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Abstract

Bitcoin provides its users with transaction-processing services which are

similar to those of traditional payment systems. This paper models the novel

economic structure implied by Bitcoin’s innovative decentralized design, which

allows the payment system to be reliably operated by unrelated parties called

miners. We find that this decentralized design protects users from monopoly

pricing. Competition among service providers within the platform and free en-

try imply no entity can profitably affect the level of fees paid by users. Instead, a

market for transaction-processing determines the fees users pay to gain priority

and avoid transaction-processing delays. The paper derives closed-form formu-

las of the fees and waiting times and studies their properties; compares pricing

under the Bitcoin Payment System to that under a traditional payment system

operated by a profit-maximizing firm; and suggests protocol design modifica-

tions to enhance the platform’s efficiency. The appendix describes and explains

the main attributes of Bitcoin and the underlying blockchain technology.
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1 Introduction

The 2018 revenue of the global payment industry was $1.9 trillion (McKinsey &

Company 2019). The recipients of this revenue – payment-processing firms – enjoy

network effects and economies of scale, and therefore limited competition and barri-

ers to entry (Rosenbaum et al. 2017, Morningstar 2019). Multiple lawsuits against

payment-processing firms accuse them of abusing their market power and harming

welfare.1 Moreover, regulators worldwide impose restrictions on payment-processing

firms, in particular, capping the fees charged to users.2

The Bitcoin Payment System (BPS), a platform that provides payment services,

shows the feasibility of an alternative, decentralized design. It has been operating

reliably since its early 2009 inception. It is not controlled by any entity, governed by

a computer protocol, and obtains the required computer infrastructure from anony-

mous, independent profit-maximizing parties called “miners”. Anyone with the re-

quired computational power and an internet connection can become a miner and

compete with other miners to provide transaction-processing services to the platform

and collect the associated rewards.

We model this novel economic structure and show that the BPS’s decentralized

design offers a prototype of a payment system in which users are protected from

monopoly harm even if the payment system were a monopoly.3 Free entry and com-

petition of service providers within platform renders the service providers (i.e., the

miners) unable to profitably affect the fees users pay. Even a miner who controls a

large fraction of the computational power cannot profitably affect fees. Moreover,

the fees users pay do not increase if users lose their alternative payment methods.

1For example, see concerns discussed by Herkenhoff & Raveendranathan (2020), and Table 5
therein which provides a list of antitrust lawsuits against credit card payment networks and banks.
In a congressional testimony, Aaron Klein (2020) argues that payment systems adopt fee structures
that disadvantage the poor. See Evans & Schmalensee (2005) for a detailed description of the
payment cards industry.

2Hayashi & Maniff (2019) provide a long list of regulatory actions limiting credit card fees in
countries around the world. Wright (2012) provides support for the concerns of a long list of public
authorities and economists that the fee structure in debit and credit cards leads to inefficiency. In
fact, according to Visa Inc. Fiscal 2019 Annual Report, “An increasing number of jurisdictions
around the world regulate or influence debit and credit interchange reimbursement rates in their
regions. For example, the Dodd-Frank Wall Street Reform and Consumer Act (Dodd-Frank Act) in
the U.S. limits interchange reimbursement rates for certain debit card transactions, the European
Union’s (EU) IFR limits interchange rates in Europe (as discussed below) and the Reserve Bank of
Australia and the Central Bank of Brazil regulate average permissible levels of interchange.”

3The attribution of monopoly power to the BPS is a thought experiment, not an empirical claim.
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Standard economic arguments suggest that weak competition among monopolistic

firms calls for regulation to mitigate monopoly harm. Under the BPS, users are

protected from abuses of monopoly power even without competition from other pay-

ment systems. Thus, the BPS addresses potential antitrust concerns in a novel, even

revolutionary, way.

In the absence of a price-setting firm, the BPS relies on a market mechanism

encoded in its protocol to determine prices and infrastructure. Our analysis of the

protocol reveals inefficiencies in this market. Among them is the lack of a mechanism

that drives the level of resources acquired and deployed to an efficient level, however

defined. We provide design suggestions to address these concerns.

