L2(Ω,F ,P) endowed with
the weak topology (Lemma 5). In the rest of the proof, we verify the followings:

(i) The mapping X 7→ E[CX∞Q] is convex and continuous in norm ‖ · ‖X for any given Q ∈ Q(q).

(ii) The mappingQ 7→ E[CX∞Q] is concave and weakly continuous onQ(q) for any givenX ∈ X (x).

Proof of claim (i). The convexity immediately follows from the fact that the mapping X 7→ CX∞ is
quadratic and convex. We now focus on the continuity.

Fix X ∈ X (x) and consider a sequence
(
X(n) ∈ X (x)

)
n∈N such that limn→∞ ‖X −X(n)‖X = 0.

That is,
lim
n→∞

E
[∫ ∞
t=0

(
Ẋt − Ẋ(n)

t

)2
dt

]
= 0, lim

n→∞
E
[∫ ∞
t=0

(
Xt −X(n)

t

)2
dt

]
= 0. (24)

Let

A ,

√∫ ∞
t=0

Ẋ2
t dt, An ,

√∫ ∞
t=0

(Ẋ(n)
t )2dt, ∆n ,

√∫ ∞
t=0

(
Ẋt − Ẋ(n)

t

)2
dt.
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We then have A ∈ L2, An ∈ L2, and |A−An| ≤ ∆n (triangle inequality) where ∆n
L2
→ 0 due to the

above condition (24). Further observe that∣∣∣CX∞Q− CX(n)
∞ Q

∣∣∣ ≤ ∣∣∣CX∞ − CX(n)
∞

∣∣∣
≤ η

2

∣∣∣∣∫ ∞
t=0

Ẋ2
t dt−

∫ ∞
t=0

(Ẋ(n)
t )2dt

∣∣∣∣+ σ

∣∣∣∣∫ ∞
t=0

XtdWt −
∫ ∞
t=0

X
(n)
t dWt

∣∣∣∣
= η

2

∣∣∣A2 −A2
n

∣∣∣+ σ

∣∣∣∣∫ ∞
t=0

(
Xt −X(n)

t

)
dWt

∣∣∣∣ , (25)

where the first inequality holds since |Q| ≤ 1. For the first term of (25), we have

E
[∣∣∣A2

n −A2
∣∣∣] = E

[∣∣∣(An −A)2 + 2A(An −A)
∣∣∣]

≤ E
[
(An −A)2

]
+ 2E [|A| · |An −A|]

≤ E
[
(An −A)2

]
+ 2

√
E [A2]

√
E [|An −A|2] (26)

= E
[
∆2
n

]
+ 2

√
E [A2]

√
E [∆2

n],

where for (26) we apply the Cauchy-Schwartz inequality. Therefore, E
[∣∣A2

n −A2∣∣] → 0 since
∆n

L2
→ 0, as n→∞. For the second term of (25), using the Itô isometry,

E
[(∫ ∞

t=0

(
Xt −X(n)

t

)
dWt

)2
]

= E
[∫ ∞
t=0

(
Xt −X(n)

t

)2
dt

]
,

which vanishes as n→∞ due to condition (24). Therefore,

lim
n→∞

E
[∣∣∣CX∞Q− CX(n)

∞ Q
∣∣∣] = 0,

which implies that limn→∞ E
[
CX

(n)
∞ Q

]
= E

[
CX∞Q

]
. This concludes the proof.

Proof of claim (ii). The concavity immediately follows from the fact that the mapping Q 7→ CX∞Q

is linear. Fix Q ∈ Q(q), consider a sequence
(
Qn ∈ Q(q)

)
n∈N converging to Q in L2-weak topology:

i.e., limn→∞ E[ZQn] = E[ZQ] for any Z ∈ L2. Since CX∞ ∈ L2 for any X ∈ X (x), the continuity of
the mapping Q 7→ E[CX∞Q] immediately follows. �
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C.2. Preliminary Characterizations of Value Function

We begin with a preliminary characterization of the value function (∗) that will be used in later
proofs in this section.

Proposition 8. The value function V : X× [0, 1]→ R satisfies the followings:

(i) 0 ≤ V (x, q) ≤ σ
2
3 η

1
3 × |x|

4
3 × q

1
3
(
κ(q)

) 2
3 .

(ii) V (x, q) is convex in x on X for each q ∈ [0, 1].

(iii) V (x, q) is concave in q on [0, 1] for each x ∈ X.

(iv) V (x, 0) = V (x, 1) = V (0, q) = 0 for each x ∈ X and q ∈ [0, 1].

Proof. Proof of claim (i). Note that E[Cx,π∞ ] ≥ 0 for any π ∈ Π(x). By Proposition 1(iii), we
have S-CVaRq[Cx,π∞ ] ≥ 0 for any π ∈ Π(x), and hence V (x, q) ≥ 0. The upper bound follows from
Proposition 6 given that 3

25/3 < 1.

Proof of claim (ii). Fix q ∈ [0, 1] and define ϕγ : R 7→ R as follows:

ϕγ(x) , inf
π∈Π(x)

J(π, γ;x, q),

so that we have V (x, q) = maxγ∈Γ(q) ϕγ(x). Since the pointwise maximum of a set of convex
functions is convex, it suffices to show that ϕγ(·) is convex for each γ ∈ Γ(q).

Fix γ ∈ Γ(q) and consider any x1, x2 ∈ X. For any ε > 0, by definition of the infimum, there
exist π1,ε ∈ Π(x1) and π2,ε ∈ Π(x2) such that

J(π1,ε, γ;x1, q) ≤ ϕγ(x1) + ε, J(π2,ε, γ;x2, q) ≤ ϕγ(x2) + ε.

Given some λ ∈ [0, 1], let xλ , λx1 + (1− λ)x2 and πλ,ε , λπ1,ε + (1− λ)π2,ε. Note that

Xxλ,π
λ,ε

t = xλ −
∫ t

s=0
πλ,εs ds = λXx1,π1,ε

t + (1− λ)Xx2,π2,ε

t .

Similarly to the proof of Lemma 7, it can be shown that E
[(∫∞

t=0
∣∣πλ,εt ∣∣2dt)2

]
<∞ and E

[∫∞
t=0

∣∣Xλ,πλ,ε

t

∣∣2dt] <
∞, and therefore πλ,ε ∈ Π(xλ). Consequently,

Cxλ,π
λ,ε

∞ =
∫ t

s=0

1
2η
∣∣∣πλ,εs ∣∣∣2 ds− ∫ t

s=0
σXxλ,π

λ,ε

s dWs ≤ λCx1,π1,ε
∞ + (1− λ)Cx2,π2,ε

∞ ,
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and therefore,

J(πλ,ε, γ;xλ, q) = E
[
Cxλ,π

λ,ε

∞ Qq,γ∞

]
≤ λE

[
Cx1,π1,ε
∞ Qq,γ∞

]
+ (1− λ)E

[
Cx2,π2,ε
∞ Qq,γ∞

]
= λJ(π1,ε, γ;x1, q) + (1− λ)J(π2,ε, γ;x2, q)

≤ λϕγ(x1) + (1− λ)ϕγ(x2) + ε.

As a result, we have

ϕγ(λx1 + (1− λ)x2) ≤ J(πλ,ε, γ;xλ, q) ≤ λϕγ(x1) + (1− λ)ϕγ(x2) + ε.