The model elaborates on the observation that the blockchain design makes the

BPS a two-sided platform whose constituencies are: (i) miners who collectively pro-

vide the system’s infrastructure in return for payment; (ii) users who make trans-

actions and pay fees. A brief description of the system is in order to explain the

particular properties of this two-sided market that are the focus of our model. For

concreteness, we focus on the BPS, whose basic design features are shared among

most other cryptocurrencies. Appendix A provides a more detailed description of the

BPS which is targeted for economists.

Users post transactions over time; miners organize them into blocks, each block

with the same, limited capacity; the block of a single randomly selected miner is added

to the blockchain; this block selection amounts to processing of the transactions in

that block; the timing of miner selection is a Poisson process with a fixed rate which

is independent of the aggregate computing resources used by the miners.4 That, and

the fixed capacity of the blocks imply that the BPS has a fixed expected transaction-

processing capacity.

The system’s limited capacity coupled with the randomness of transaction arrival

and processing times imply that, at times, transactions will be processed with delays

of random lengths. To make the presentation cleaner, we assume, that on average,

the system has sufficient capacity to process all transactions. In addition, the analysis

assumes that the mining resources are sufficient to guarantee the system’s reliability

and security. When so, increases in the mining resources do not affect the system’s

transaction-processing capacity.

All miners perform the same tasks. Participation in the miner selection tourna-

4This is a simplification, see Appendix A for a precise description.
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ment is the most resource-consuming among these. A miner’s chance of being selected

is proportional to his share of the total computational resources. The selected miner

is said to have mined a block, and is rewarded with a fixed, system-generated reward

plus the fees associated with the transactions in that block. Each user chooses the

fee associated with his transaction. Each miner is free to enter and exit the system at

no cost. Each participating miner chooses which transactions to include in his block.

We set up a model of fees, priority levels, and mining intensity that captures the

main features of the BPS. Its analysis highlights differences between the BPS and

a traditional payment system operated by a profit-maximizing firm. The analysis

delivers explicit formulas of the fees and delays, thereby enabling suggestions for

design improvements. Figure 1 suggests an agreement between the fee formula and

the data.

Beyond the quantitative results, the analysis offers a series of qualitative insights

as follows.

The BPS processes all transactions, albeit with delay; all users receive strict posi-

tive surplus. In contrast, in our setting a profit-maximizing firm excludes low willing-

ness to pay (WTP) transactions but processes the rest without delay. In the BPS, the

fee level does not increase if user WTP increases (e.g., if users lose their alternative

options) whereas the firm charges more if users’ WTP increases.

User payments under the BPS are determined by a congestion market and are

payments for service speed. A profit-seeking miner excludes the transactions which

offer the lowest fees when the assembled block is full. Therefore, users to whom delays

are costly will offer relatively high fees to gain priority and be served faster.

In equilibrium, users with higher delay costs receive higher processing priority

and therefore shorter delays. The fee a user pays is equal to the expected delay

externality he imposes on others who offer lower fees. Thus, fees are equal to those

obtained by allocating priority through a Vickrey–Clarke–Groves (VCG) mechanism,

although the BPS employs no auctioneer. User WTP does not affect fees, assuming

WTP is sufficiently high. This implies users are protected from price increase should

alternative payment service providers leave the market.

An increase (respectively, decrease) in the arrival rate of new transactions results

in increased (resp., decreased) congestion, which in turn causes fees to be higher (resp.,

lower). No delays imply no fees. The analysis offers an explicit relation between block

size (which reflects congestion) and the USD-denominated fee. Figure 1 provides a

theoretical and an empirical summary of this relation. Notably, the dependence of
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fees on congestion is highly non-linear: fees are negligible when blocks are below 50%

of their maximal size, positive when blocks are at 80% of their maximal size, and

substantially higher when blocks are close to their maximal size.

Figure 1: Actual and model predicted transaction fees per block (in USD) and block size for the
Bitcoin Payment System (daily averages, April 1, 2011–June 30, 2017). The chart on the left shows
fees on a linear scale from the entire range of dates; the chart on the right shows fees on a logarithmic
scale over periods when block size was above 0.5MB. See Section 6.2 for details.