Since x1, x2, λ, ε were arbitrarily chosen, ϕγ(·) is convex on R.

Proof of claim (iii). Fix x ∈ X and define ϕx : [0, 1] 7→ R as follows:

ϕπ(q) , sup
γ∈Γ(q)

J(π, γ;x, q),

so that we have V (x, q) = infπ∈Π(x) ϕπ(q). Since the point-wise infimum of a set of concave functions
is concave, it suffices to show that ϕπ(·) is concave on [0, 1] for each π ∈ Π(x).

Fix π ∈ Π(x) and consider any q1, q2 ∈ [0, 1]. By Lemma 1 and Lemma 5, there exist γ1 ∈ Γ(q1)
and γ2 ∈ Γ(q2) such that

J(π, γ1;x, q1) = ϕπ(q1), J(π, γ2;x, q2) = ϕπ(q2).

Given some λ ∈ [0, 1], let qλ , λq1 + (1 − λ)q2 and γλ , λγ1 + (1 − λ)γ2 (i.e., γλt (ω) = λγ1
t (ω) +

(1− λ)γ2
t (ω) for ∀t, ω). Note that

Qqλ,γ
λ

t = qλ +
∫ t

s=0
γλs dWs = λQq1,γ

1

t + (1− λ)Qq2,γ
2

t ,

and hence Qqλ,γ
λ

t ∈ [0, 1] almost surely for any t, i.e., γλ ∈ Γ(qλ). Therefore,

J(π, γλ;x, qλ) = E
[
Cx,π∞ Qqλ,γ

λ

∞

]
= λE

[
Cx,π∞ Qq1,γ

1
∞

]
+ (1− λ)E

[
Cx,π∞ Qq2,γ

2
∞

]
= λJ(π, γ1;x, q1) + (1− λ)J(π, γ2;x, q2)

= λϕπ(q1) + (1− λ)ϕπ(q2).

As a result, we have

ϕπ(λq1 + (1− λ)q2) ≥ J(π, γλ;x, qλ) = λϕπ(q1) + (1− λ)ϕπ(q2).

Since q1, q2, λ were arbitrarily chosen, ϕπ(·) is concave on [0, 1].

Proof of claim (iv). The claim immediately follows from claim (i). �
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C.3. Proof of CVaR Dynamic Programming Principle

We first state a proposition that is useful for proving upper-semicontinuity of a mapping with
respect to the weak topology.

Lemma 8 (Barbu and Precupanu (2012), Proposition 2.10. Restated for upper-semicontinuity). Let Y
be a locally convex space. A proper concave function f : Y → [−∞,∞) is upper-semicontinuous on
Y if and only if it is upper-semicontinuous with respect to the weak topology on Y.

We next prove a minimax theorem that includes the value function and a stopping time, which
extends Theorem 2.

Proposition 9. For any stopping time τ : Ω→ T with E[τ ] <∞, we have

inf
π∈Π(x)

sup
γ∈Γ(q)

E [Cx,πτ Qq,γτ + V (Xx,π
τ , Qq,γτ )] = sup

γ∈Γ(q)
inf

π∈Π(x)
E [Cx,πτ Qq,γτ + V (Xx,π

τ , Qq,γτ )] .

Moreover, an optimal solution γ ∈ Γ(q) must exist for each maximization, i.e.,

inf
π∈Π(x)

max
γ∈Γ(q)

E [Cx,πτ Qq,γτ + V (Xx,π
τ , Qq,γτ )] = max

γ∈Γ(q)
inf

π∈Π(x)
E [Cx,πτ Qq,γτ + V (Xx,π

τ , Qq,γτ )] .

Proof. Let us first define
Qτ (q) , {E(Q|Fτ ) : Q ∈ Q(q)} .

As analogous to Lemma 1, it can be easily shown that Qτ (q) = {Qq,γτ |γ ∈ Γ(q)}. With the notation
introduced in the proof of Theorem 2 (§C.1), it suffices to show that

inf
X∈X (x)

max
Q∈Qτ (q)

E
[
CXτ Q+ V (Xτ , Q)

]
= max

Q∈Qτ (q)
inf

X∈X (x)
E
[
CXτ Q+ V (Xτ , Q)

]
,

for which we need to verify the followings:

(i) The mapping X 7→ E
[
CXτ Q+ V (Xτ , Q)

]
is convex and continuous on X (x) with respect to

the norm ‖ · ‖X for any given Q ∈ Qτ (q).

(ii) Qτ (q) is a non-empty, convex, and weakly compact subset of L2(Ω,Fτ ,P).

(iii) The mapping Q 7→ E [V (Xτ , Q)] is continuous on Qτ (q) endowed with L2-norm12 for any
given X ∈ X (x).

(iv) The mapping Q 7→ E
[
CXτ Q+ V (Xτ , Q)

]
is concave and upper-semicontinuous on Qτ (q)

endowed with L2-weak topology for any given X ∈ X (x).

Together with the convexity of X (x) (Lemma 7), we obtain the desired claim by utilizing Sion’s
minimax theorem (Lemma 6).

12Note that what we ultimately want to show is that the mapping Q 7→ E [V (Xτ , Q)] is upper-semicontinuous on
Qτ (q) endowed with L2-weak topology. We first show its continuity with respect to L2-norm topology and then
utilize Lemma 8 to achieve this goal.
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Proof of claim (i). The convexity of the mapping X 7→ E
[
CXτ Q+ V (Xτ , Q)

]
immediately follows

from the arguments in the proof of Theorem 2, and the convexity of V (·, Q), which was shown
in Proposition 8(ii). Now fix X ∈ X (x) and consider a sequence (X(n) ∈ X (x))n∈N such that
‖X − X(n)‖X → 0 as n → ∞. Following the arguments in the proof of Theorem 2, we can show
that CX(n)

τ Q
L1
→ CXτ Q as n→∞. We also have that

E
[∣∣∣X(n)

τ −Xτ

∣∣∣] = E
[∣∣∣∣∫ τ

t=0
(Ẋ(n)

t − Ẋt)dt
∣∣∣∣]

≤ E
[∫ τ

t=0

∣∣∣Ẋ(n)
t − Ẋt

∣∣∣ dt]
≤
(
E
[∫ τ

t=0

∣∣∣Ẋ(n)
t − Ẋt

∣∣∣2 dt]) 1
2
×
(
E
[∫ τ

t=0
12dt

]) 1
2

≤ ‖X(n) −X‖X ×
√
E[τ ],

where the second inequality holds due to Hölder’s inequality. Since E[τ ] <∞ and ‖X(n)−X‖X ↘ 0
as n → ∞, we deduce that X(n)

τ
L1
→ Xτ . By the continuous mapping theorem, we further obtain

that V (X(n)
τ , Q) p→ V (Xτ , Q) as n→∞. Given that supt≥0 |X

(n)
t | ≤M for all n ∈ N, the sequence(

|V (X(n)
τ , Q)|

)
n∈N is uniformly bounded by supq′∈[0,1]

{
σ

2
3 η

1
3 ×M

4
3 × q′

1
3κ(q′)

2
3
}
< ∞, and hence

uniformly integrable. Therefore, V (X(n)
τ , Q) L

1
→ V (Xτ , Q). Combining these results, we obtain

limn→∞ E
[
CX

(n)
τ Q+ V (X(n)

τ , Q)
]

= E
[
CXτ Q+ V (Xτ , Q)

]
, which concludes the proof.

Proof of claim (ii). The proof is identical to that of Lemma 4 and 5 except that L∞(Ω,F ,P) and
L2(Ω,F ,P) are replaced with L∞(Ω,Fτ ,P) and L2(Ω,Fτ ,P), respectively.

Proof of claim (iii). Fix Q ∈ Qτ (q) and consider a sequence (Q(n) ∈ Qτ (q))n∈N such that Q(n) L2
→ Q

as n → ∞. By the continuous mapping theorem, we have V (Xτ , Q
(n)) p→ V (Xτ , Q). Since the

sequence
(
|V (Xτ , Q

(n))|
)
n∈N is uniformly integrable (uniformly bounded by supq′∈[0,1]

{
σ

2
3 η

1
3 ×

|M |
4
3 × q′

1
3κ(q′)

2
3
}
<∞), we further have V (Xτ , Q

(n)) L
1
→ V (Xτ , Q), which concludes the proof.

Proof of claim (iv). The concavity of the mapping Q 7→ E
[
CXτ Q+ V (Xτ , Q)

]
immediately follows

from the concavity of V (Xτ , ·), which was shown in Proposition 8(iii). On the other hand, by
combining the result of claim (iii) with Lemma 8, we deduce that the mapping Q 7→ E [V (Xτ , Q)]
is upper-semicontinuous on Qτ (q) endowed with L2-weak topology. Therefore, it suffices to show
that the mapping Q 7→ E

[
CXτ Q

]
is upper-semicontinuous with respect to L2-weak topology.

Fix Q ∈ Qτ (q) and consider a sequence (Q(n) ∈ Qτ (q))n∈N such that E[ZQ(n)] → E[ZQ] as
n→∞ for any Z ∈ L2. Since CXτ ∈ L2, we have limn→∞ E[CXτ Q(n)] = E[CXτ Q], which implies the
continuity of the mapping Q 7→ E

[
CXτ Q

]
. �

Before proving Theorem 3, we introduce additional notation to describe the Markovian structure
of problem. We denote by (Xt,x,π

s )s≥t the trader’s position process under control π that begins from
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the value x at time t, i.e.,
Xt,x,π
s , x−

∫ s

u=t
πudu.

We define the adversary’s martingale process (Qt,q,γs )s≥t and the loss process (Ct,x,πs )s≥t analogously,

Qt,q,γs , q +
∫ s

u=t
γudWu, Ct,x,πs ,

∫ s

u=t

1
2ηπ

2
udu−

∫ s

u=t
σXt,x,π

u dWu.

With this notation, we can describe the aforementioned processes in a recursive way,

X0,x,π
s = X

t,X0,x,π
t ,π

s , Q0,q,γ
s = Q

t,Q0,q,γ
t ,γ

s , C0,q,γ
s = C0,x,π

t + C
t,X0,x,π

t ,π
s .

The policy spaces are defined analogously as well,

Πt(x) , {π ∈ Π(x) | πs = 0,∀s < t} , Γt(q) , {γ ∈ Γ(q) | γs = 0,∀s < t} .

We prove Theorem 3 by utilizing Proposition 9 and Proposition 3.

Proof of Theorem 3. Define

U(x, q) , inf
π∈Π(x)

sup
γ∈Γ(q)

E
[
C0,x,π
τ Q0,q,γ

τ + V
(
X0,x,π
τ , Q0,q,γ

τ

)]
.

By Lemma 1 and Lemma 5, we can equivalently write

U(x, q) = inf
π∈Π(x)

max
γ∈Γ(q)

E
[
C0,x,π
τ Q0,q,γ

τ + V
(
X0,x,π
τ , Q0,q,γ

τ

)]
.

We aim to prove V (x, q) = U(x, q).

Proof of “V (x, q) ≤ U(x, q)”. Fix ε > 0. By definition of U(x, q), there exists π◦ ∈ Π(x) such that

U(x, q) + ε ≥ max
γ∈Γ(q)

E
[
C0,x,π◦
τ Q0,q,γ

τ + V
(
X0,x,π◦
τ , Q0,q,γ

τ

)]
.

On the other hand, we have that for any t ≥ 0, x̂ ∈ X, and q̂ ∈ [0, 1],

V (x̂, q̂) = inf
π̂∈Πt(x̂)

max
γ̂∈Γt(q̂)

E
[
Ct,x̂,π̂∞ Qt,q̂,γ̂∞

]
,

by time homogeneity of the problem. Consequently, for each ω ∈ Ω and γ ∈ Γ(q), there exists
π̂ω,γ ∈ Πτ(ω)(X0,x,π◦

τ (ω)) such that

V
(
X0,x,π◦
τ (ω), Q0,q,γ

τ (ω)
)

+ ε ≥ max
γ̂∈Γτ(ω)(Q

0,q,γ
τ (ω))

E
[
Cτ,X

0,x,π◦
τ ,π̂ω,γ

∞ Qτ,Q
0,q,γ
τ ,γ̂

∞

∣∣∣∣Fτ] (ω)

≥ E
[
Cτ,X

0,x,π◦
τ ,π̂ω,γ

∞ Qτ,Q
0,q,γ
τ ,γ

∞

∣∣∣∣Fτ] (ω),
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where the second inequality follows from the fact that the given γ may not be optimal for the
period t ≥ τ .

For each γ ∈ Γ(q), consider a trader’s policy πγ : T× Ω→ R constructed as follows:

πγt (ω) ,

 π◦t (ω) if t < τ(ω),
π̂ω,γt (ω) if t ≥ τ(ω),

i.e., it implements an ε-optimal solution to the Bellman equation before τ , and then implements
another ε-optimal solution for the remaining horizon. We observe that πγ ∈ Π(x) since π◦t (ω) ∈
Π(x) and π̂ω,γt ∈ Π(x). Combining these results, we obtain

U(x, q) ≥ max
γ∈Γ(q)

E
[
C0,x,π◦
τ Q0,q,γ

τ + V
(
X0,x,π◦
τ , Q0,q,γ

τ

)]
− ε

≥ max
γ∈Γ(q)

E
[
C0,x,π◦
τ Q0,q,γ

τ + E
[
Cτ,X

0,x,π◦
τ ,π̂ω,γ

∞ Qτ,Q
0,q,γ
τ ,γ

∞

∣∣∣∣Fτ]]− 2ε

= max
γ∈Γ(q)

E
[
C0,x,πγ
τ Q0,q,γ

τ + Cτ,X
0,x,πγ
τ ,πγ

∞ Qτ,Q
0,q,γ
τ ,γ

∞

]
− 2ε

= max
γ∈Γ(q)

E
[
C0,x,πγ
∞ Q0,q,γ

∞

]
− 2ε

≥ max
γ∈Γ(q)

inf
π∈Π(x)

E
[
C0,x,π
∞ Q0,q,γ

∞

]
− 2ε

= V (x, q)− 2ε.

Since the choice of ε was arbitrary, we deduce that U(x, q) ≥ V (x, q).

Proof of “V (x, q) ≥ U(x, q)”. By minimax equality result for U(x, q) (Proposition 9), there exists
γ◦ ∈ Γ(q) such that

U(x, q) = inf
π∈Π(x)

E
[
C0,x,π
τ Q0,q,γ◦

τ + V
(
X0,x,π
τ , Q0,q,γ◦

τ

)]
.