We show that even a miner who controls a substantial fraction of the mining

resources cannot profitably affect the fees paid by users. While a large miner can

affect a user’s choice of fees, an increase in user fees will attract entry by new miners,

leading to increased competition and lower profits for a miner who attempts to affect

user fees. In contrast to standard platform competition, new miners face no barriers

to entry as they enter and compete within the same platform. Free entry of miners

is essential to this result.

Newly minted coins and transaction fees fund the miners who acquire mining

resources in USD-denominated markets. Exchange rate and fee-level fluctuations

affect miners’ aggregate income, which in turn affects aggregate mining power in the

BPS. There is no mechanism that drives the level of infrastructure resources acquired

and deployed to an efficient level, however defined.

The analysis points to an efficiency contrast between the BPS and a profit-

maximizing firm. Namely, the latter’s service is associated with dead-weight loss,

whereas the BPS can operate with excess capacity, serving all users and awarding

each with strictly positive surplus. If miners are homogeneous, all surplus accrues to

the users.

However, the costs of operating the BPS are likely to be higher than those of a
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traditional firm: its decentralized architecture requires duplication of computations

and expenditure of efforts in the miner selection tournament; the aggregate mining

level can be too high; costly delays are necessary to induce users to pay transaction

fees. Thus, welfare under the BPS can be higher or lower than that under a traditional

system, depending on the value of eliminating monopoly dead-weight loss.

Hundreds of variants of Bitcoin have emerged, with many aiming to improve on

the original Nakamoto (2008) design. Our analysis provides the following messages

to designers. First, it suggests that congestion is not merely an engineering necessity,

but also a device to motivate users to pay transaction fees. Second, the analysis

suggests a simple modification that avoids the variation in revenue from transaction

fees. In the BPS, capacity is fixed and congestion varies with demand; consequently,

the revenue and infrastructure levels vary over time.

We suggest an improved design: a protocol rule that automatically adjusts the sys-

tem’s capacity according to the volume of transactions, thereby steadying congestion,

aggregate fees, and mining level. This design has two advantages over alternatives

such as a fixed transaction fee: (i) it allows the system to raise revenue without ex-

cluding transactions, as users can choose to pay no fees but incur delays; (ii) it allows

the protocol to obtain the USD market value of delay reduction without the need to

learn the exchange rate. Alternatives such as fixed transaction fees (or newly minted

coins) need to be set within the protocol and be denominated in the system’s coin,

implying revenue fluctuation with the coin’s exchange rate.

The analysis also allows us to optimize parameter choices. We offer an analytic

expression for the delay costs required to raise a certain revenue level. Analysis and

examples suggest that large blocks are less efficient in that they require longer delays

to sustain a given level of revenue.

Related Literature

Famously, a white paper by Nakamoto (2008) coined the term Bitcoin and described

the BPS. Its opening paragraph criticizes the costs of the existing financial system and

its usefulness to small transactions, “Completely non-reversible transactions are not

really possible, since financial institutions cannot avoid mediating disputes. The cost

of mediation increases transaction costs, limiting the minimum practical transaction

size and cutting off the possibility for small casual transactions.” Section 6 (“Incen-

tive”) predicts that transaction fees will eventually fund the system, “The incentive
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can also be funded with transaction fees. . . Once a predetermined number of coins

have entered circulation, the incentive can transition entirely to transaction fees. . .

” The Section’s title notwithstanding, Nakamoto (2008) is silent on the incentive

to pay transaction fees, their relation to other parameters, and their implications;

understanding these is the present paper’s task.

Kroll et al. (2013) offer an analysis of the incentives faced by participants in the

system, and especially the incentives faced by miners. They conclude a brief discussion

of transaction fees by stating, “We therefore do not expect transaction fees to play a

significant long-term role in the economics of the Bitcoin system, under the current

rules. We believe that a rules change would be necessary before transactions fees can

play any major role in the Bitcoin economy.” The present paper shows otherwise, i.e.,

that transaction fees have dual and crucial roles in the Bitcoin system: (i) They are

supplanting newly minted coins as the funding source of the mining community; (ii)

They are the arbiters of priority in the congestion of messages to be processed by the

miners, i.e., they determine priority in the message queue.