By minimax equality result for V (x, q) (Theorem 2) and by time homogeneity of the problem, we
further have that for any t ≥ 0, x̂ ∈ X, and q̂ ∈ [0, 1],

V (x̂, q̂) = max
γ̂∈Γt(q̂)

inf
π̂∈Πt(x̂)

E
[
Ct,x̂,π̂∞ Qt,q̂,γ̂∞

]
.

Therefore, for each ω ∈ Ω and π ∈ Π(x), there exists γ̂ω,π ∈ Γτ(ω)(Q0,q,γ◦
τ (ω)) such that

V
(
X0,x,π
τ (ω), Q0,q,γ◦

τ (ω)
)

= inf
π̂∈Πτ(ω)(X

0,x,π
τ (ω))

E
[
Cτ,X

0,x,π
τ ,π̂

∞ Qτ,Q
0,q,γ◦
τ ,γ̂ω,π

∞

∣∣∣∣Fτ] (ω)

≤ E
[
Cτ,X

0,x,π
τ ,π

∞ Qτ,Q
0,q,γ◦
τ ,γ̂ω,π

∞

∣∣∣∣Fτ] (ω).
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For each π ∈ Π(x), consider an adversary’s policy γπ : T× Ω→ R constructed as

γπt (ω) ,

 γ◦t (ω) if t < τ(ω),
γ̂ω,πt (ω) if t ≥ τ(ω).

We observe that γπ ∈ Γ(q). Combining these results, we obtain

U(x, q) = inf
π∈Π(x)

E
[
C0,x,π
τ Q0,q,γ◦

τ + V
(
X0,x,π
τ , Q0,q,γ◦

τ

)]
≤ inf

π∈Π(x)
E
[
C0,x,π
τ Q0,q,γ◦

τ + E
[
Cτ,X

0,x,π
τ ,π

∞ Qτ,Q
0,q,γ◦
τ ,γ̂ω,π

∞

∣∣∣∣Fτ]]
= inf

π∈Π(x)
E
[
C0,x,π
τ Q0,q,γπ

τ + Cτ,X
0,x,π
τ ,π

∞ Qτ,Q
0,q,γπ
τ ,γπ

∞

]
= inf

π∈Π(x)
E
[
C

0,X0,x,π
0 ,π

∞ Q0,q,γπ
∞

]
≤ inf

π∈Π(x)
max
γ∈Γ(q)

E
[
C

0,X0,x,π
0 ,π

∞ Q0,q,γ
∞

]
= V (x, q).

This concludes the proof. �
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D. Proofs for §4

D.1. Proofs of Theorem 4 and Theorem 6

In this section, we prove Theorem 4 and Theorem 6 together in Theorem 7 below. We do this
by constructing the sequence of function pairs (f (n), g(n))n∈N from a function V ? satisfying the
conditions of Theorem 4 and by characterizing the outcome of the game when the trader or the
adversary employs a policy induced by f (n) or g(n). Before making a formal statement of Theorem 7,
we clarify what we aim to show, address some technical difficulty, and illustrate how to detour such
a difficulty.

Consider a function V ?(x, q) that satisfies the conditions of Theorem 4, and define

f?(x, q) , V ?
x (x, q)
ηq

, g?(x, q) , σx

V ?
qq(x, q)

,

which solve the trader’s and the adversary’s optimization problems in the HJB equation:

f?(x, q) = argmin
v∈R

{
η

2qv
2 − V ?

x (x, q) v
}
, g?(x, q) = argmax

w∈R

{1
2V

?
qq (x, q)w2 − σxw

}
,

for any x ∈ X and q ∈ (0, 1). We would argue that they specify the trader’s optimal liquidation
rate, π?t = f?(Xt, Qt), and the adversary’s optimal quantile diffusion rate, γ?t = g?(Xt, Qt), and
this combination of policies, (π?, γ?), achieves the equilibrium of this game at which the outcome
equals V ?(x, q).

First note that we aim to characterize the equilibrium of this game. We will not argue that
the trader’s policy induced by f? is optimal against any adversary’s policy γ. Instead, we will
argue is that such a trader’s policy yields an outcome that is no worse than V ?(x, q) against any
adversary’s policy γ, i.e., J(π?,γ , γ) ≤ V ?(x, q) for any adversary’s policy γ, where π?,γ is the
trader’s policy induced by f? and coupled with γ. Similarly, we will also argue that the adversary’s
policy induced by g? yields an outcome that is no better than V ?(x, q) against any trader’s policy
π, i.e., J(π, γ?,π) ≥ V ?(x, q) for any trader’s policy π where γ?,π is the adversary’s policy induced
by g? and coupled with π. By combining two results, we would be able to argue that a mutually
coupled (X,Q)-Markov policy pair (π?, γ?) induced by (f?, g?) is the best response to each other
and yields an outcome that equals V ?(x, q) as a saddle point.

To complete the above arguments, however, we need to show that the policies π? and γ? are
admissible (i.e., they satisfy the feasibility conditions that we have introduced in Π(x) and Γ(q)).
Unfortunately, their feasibility is uncertain due to the pathological behavior of f? and g? near
the boundaries when x ≈ 0, q ≈ 0, or q ≈ 1: for instance, we may have E[

∫∞
t=0 π

2
t dt] = ∞ since

limq↘0 f
?(x, q) = ∞; E[

∫∞
t=0 |Xt|2dt] = ∞ since limq↗1 f

?(x, q) = 0; or E[
∫∞
t=0 γ

2
t dt] = ∞ since

limx↘0 g
?(x, q) = −∞, which contradicts to the fact that Qt is a bounded martingale.

To avoid this feasibility issue, we construct a sequence of function pairs (f (n), g(n))n∈N that
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approximates (f?, g?) while inducing feasible policies. More specifically, we define a sequence of
function pairs (f (n), g(n))n∈N:

f (n)(x, q) ,

 f?(x, q) if (x, q) ∈ An,
x/n if (x, q) /∈ An,

g(n)(x, q) ,

 g?(x, q) if (x, q) ∈ An,
0 if (x, q) /∈ An,

where
An ,

{
(x, q) ∈ X× [0, 1]

∣∣∣∣ |x| > 1
n
,

1
n
< q < 1− 1

n

}
.

It can be easily seen that f (n) and g(n) converge to f? and g? at every interior point (x, q) ∈
R+ × (0, 1) as n → ∞. Moreover, these functions suppress the extreme behavior of f? and g?

near the boundaries, i.e., outside the set An. The policies induced by f (n) and g(n) can be shown
to be feasible. This is formally established in Theorem 7 (i)–(iii). Finally, we can complete the
equilibrium argument made above by showing that this sequence of function pairs (f (n), g(n))n∈N
achieves the equilibrium asymptotically (Theorem 7 (vi)–(viii)). In the midst of the proof, we
confirm that the equilibrium outcome, V (x, q), coincides the solution of HJB equation, V ?(x, q)
(Theorem 7 (iv) and (v)), by showing that the gap between them can be tightened arbitrarily small
as n→∞.

Theorem 7. Fix x ∈ (0,M ] and q ∈ (0, 1), and consider functions V ?, f?, g?, f (n), and g(n)

introduced above. For any n > max{ 1
x ,

1
q ,

1
1−q}, we have:

(i) For any adversary’s policy γ ∈ Γ(q), a (X,Q)-Markov trader’s policy π(n),γ induced by f (n)

and coupled with γ is admissible, i.e., π(n),γ ∈ Π(x).