Following the initial version of this paper, the design of transaction fee mecha-

nisms has received attention from both academics and practitioners (for example,

Buterin (2018)). Easley et al. (2017) is a contemporaneous piece which proposes and

empirically examines an equilibrium model of exogenously specified transactions fees

and block size assumed restricted to a single transaction. Their model predicts that

miners’ profits are zero and that fees are positively correlated with transaction wait-

ing times. The data appear consistent with these predictions. Lavi et al. (2017), Yao

(2018) and Basu et al. (2019) suggest alternative mechanisms for transaction fees.

Prat & Walter (2018) study the dynamics of miner entry as it is influenced by

changes in exchange rates and technological changes and predictions thereof. Felten

(2013) argues that in equilibrium miners break even. Cong, He & Li (2018) argue

that large mining pools confer risk-sharing advantages on their members, which are

mitigated by the larger fees which larger pools charge their members. Arnosti &

Weinberg (2018) develop a model where miners are heterogeneous in their cost struc-

ture, and quantifies how such asymmetries lead to the formation of oligopolies and

concentration of mining power.

Eyal & Sirer (2014), Sapirshtein et al. (2016) analyze the equilibrium between

miners and show that proper design of the blockchain protocol produces a reliable

system in equilibrium if all miners are sufficiently small. Babaioff et al. (2012) analyze

the incentives to propagate information in the BPS. Narayanan et al. (2016) offer an
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elaborate description and analysis of the system. Croman et al. (2016) provide cost

estimates for the BPS and analyze the potential for transaction-processing capacity.

Eyal et al. (2016) suggest an alternative design aimed to construct a system with

a higher capacity. Carlsten et al. (2016) analyze how incentives for miners change

when miners are rewarded with transaction fees instead of newly created coins. Chiu

& Koeppl (2017) evaluate the welfare implications of printing new coins.

The protocol proposed by Nakamoto (2008) posits that in case of a fork, miners

will follow the longest branch. Biais et al. (2018) study the robustness of this rule.

Budish (2018) studies the system’s vulnerability to attacks and argues that the cost

of securing Bitcoin is inefficiently high. Abadi & Brunnermeier (2018) posit three

desired properties of distributed ledger technologies, (i) correctness, (ii) decentraliza-

tion, and (iii) cost efficiency and argue that no ledger can satisfy all three properties

simultaneously.

Yermack (2015) reviews the history of Bitcoin and its price history to “argue that

bitcoin does not behave much like a currency according to the criteria widely used by

economists. Instead bitcoin resembles a speculative investment similar to the Internet

stocks of the late 1990s.”

Gandal & Halaburda (2014) analyze competition between the different cryptocur-

rencies. Halaburda & Sarvary (2016) review the cryptocurrency market, its devel-

opment, and future potential of blockchain technology. Gans & Halaburda (2015)

analyze the economics of digital currencies, focusing on platform-sponsored credits.

Catalini & Gans (2020) discuss possible opportunities that can arise from blockchain

technology. Huberman et al. (2019) provides a broader comparison between services

provided by the BPS and services provided by a firm.

Recent work considers the valuation of bitcoin relative to fiat currencies and other

goods. That work usually assumes away the limited capacity of the BPS, although

it induces delays and transaction fees. Ron & Shamir (2013) and Athey et al. (2016)

provide analysis of the usage of bitcoin and its value as a currency. Schilling & Uhlig

(2018) analyze the evolution of bitcoin prices relative to fiat currency and its impli-

cations for monetary policy. Makarov & Schoar (2018) report arbitrage opportunities

across cryptocurrency exchanges, primarily across regions.

Cong, Li & Wang (2018) study a dynamic pricing and adoption model in which

wider adoption renders the cryptocurrency more valuable. Pagnotta & Buraschi

(2018) study bitcoin pricing under the assumption that, at all levels, higher aggregate

mining effort delivers higher value to users. Sockin & Xiong (2018) propose a pricing
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model for an ICO for a platform on which households can exchange certain goods or

services if they own the platform’s native coin.

Lui (1985), Glazer & Hassin (1986), Kittsteiner & Moldovanu (2005) and Hassin

(1995) study a queuing system in which users with different waiting costs volunteer to

pay transaction fees (termed bribes in Lui (1985) to gain priority in a queue to a single

service station which serves customers one at a time. The main observation of Lui

is that the server may increase its profits by increasing the speed of service. Hassin

(1995) shows that the service rate that maximizes the server’s profits is always slower

than the socially optimal service rate. Hassin & Haviv (2003) provide a summary of

the results, and Hassin (2016) provides an updated review. Kittsteiner & Moldovanu

(2005) show that convexity or concavity of delay costs determines the queue-discipline.

The present analysis considers a queuing system in which transaction arrival and

service arrival is stochastic, but the service is processed in batches of fixed maximal

size. The prior work corresponds to a batch size of one. The interaction among arrival

rates, service rates, and the maximal batch size, and their impact on the transaction

fees and server’s revenues are of major concern.

Organization of the Paper

Section 2 provides a model of traditional payment systems, the BPS, and users who

may use either. For the sake of completeness, Section 3 provides the standard anal-

ysis of a traditional payment systems operated by a firm. Section 4 provides our

main analysis and characterizes the equilibrium under the BPS. Section 5 leverages

our analysis to provide design suggestions. Section 6 brings empirical evidence to

bear on some of the model’s predictions. Section 7 provides some final remarks. Ap-

pendix A provides a simplified explanation of the BPS and the underlying blockchain

technology.

The online appendix contains all omitted proofs and additional discussion. Ap-

pendix B extends our analysis of the BPS to parameters where the participation

constraint of some users binds. Appendix C extends our analysis to allow for en-

dogenous determination of the user’s WTP. Appendix D gives additional properties

of transaction fees under the BPS. Additional figures are in Appendix E. Omitted

proofs are in Appendix F.
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2 Economic Model of Traditional Payment Sys-

tems and the BPS

This section sets up a model of a payment system to facilitate a comparison between

a decentralized protocol like Bitcoin and a conventional payment system which is con-

trolled by a profit-maximizing firm. Section 2.1 describes the users. Their preferences

are the same across the two payment systems. Section 2.2 very briefly states the fa-

miliar problem of a firm providing payment services. Section 2.3 describes succinctly

the features of the Bitcoin Payment System (BPS) relevant to its economic analy-

sis and its comparison with a traditional system. Sections 4 and 5 offer equilibrium

analyses of the firm and of the BPS, respectively.

2.1 Users

Each user has a single potential transaction; hence, references to users and their

transactions are interchangeable. Users are heterogeneous in two distinct dimensions.

First, users differ in their willingness to pay (WTP) for using the system. The value a

user derives from sending a transaction in the system above the value available via an

alternative is his WTP R = v− valt. Second, users have different delay costs per unit

time c. The net reward of user (R, c) from sending a transaction that is processed

after delay W and paying a transaction fee b is

u (W, b | R, c) = R− c ·W − b. (1)

The variables R and b are denominated in USD;5 the variable c is in USD per unit

time. By the definition of R, a potential user will prefer using the system over the

alternative (outside option) if u (W, b | R, c) ≥ 0.

To make the cleanest distinction between the systems, we consider a setting where

R ∈ {RL, RH} (RL ≤ RH) and is not correlated with c.6 One interpretation is that

users with WTP RH have no compelling alternative of making the transfer, and

therefore their WTP RH is almost the entire value of processing the transaction,

5In practice, transaction fees in the BPS are denominated in bitcoin. However, since users decide
transaction fees as they submit transactions, we will consider them as USD denominated without
loss of generality. This is in contrast to the block reward S discussed in Section 2.3, which is fixed
by the protocol, and hence is impacted by the USD/bitcoin exchange rate.

6An alternative and analogous model entails u = V δW − b− valt. Variation in R is variation in
valt. Variation in c is variation in δ. All have the same V .
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while users with WTP RL can use an alternative method, and therefore their WTP

is equal to the cost of the alternative method.

WTP reflects various features of the system. Currently, users of the BPS face

costs and risks due to the volatility of the bitcoin to USD exchange rate. Likewise,

users may have concerns about the long-run viability of the system, security, privacy,

or ease of use (e.g., the lack of password recovery service). On the other hand, the

BPS may facilitate transactions that are difficult to conduct through other means.

We capture such considerations by the WTP R.

Potential users arrive over time according to a Poisson process. The arrival rate of

users with value Rj is λj with j = L,H and λ = λL+λH . Both of these populations of

users have heterogeneous delay costs per unit time c that are distributed c ∼ F [0, c̄],

independently of the user’s WTP R. The cumulative distribution function F (·) has

a density f(·), and its tail probability is denoted F̄ (c) , 1− F (c).