(ii) For any trader’s policy π ∈ Π(x), a (X,Q)-Markov adversary’s policy γ(n),π induced by g(n)

and coupled with π is admissible, i.e., γ(n),π ∈ Γ(q).

(iii) Mutually coupled (X,Q)-Markov policy pair (π(n), γ(n)) induced by (f (n), g(n)) is admissible,
i.e., π(n) ∈ Π(x) and γ(n) ∈ Γ(q).

(iv) V (x, q) ≤ V ?(x, q).

(v) V (x, q) ≥ V ?(x, q).

(vi) For any γ ∈ Γ(q), (π(n),γ)n∈N defined in (i) satisfies lim supn→∞ J(π(n),γ , γ;x, q) ≤ V (x, q).

(vii) For any π ∈ Π(x), (γ(n),π)n∈N defined in (ii) satisfies lim infn→∞ J(π, γ(n),π;x, q) ≥ V (x, q).

(viii) (π(n), γ(n))n∈N defined in (iii) satisfies limn→∞ J(π(n), γ(n);x, q) = V (x, q).

Proof. Throughout the proof, we define a sequence of hitting times (τn)n∈N as follows:

τn , inf
t≥0
{(Xt, Qt) /∈ An}.

Since Acn is a closed set and (Xt)t≥0 and (Qt)t≥0 are continuous, τn is a stopping time for each
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n. Also note that if the trader’s policy is induced by f (n) or the adversary’s policy is induced by
g(n), then the process (Xt, Qt) never returns to An once it leaves An, since |Xt| is monotonically
decreasing or Qt remains unchanged after τn.

Proof of claim (i). Under the trader’s policy π(n),γ , the position process (Xt)t≥0 is described by

Xt =

 x−
∫ t
s=0 f

? (Xs, Qs) ds, ∀t ≤ τn,
Xτne

−(t−τn)/n, ∀t ≥ τn.
(27)

Observe that Xt ∈ [0, x] for any t ≥ 0, and in particular, Xt is monotonically decreasing over time.
Given that (Qt)t≥0 has a continuous sample path and n is large enough such that q ∈

[
1
n , 1−

1
n

]
, we

also have Qt ∈
[

1
n , 1−

1
n

]
for any t ∈ [0, τn]. Then, the sample path of (Xt)t≥0 for each ω is uniquely

determined (i.e., the associated SDE has a unique strong solution): the uniqueness of sample path
on [0, τn) follows from the fact that f?(·, ·) is Lipschitz continuous on

(
1
n , x

]
×
(

1
n , 1−

1
n

)
⊂ An

due to condition (iv), and the uniqueness on [τn,∞) immediately follows from the fact that Xt =
Xτne

−(t−τn)/n for t ≥ τn.

We next show that τn is almost surely bounded. For any t < τn (so that (Xt, Qt) ∈ An), by
condition (iv), we have

f (n)(Xt, Qt) ≥ f?(Xt, 1− 1/n) ≥ f?(1/n, 1− 1/n) := αn > 0.

Then, for any t < τn, we have dXt/dt = −f (n)(Xt, Qt) ≤ −αn, and hence Xτn ≤ x−αnτn. Together
with the fact that Xτn ≥ 0, we deduce that

τn ≤
x

αn
, (28)

on any sample path.

We further have that, by condition (iv), for any t < τn,

f (n)(Xt, Qt) ≤ f?(Xt, 1/n) ≤ f?(x, 1/n) := βn <∞.

Then,

∫ τn

t=0

(
π

(n),γ
t

)2
dt =

∫ τn

t=0

(
f?(Xt, Qt)

)2
dt ≤ τnβ2

n ≤
xβ2

n

αn
,

∫ τn

t=0
X2
t dt ≤ τnx2 ≤ x3

αn
,

on any sample path. Further, since π(n),γ
t = Xt/n for any t ≥ τn,∫ ∞

t=τn

(
π

(n),γ
t

)2
dt = 1

n2

∫ ∞
t=τn

X2
t dt = 1

n2

∫ ∞
t=τn

X2
τne
−2(t−τn)/ndt ≤ x2

2n,
∫ ∞
t=τn

X2
t dt ≤

nx2

2 .
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As a result,

E
[(∫ ∞

t=0

(
π

(n),γ
t

)2
dt

)2
]
≤
(
xβ2

n

αn
+ x2

2n

)2

<∞, E
[∫ ∞
t=0

X2
t dt

]
≤ x3

αn
+ nx2

2 <∞.

Also note that supt≥0 |Xt| ≤ x ≤M . Therefore, π(n),γ is admissible, i.e., π(n),γ ∈ Π(x).

Proof of claim (ii). Under the adversary’s policy γ(n),π, the martingale process (Qt)t≥0 is described
by

Qt =

 q +
∫ t
s=0 g

? (Xs, Qs) dWs, ∀t ≤ τn,
Qτn , ∀t ≥ τn.

(29)

From condition (v), we can show that g?(·, ·) is Lipschitz continuous and bounded on
(

1
n ,∞

)
×(

1
n , 1−

1
n

)
⊂ An. Therefore, for each ω, the sample path of (Qt)t≥0 is unique and continuous

(given that n is large enough so that q ∈
[

1
n , 1−

1
n

]
, and (Xt)t≥0 is continuous), and hence Qt ∈[

1
n , 1−

1
n

]
⊂ [0, 1] almost surely for any t ∈ [0,∞), and hence γ(n),π is admissible.

For later use, we show that E[τn] < ∞ under the adversary’s policy γ(n),π. Observe that, for
any t < τn, ∣∣∣g(n)(Xt, Qt)

∣∣∣ = |g?(Xt, Qt)| ≥ |g?(M,Qt)| ≥ min
q∈[1/n,1−1/n]

{g?(M, q)} := ξn.

In other words, the diffusion rate of the quantile process
(
Qt
)
t≥0 is lower bounded by ξn (up to

time τn). Therefore, its quadratic variation process
(
〈Q〉t

)
t≥0 satisfies

〈Q〉t =
∫ t∧τn

s=0

(
g?(Xs, Qs)

)2
ds ≥ ξ2

n(t ∧ τn),

for any t ∈ R. On the other hand, by Burkholder-Davis-Gundy inequality, there exists c such that
cE[〈Q〉t∧τn ] ≤ E[(sups≤t∧τn Qs)

2] for any t, and thus ξ2
nE[t∧τn] ≤ E[〈Q〉t∧τn ] ≤ E[(sups≤t∧τn Qs)

2]/c ≤
1/c. By monotone convergence theorem, we deduce that E[τn] = limt→∞ E[t ∧ τn] ≤ 1/(cξ2

n) <∞.

Proof of claim (iii). Under the mutually coupled policy pair (π(n), γ(n)), the process pair (Xt, Qt)t≥0

satisfies (27) and (29) simultaneously. By the same argument above (claim (ii)), we can show that
γ(n) is admissible, and also that π(n) is admissible by claim (i).