For tractability, users know the steady-state behavior of the system, but do not

observe other pending transactions at the time they submit their transaction. Users

are risk neutral and maximize their expected net reward.

We focus our analysis on the case summarized below which gives the cleanest

distinction between the BPS and a firm.

Assumption 1. The following hold:

• λHRH > (λL + λH)RL

• RH ≥ RL > R̄ > 0 where R̄ is defined in Lemma 2.

• User delay costs c are distributed independently of WTP R.

The assumption that R > 0 entails that transaction-processing by the BPS is

valuable to its potential users after accounting for exchange-rate risk, the BPS’s

other limitations, and the possibility of using alternative systems. In particular,

users consider the system to be a reliable means of sending transactions.

2.2 Payment System Run by a Firm

A firm-run conventional payment system can process transactions without delay at a

marginal cost of cf per transaction. The firm sets its price in response to the distribu-

tion of consumer demand. The firm faces no capacity constraints, can costlessly delay

transactions, and can offer different prices for processing transactions with different
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delays. In Section 3, we show that the firm does not pursue these policies because

they do not increase its profit.

2.3 Decentralized Cryptocurrency

The BPS offers users a similar functionality to that offered by familiar payment

systems, i.e., the ability to transfer balances from one user to another. In contrast

to traditional payment systems, the BPS uses a decentralized network of computers

(so called miners) to process transactions and maintain the ledger containing their

history. The novel blockchain design ensures the system as a whole is reliable and

trustworthy without the need to trust any individual miners.

A computer protocol governs the system and dictates the rules for how miners and

users interact within the system. Thus, the BPS system is a two-sided market with

rules that are fixed by a computer protocol. The description in Appendix A provides

further details regarding the protocol’s operations and functionality. In this Section,

we provide the implications of the design for the structure of the two-sided market.

Users send their transactions as they would under any payment system but also

select the transaction fee they will pay. Transactions need not be processed in their

order of arrival. Processing may take time.

Miners provide their computational infrastructure to the BPS at will and can

switch between being active and inactive. Collectively, the miners maintain a ledger

of all transaction history. Transactions are periodically added to the ledger in batches,

in the form of a block of transaction data. These additions are according to a Poisson

process7 with rate µ, irrespective of the number of miners. For each block, a randomly

chosen active miner selects which pending transactions are processed in the block.

That miner is said to have mined the block. The probability that a miner is chosen

is equal to his share of the total computational power. A block can contain up to K

transactions.8 Pending transactions not included in a block wait to be processed in

a future block. Miners observe all pending transactions and the fees associated with

them. Each miner applies his own selection of up to K pending transactions. We say

that transactions included in the miner’s block are processed by that miner.

Miners incur a cost per unit time while they are active. A miner who mines a

new block is rewarded with the transaction fees paid by the transactions included in

7A Poisson process is the limit of many independent binomial trials. See footnote 30.
8While in practice transactions may vary in size, for the sake of tractability we assume all trans-

actions are of the same size.
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that block as well as a fixed block reward of newly minted coins. We denote by S

the expected number of coins the system awards per unit time.9 We use e to denote

the USD/bitcoin exchange rate, which is assumed fixed and exogenous. Of particular

interest will be the case where S = 0, which describes the operation of the BPS in

the long term.10

Each miner chooses the computation power it deploys. We denote the aggregate

computational power by N . The total expected processing capacity of the system

is an average µK transactions per unit time. The values µ,K are predetermined by

the protocol and are unaffected by the number of miners, their total computational

power N , or the transaction volume λ.

Realized processing capacity is random because block arrival time is random.

The load parameter is ρ = λ/µK, which is the ratio of average demand to capacity.

The parameter ρ is a measure of the system’s congestion. To make the presentation

cleaner, we assume, that on average, the system has sufficient capacity to process all

transactions.

Assumption 2. The system has sufficient capacity to eventually process all transac-

tions, that is, ρ < 1.

Miners who possess a small fraction of the total computational power N have a

small probability of mining a block. We assume that each of these miners cannot

influence the system or the choices of other miners and users. We refer to these as

small miners. To capture that each small miner has a negligible effect on transaction-

processing delays, the model distinguishes between large miners and small miners.

Each large miner i can choose to deploy computational power xi ≥ 0. When taking

actions, each of these large miners take into account the actions’ impact on the

system, including the way they influence other actors’ choices. We assume there

are finitely many large miners indexed by i, each with computational power bounded

by x̄i ∈ R ∪ {∞} and a cost of computational power ci : [0, x̄i) → R that is smooth,

increasing, strictly convex, and satisfies ci (0) = 0, limx→x̄i c
′ (x) = ∞. There are

infinitely many small miners, and each small miner who chooses to be active deploys

an identical, infinitesimal amount of computational power at infinitesimal cost cm > 0.

If selected to mine a block, the miner’s revenue from the block does not depend on

the computational power he deploys.

9Note that all values are given per unit time.
10In the BPS, the block reward is halved every 4 years, until it is rounded down to 0.
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A miner’s block assembly policy A ∈ A captures his transaction selection. For-

mally, the collection of pending transactions is associated with a list of transaction

fees b = (b1, . . . , bn). The block assembly function A assigns for every b a vector A (b)

of zeros and ones of the same length; transaction j is included in the corresponding

entry of A (b) is one. Compliance with the protocol requires that the vector A (b) has

no more than K entries equal to one.

Next, we describe the interactions between users, between miners (large and

small), and across these two groups. Users play a congestion queueing game, in

which each user chooses b, the fee he offers, to maximize his expected utility (1). A

user’s delay W depends on the selection of transactions by a randomly chosen miner.

That selection is sensitive to the fee offered by the transaction and its level relative

to other transaction fees. Each miner is a profit maximizer who chooses whether to

be active or not; those who choose to be active choose a block assembly policy. Large

miners who choose to be active also choose their computational power. Miners may

enter or exit in response to profit opportunities, leading to an increase or a decrease

in the total computational power. An increase in the total computational power low-

ers the probability a given miner is chosen to mine a block, and therefore lowers the

miner’s payoffs. Large miners’ block assembly policies can affect the transaction fees

offered by users.

Behaviors in systems like the one we are studying could be time- and state-

dependent. We abstract from both. We focus on equilibria such that the system

is time invariant and has a steady-state distribution. We assume all participants

know the system parameters and steady-state distribution. We imagine the equilib-

ria being on a time horizon where the model parameters (arrival rates, exchange rate,

etc.) are fixed. Over a longer time horizon these parameters may be changing, and

hence the system may move from one equilibrium to another.

Formally, we study the three-step, extensive-form game which summarizes the

interactions among the various actors. These steps are:

(i) Each large miner i chooses whether to be inactive or to be active with some

computational power xi > 0 and some block assembly policy Ai ∈ A.

(ii) Small miners observe the actions taken by the large miners in the first step

and choose whether to be inactive, or to be active with infinitesimal computational

power and some block assembly policy A. For each A ∈ A, let η (A) be the aggregate

computational power of the miners (small and large) who choose a block assembly

policy A, i.e., η is the the distribution of block assembly policies. The aggregate of
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η (A) is N . The probability a block is assembled according to A is η (A) /N .

(iii) Users play the congestion queueing game implied by η. We restrict attention

to deterministic stationary strategies. A user’s expected waiting time depends on

the fee he offers, the fraction γ of users who participate, and the distribution of

transaction fees G (·). Each user type (R, c) chooses whether to opt out and receive

a payoff of 0 or participate and send a transaction with fee b (R, c) ≥ 0 to receive his

expected steady-state payoff,

R− b (R, c)− c ·W (b (R, c) | G, γ, η)

where W (b (R, c) | G, γ, η) is the expected waiting time for a transaction with fee

b (R, c) under the steady-state distribution of the system.11

The payoff of an active large miner i with computational power xi > 0 and block

assembly policy Ai is

xi
N

(
Rev (Ai | G, γ, η) + e · S

)
− ci (xi) ,

where ci (xi) is large miner i’s cost of computational power, and Rev (A | G, γ, η) =

Eb [b · A (b)] is the expected transaction fees per block assembled by A under the

steady-state distribution of pending transactions b.12 The payoff of an active small

miner with block assembly policy A is proportional to

1

N

(
Rev (A | G, γ, η) + e · S

)
− cm ,

where all small miners have the same cost of an infinitesimal unit of computational

power cm > 0. All inactive miners receive a payoff of 0.