Proof of claim (iv). Fix γ ∈ Γ(q) and n ∈ N. For simplicity, we let π denote π(n),γ ∈ Π(x). For any
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t < τn, since f (n)(Xt, Qt) = f?(Xt, Qt), by condition (i), we have(
η

2Qtπ
2
t − V ?

x (Xt, Qt)πt
)

+
(1

2V
?
qq (Xt, Qt) γ2

t − σXtγt

)
=
(
η

2Qt (f? (Xt, Qt))2 − V ?
x (Xt, Qt) f? (Xt, Qt)

)
+
(1

2V
?
qq (Xt, Qt) γ2

t − σXtγt

)
= min

v∈R

{
η

2Qtv
2 − V ?

x (Xt, Qt) v
}

+
(1

2V
?
qq (Xt, Qt) γ2

t − σXtγt

)
≤ min

v∈R

{
η

2Qtv
2 − V ?

x (Xt, Qt) v
}

+ max
w∈R

{1
2V

?
qq (Xt, Qt)w2 − σXtw

}
= 0.

By plugging this result into Proposition 4, we obtain

E [CτnQτn ] (30)

≤ E [CτnQτn + V ? (Xτn , Qτn)]

= V ? (x, q) + E
[∫ τn

t=0

{(
η

2Qtπ
2
t − V ?

x (Xt, Qt)πt
)

+
(1

2V
?
qq (Xt, Qt) γ2

t − σXtγt

)}
dt

]
≤ V ? (x, q) ,

where the first inequality follows from the non-negativity of V ?(·, ·). On the other hand, by the
definition of τn and the continuity of sample paths, we have either Xτn = 1

n or Qτn ∈ { 1
n , 1 −

1
n},

and therefore,

E [V (Xτn , Qτn)] ≤ E [max {V (1/n,Qτn), V (Xτn , 1/n), V (Xτn , 1− 1/n)}]

≤ sup
q′∈[0,1]

{V (1/n, q′)}+ V (x, 1/n) + V (x, 1− 1/n) := An(x), (31)

where the second inequality follows from the fact that Xτ ≤ x under policy π(n),γ and V (·, q) is
increasing on [0,∞). It can be shown easily that limn→∞An(x) = 0 for any x due to Proposition 8.

Since γ was chosen to be arbitrary, from (30), we deduce that

sup
γ∈Γ(q)

E
[
Cx,π

(n),γ
τn Qq,γτn

]
≤ V ?(x, q). (32)

Utilizing Theorem 3 (we have shown that E[τn] <∞ in (28)) and Proposition 9 with (31) and (32),
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we further obtain

V (x, q) Thm 3= inf
π∈Π(x)

sup
γ∈Γ(q)

E
[
Cx,πτn Q

q,γ
τn + V

(
Xx,π
τn , Q

q,γ
τn

)]
Prop 9= sup

γ∈Γ(q)
inf

π∈Π(x)
E
[
Cx,πτn Q

q,γ
τn + V

(
Xx,π
τn , Q

q,γ
τn

)]
≤ sup

γ∈Γ(q)
E
[
Cx,π

(n),γ
τn Qq,γτn + V

(
Xx,π(n),γ
τn , Qq,γτn

)]
(31)
≤ sup

γ∈Γ(q)
E
[
Cx,π

(n),γ
τn Qq,γτn

]
+An(x)

(32)
≤ V ?(x, q) +An(x).

Since limn→∞An(x) = 0, we obtain V (x, q) ≤ V ?(x, q), which concludes the proof.

Proof of claim (v). The proof is almost symmetric to that of claim (iv). Fix π ∈ Π(x) and n ∈ N.
For simplicity, we let γ denote γ(n),π ∈ Γ(q). For any t < τn, since g(n)(Xt, Qt) = g?(Xt, Qt), by
condition (i), we have(

η

2Qtπ
2
t − V ?

x (Xt, Qt)πt
)

+
(1

2V
?
qq (Xt, Qt) γ2

t − σXtγt

)
=
(
η

2Qtπ
2
t − V ?

x (Xt, Qt)πt
)

+ max
w∈R

{1
2V

?
qq (Xt, Qt)w2 − σXtw

}
≥ min

v∈R

{
η

2Qtv
2 − V ?

x (Xt, Qt) v
}

+ max
w∈R

{1
2V

?
qq (Xt, Qt)w2 − σXtw

}
= 0.

Consequently, by Proposition 4,

E [CτnQτn + V ? (Xτn , Qτn)] (33)

= V ? (x, q) + E
[∫ τn

t=0

{(
η

2Qtπ
2
t − V ?

x (Xt, Qt)πt
)

+
(1

2V
?
qq (Xt, Qt) γ2

t − σXtγt

)}
dt

]
≥ V ? (x, q) .

By the definition of τn and the continuity of sample paths, we have either Xτn = 1
n or Qτn ∈

{ 1
n , 1−

1
n}, and hence,

E [V ? (Xτn , Qτn)] ≤ E [max {V ?(1/n,Qτn), V ?(Xτn , 1/n), V ?(Xτn , 1− 1/n)}] (34)

≤ sup
q′∈[0,1]

{V ?(1/n, q′)}+ V ?(M, 1/n) + V ?(M, 1− 1/n) := Bn,

where the last inequality follows from the feasibility of π (i.e., |Xτn | ≤ M) and the monotonicity
of V ?(·, q) (condition (iii)). By condition (ii), we have limn→0Bn = 0.
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Since π was chosen arbitrary, we further deduce that

V ?(x, q)
(33)
≤ inf

π∈Π(x)
E
[
Cx,πτn Q

q,γ(n),π
τn + V ?

(
Xx,π
τn , Q

q,γ(n),π
τn

)] (34)
≤ inf

π∈Π(x)
E
[
Cx,πτn Q

q,γ(n),π
τn

]
+Bn. (35)

By utilizing Theorem 3 (we have shown that E[τn] < ∞ at the end of the proof of claim (ii)) and
the above results, we obtain

V (x, q) Thm 3= inf
π∈Π(x)

sup
γ∈Γ(q)

E
[
Cx,πτn Q

q,γ
τn + V

(
Xx,π
τn , Q

q,γ
τn

)]
≥ inf

π∈Π(x)
E
[
Cx,πτn Q

q,γ(n),π
τn + V

(
Xx,π
τn , Q

q,γ(n),π
τn

)]
≥ inf

π∈Π(x)
E
[
Cx,πτn Q

q,γ(n),π
τn

]
(35)
≥ V ?(x, q)−Bn,

where the first inequality follows from the definition of supremum, and the second inequality follows
from the non-negativity of V (·, ·). By taking n↗∞, we obtain the desired result.

Proof of claim (vi). To simplify notation, let π := π(n),γ and τ := τn temporarily. By Proposition 3,
we have

J(π, γ;x, q) = E
[
C0,x,π
τ Q0,q,γ

τ + Cτ,X
0,x,π
τ ,π

∞ Qτ,Q
0,q,γ
τ ,γ

∞

]
.

(Recall that Cτ,X
0,x,π
τ ,π

∞ = C0,x,π
∞ − C0,x,π

τ .) In the proof of claim (iv), in (30), we have shown that

E
[
C0,x,π
τ Q0,q,γ

τ

]
≤ V ?(x, q) = V (x, q),

where the last equality follows from the claims (iv) and (v). Therefore,

J(π, γ;x, q) ≤ V (x, q) + E
[
Cτ,X

0,x,π
τ ,π

∞ Qτ,Q
0,q,γ
τ ,γ

∞

]
≤ V (x, q) + E

[
S-CVaR

Q0,q,γ
τ

[
Cτ,X

0,x,π
τ ,π

∞

]]
.

To obtain the desired result, it suffices to show that limn→∞ E
[
S-CVaR

Q0,q,γ
τ

[
Cτ,X

0,x,π
τ ,π

∞

]]
= 0.

Note that after time τn, the policy π(n),γ trades according to the exponential schedule (i.e,. Xt =
Xτne

−(t−τn)/n), and thus Cτn,Xτn ,π∞ is normally distributed conditional on Xτn : more specifically,
as derived in (23), we have

E
[
Cτn,Xτn ,π∞

∣∣∣Xτn

]
=
ηX2

τn

4n , Var
[
Cτn,Xτn ,π∞

∣∣∣Xτn

]
=
nσ2X2

τn

2 .

Consequently,

S-CVaRQτn

[
Cτn,Xτn ,π∞

]
=
ηX2

τnQτn
4n + κ(Qτn)×

√
nσ2X2

τn

2 .
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By the definition of τn, we have either Xτn = 1
n or Qτn ∈

{
1
n , 1−

1
n

}
, and thus

S-CVaRQτn

[
Cτn,Xτn ,π∞

]
≤ max

ηQτn4n3 + κ(Qτn)×

√
σ2

2n,
ηX2

τnQτ

4n + max {κ(1/n), κ(1− 1/n)} ×

√
nσ2X2

τn

2



≤ max

 η

4n3 + sup
q′
{κ(q′)} ×

√
σ2

2n,
ηx2

4n + max {κ(1/n), κ(1− 1/n)} ×

√
nσ2x2

2

 .
(36)

Since supq′ κ(q′) <∞, limn→∞
√
nκ(1/n) = 0, and limn→∞

√
nκ(1−1/n) = 0 (Lemma 3), the right

side of (36) vanishes as n → ∞. Therefore, we have limn→∞ E
[
S-CVaRQτn

[
C
τn,Xτn ,π∞

]]
= 0 and

this concludes the proof.

Proof of claim (vii). In the proof of claim (v), we have shown that

E
[
Cx,πτn Q

q,γ(n),π
τn + V ?

(
Xx,π
τn , Q

q,γ(n),π
τn

)]
≥ V ?(x, q) = V (x, q),

where the last inequality follows from the claims (iv) and (v), and limn→∞ E
[
V ?
(
Xx,π
τn , Q

q,γ(n),π
τn

)]
=

0.

Observe that we have Q∞ = Qτn since g?(Xt, Qt) = 0 for all t ≥ τn under γ(n),π. Therefore,

E
[
Cx,π∞ Qq,γ

(n),π
∞

]
− E

[
Cx,πτn Q

q,γ(n),π
τn

]
= E [(C∞ − Cτn)Qτn ]

= E
[
E
(∫ ∞

t=τn

η

2π
2
t dt−

∫ ∞
t=τn

σXtdWt

∣∣∣∣Fτn)Qτn]
= E

[(∫ ∞
t=τn

η

2π
2
t dt

)
Qq,γ

(n)
τn

]
≥ 0.

Consequently,

J(π, γ(n),π;x, q) = E
[
Cx,π∞ Qq,γ

(n),π
∞

]
≥ E

[
Cx,πτn Q

q,γ(n),π
τn

]
≥ V (x, q)− E

[
V ?
(
Xx,π
τn , Q

q,γ(n),π
τn

)]
.

By taking lim infn→∞ on both sides, we obtain the desired result. �

Proof of Theorem 4. We aim to show that V (x, q) = V ?(x, q) for any x ∈ R and q ∈ [0, 1]. From
Theorem 7(iv) and (v), we deduce that V (x, q) = V ?(x, q) for any x > 0 and q ∈ (0, 1). By
symmetry, the same argument holds for any x < 0 and q ∈ (0, 1). From Proposition 8(iv) and
condition (ii), we can also verify that their boundary values match, i.e., V ?(x, q) = V (x, q) = 0 if
x = 0 or q ∈ {0, 1}. �

Proof of Theorem 6. For any x ∈ (0,M ] and q ∈ (0, 1), the claims follow from Theorem 7(i), (ii),
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(iii), (vi), (vii), and (viii). The claims also hold true for any x ∈ [−M, 0) by symmetry.

We next examine the cases when x = 0, q = 0, or q = 1. Note that V (0, ·) = V (·, 0) = V (·, 1) = 0.

• Suppose x = 0. Under π(n),γ , we have Xt = 0 for any t ≥ 0 and thus Cx,π(n),γ
∞ = 0 almost

surely for any γ ∈ Γ(q). Therefore, J(π(n),γ , γ;x, q) = 0, from which the claims (a) and (c)
follow. Consequently, under γ(n),π, we have Qt = q for any t ≥ 0 since g(n)(0, Qt) = 0, and
thus E[Cx,π∞ Qq,γ

(n),π
∞ ] = qE[Cx,π∞ ] ≥ 0 for any π ∈ Π(x), from which the claim (b) follows.

• Suppose q = 0. The only admissible adversary’s policy is the one satisfying that Qt = 0 for
all t ≥ 0, and thus J(π, γ;x, q) = 0 for any π ∈ Π(x), from which claims (a)–(c) follow.

• Suppose q = 1. Again, the only admissible adversary’s policy is the one satisfying that Qt = 1
for all t ≥ 0. Then, π(n),γ is an exponential policy in which we have Xt = x exp(−t/n) and
thus J(π(n),γ , γ;x, q) = E[Cx,π(n),γ

∞ ] = ηx2

4n ↘ 0 as n → ∞, from which claims (a) and (c)
follow. Consequently, since E[Cx,π∞ ] ≥ 0 for any π ∈ Π(x), the claim (b) immediately follows.

�

D.2. Other Proofs

Proof of Proposition 4. By applying Itô’s formula, we obtain

V̂ (Xt, Qt) = V̂ (x, q)−
∫ t

s=0
V̂x(Xs, Qs)πsds+

∫ t

s=0
V̂q(Xs, Qs)γsdWs + 1

2

∫ t

s=0
V̂qq(Xs, Qs)γ2

sds.

Recall that Ct ,
∫ t
s=0

η
2π

2
sds−

∫ t
s=0 σXsdWs. By applying Itô’s product rule, we further obtain

CtQt = Q0C0 +
∫ t

s=0

(
η

2π
2
sQs − σXsγs

)
ds+

∫ t

s=0
(−σXsQs +Xsγs) dWs.

Let M (1)
t ,

∫ t
s=0 V̂q(Xs, Qs)γsdWs, M (2)

t , −σ
∫ t
s=0XsQsdWs, and M

(3)
t ,

∫ t
s=0XsγsdWs. We

first verify that
(
M

(1)
t

)
t≥0 is uniformly integrable:

sup
t

E
[
|M (1)

t |2
]
≤ E

[∫ ∞
s=0

V̂q(Xs, Qs)2γ2
sds

]
≤
(

sup
x,q

V̂q(x, q)
)2

E
[∫ ∞
s=0

γ2
sds

]
<∞,

where supx,q V̂q(x, q) < ∞ since we have assumed that the domain of V̂ is compact and V̂q is
continuous, and E

[∫∞
s=0 γ

2
sds

]
<∞ since (Qt)t≥0 is a bounded martingale. Consequently,

sup
t

E
[
|M (2)

t |2
]
≤ E

[∫ ∞
s=0

X2
sQ

2
sds

]
≤ E

[∫ ∞
s=0

X2
sds

]
<∞,

where the last inequality directly follows from the definition of Π(x). Similarly, we have supt E
[
|M (3)

t |2
]
≤

E
[∫∞
s=0X

2
sγ

2
sds

]
≤ M2E

[∫∞
s=0 γ

2
sds

]
< ∞. Therefore,

(
M

(1)
t

)
t≥0,

(
M

(2)
t

)
t≥0, and

(
M

(3)
t

)
t≥0 are all

uniformly integrable, and hence, E[M (1)
τ ] = E[M (2)

τ ] = E[M (3)
τ ] = 0 for any stopping time τ .
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Combining these results, we deduce that

E
[
CτQτ + V̂ (Xτ , Qτ )

]
= V̂ (x, q) + E

[∫ τ

t=0

{
η

2π
2
tQt − V̂x(Xt, Qt)πt + 1

2 V̂qq(Xt, Qt)γ2
t − σXtγt

}
dt

]
.

We obtain the claim by rearranging terms. �

Proof of Theorem 5. We prove that the function V ?, defined in (11), satisfies the conditions (i)–(v)
in Theorem 4.

Verification of condition (i). Observe that ϕ′′(q) = − q
ϕ2(q) < 0 for any q ∈ (0, 1), and thus and

V ?
qq(x, q) < 0. The minimum/maximum in (10) are attainable, and we have

min
v∈R

{
η

2qv
2 − V ?

x (x, q) v
}

+ max
w∈R

{1
2V

?
qq (x, q)w2 − σxw

}
= −

(
V ?
x (x, q)

)2
2ηq − σ2x2

2V ?
qq(x, q)

Therefore, it suffices show that V ?
x

2 × V ?
qq = −σ2η × x2q:

V ?
x

2 × V ?
qq =

(
(3/4)

2
3 × σ

2
3 η

1
3 × 4

3x
1
3 × ϕ(q)

)2
×
(
(3/4)

2
3 × σ

2
3 η

1
3 × |x|

4
3 × ϕ′′(q)

)
= σ2η × x2 × ϕ2(q)× ϕ′′(q) = −σ2ηx2q.

Verification of conditions (ii)–(iii). These conditions can be easily verified by inspection.

Verification of condition (iv). Note that V ?x (x,q)
q = (3/4)−

1
3 × σ

2
3 η

1
3 × x

1
3 × ϕ(q)

q . Its continuity and
monotonicity (with respect to x) can be verified immediately, and it suffices to show that ϕ(q)

q is
decreasing in q.

Observe that for any q1, q2 such that 0 < q1 ≤ q2 ≤ 1, we have ϕ(q1) ≥ q1
q2
ϕ(q2)+

(
1− q1

q2

)
ϕ(0) =

q1 × ϕ(q2)
q2

due to its concavity, and therefore ϕ(q1)
q1
≥ ϕ(q2)

q2
. As a result, ϕ(q)

q is monotonically
decreasing in q on (0, 1).

Verification of condition (v). Note that x
V ?qq(x,q)

= (3/4)−
2
3 ×σ−

2
3 η−

1
3 ×x−

1
3 × ϕ2(q)

q . The continuity
and monotonicity (with respect to x) is trivial. �

Proof of Proposition 5. Emden–Fowler equation deals with a differential equation with a form of
d2ϕ
dq2 = Aqnϕm, and the differential equation that we have corresponds to the case of A = −1, n = 1,
and m = −1/2. In this case, the solutions can be written in parametric form (Polyanin and Zaitsev,
2003, 2.3.27): for constants a and b such that A = −9

2(b/a)3,

q(θ) = aθ−
2
3

[(
θZ ′(θ) + 1

3Z(θ)
)2
− θ2Z2(θ)

]
, ϕ(θ) = bθ

2
3Z2(θ), Z(θ) = C1I1/3(θ) + C2K1/3(θ),

(37)
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or

q(θ) = aθ−
2
3

[(
θZ ′(θ) + 1

3Z(θ)
)2

+ θ2Z2(θ)
]
, ϕ(θ) = bθ

2
3Z2(θ), Z(θ) = C1J1/3(θ) + C2Y1/3(θ),

(38)
where θ ∈ R+ is the parameter, and C1 and C2 are arbitrary constants.

Note that the expression (13) is obtained by taking C1 = − 2
π and C2 = 0 in (37), and the

expression (14) is obtained by taking C1 =
√

3 and C2 = −1 in (38). Therefore it suffices to
show that the curve {(qL(θ), ϕL(θ))}θ∈(0,∞]

⋃
{(qR(θ), ϕR(θ))}θ∈(0,θ̄] is a valid graph satisfying the

boundary conditions, i.e.,

(i) limθ↗∞
(
qL(θ), ϕL(θ)

)
= (0, 0).

(ii) (qR(θ̄), ϕR(θ̄)) = (1, 0).

(iii) The left part and the right part meet at a point, i.e., limθ↘0
(
qL(θ), ϕL(θ)

)
= limθ↘0

(
qR(θ), ϕR(θ)

)
.

(iv) They have the same slope at the contact point, i.e., limθ↘0
dφL/dθ
dqL/dθ

= limθ↘0
dφR/dθ
dqR/dθ

.

First, observe that limθ↗∞ ZL(θ) = − 2
π limθ↗∞K1/3(θ) = 0 and limθ↗∞ Z

′
L(θ) = 1

π limθ↗∞
(
K−2/3(θ)+

K4/3(θ)
)

= 0. Therefore, limθ↗∞ qL(θ) = 0 and limθ↗∞ ϕL(θ) = 0, which proves (i).

Next, observe that the value of θ̄ was chosen to satisfy ZR(θ̄) = 0, and the value of a was chosen
to satisfy qR(θ̄) = a× θ̄

4
3
(
Z ′R(θ̄)

)2
= 1, which proves (ii).

Finally, with some algebra, it can be shown that

lim
θ↘0

qL(θ) = lim
θ↘0

qR(θ) = 2
10
3 a

3Γ2(1
3)
, lim

θ↘0
ϕL(θ) = lim

θ↘0
ϕR(θ) = 2

8
3 b

3Γ2(2
3)
,

and

lim
θ↘0

dφL(θ)/dθ
dqL(θ)/dθ = lim

θ↘0

dφL(θ)/dθ
dqL(θ)/dθ =

3× 2
1
3 bΓ(2

3)
aΓ(1

3)
,

where Γ is the Gamma function. These results prove (iii) and (iv).

Some notes on the determination of constants. In the representation of the general solution,
(37) and (38), there are seven constants that need to be identified: a, b, θ̄, CL1, CL2, CR1, and
CR2. The upper limit θ̄ and the constant a are uniquely determined by (CL1, CL2, CR1, CR2)
due to (ii), and the constant b is also uniquely determined by a due to the identity (b/a)3 =
9/2. We can also observe that the curve {(q(θ), ϕ(θ))}θ∈R+ is invariant to a uniform scaling of
(CL1, CL2, CR1, CR2), and thus we can set CR4 = −1 without loss of generality. We can further
obtain a system of equations from the other conditions: CL2 = 0 from (i), C2

L1π
2 = 4C2

R2 and
C2
L1π

2 = 3C2
R1 + 2

√
3CR1CR2 + 3C2

R2 from (iii), and CR2 = −
√

3CR1 from (iv). These three
equations uniquely determine the values of CL1, CL2, and CR1. �
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