Assumption 3. Given any feasible profile of choices by large miners, in any subgame

perfect equilibrium of the induced subgame for small miners and users there are some

11The decisions of all participants specify a continuous time Markov process and its steady-
state distribution as follows. The states are lists of transaction fees of pending transactions
b = (b1, . . . , bn) ∈ ∪nRn ∪ {φ}. There are two kinds of transitions. At Poisson rate γλ a user
arrives and posts a transaction with transaction fee independently drawn from G, and the state
is updated by appending the new transaction. At Poisson rate µ a block is mined, and the block
assembly policy A(·) is applied with probability η (A) /N . The system transitions to a new state by
erasing all transactions selected by A(·). For completeness, if given G, γ, η the system does not have
a steady-state distribution, we set W (· | G, γ, η) ≡ ∞.

12The distribution of pending transactions observed by a miner who is selected to mine a block is
identical to the steady-state distribution of pending transactions. For completeness, if given G, γ, η
the system does not have a steady-state distribution we set Rev (A | G, γ, η) ≡ 0.

15

Electronic copy available at: https://ssrn.com/abstract=3025604



small miners that are active and some small miners that are inactive.

Assumption 3 requires the presence of sufficiently many players who can become

active small miners. This is likely to be satisfied if it is possible to become a small

miner by buying standard computational resources on the open market.13 Because a

miner’s payoff decreases with aggregate computational power, this implies that in any

equilibrium some potential small miners are inactive. The second part of Assumption

3 requires that some small miners are active given any choices by large miners. This

will be satisfied if the total computational resources employed by large miners are

limited and the computational resources used by small miners are sufficiently efficient

(i.e., cm sufficiently small).

To highlight the distinctive properties of the system, the analysis focuses on the

parameter range where all potential transactions can be processed. The assumptions

in Section 2.1 imply that there are sufficiently many miners for the system to operate

reliably and securely. In Section 4, we analyze the BPS under these assumptions and

verify when they indeed hold.

To avoid technical issues with equilibrium existence, we restrict the set of block

assembly policies A. We require that for any profile of large miners’ block assembly

policies chosen from A, the induced subgame (played by small miners and users)

has at least one subgame perfect Nash equilibrium in pure strategies. We restrict

attention to deterministic strategies and implicitly assume that small miners can use

a public coordination device to coordinate their entry decisions.

Miners procure the resources they need in fiat currency-denominated markets.

Therefore, we consider all payments and costs denominated in USD rather than in

bitcoin. In particular, the USD value of the block reward fluctuates with the exchange

rate. No miner can affect this exchange rate.

3 Analysis of the Firm

The firm’s problem is standard and stated here for completeness. We consider the

profit-maximizing mechanism, allowing for probabilistic or dynamic mechanisms. By

the revelation principle, it is sufficient to consider direct mechanisms in which the

firm offers a menu to each user. Since the firm faces no capacity constraints, it

13A miner who controls a sufficiently large fraction of the mining resources may behave in a way
that disadvantages small miners (e.g. selfish mining (Eyal & Sirer 2014)). Our results hold as long
as the miner is unable to prevent small miner entry.
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can optimize its menu separately for each user. Therefore, a menu of options that

maximizes profit from a single randomly drawn user delivers the firm’s optimal profit.

The following proposition shows that, unable to distinguish high and low WTP

customers, the firm sets a transaction fee that precludes low WTP customers from

using the system and processes all the transactions that pay this fee with no delay.

The firm can and does change the price it charges if RH changes.

Proposition 1. When λHRH > (λH + λL)RL, the firm’s optimal menu includes a

single option: it charges the fee b = RH and processes all transactions that are willing

to pay the fee with no delay. Thus, only high value customers are served. Consumer

surplus is 0 and social surplus is λH (RH − cf ), all accruing to the firm.

The intuition for the result is that the firm cannot use delays to screen between

high and low WTP customers, and therefore avoids delays that decrease a user’s

willingness to pay.14 When λHRH > (λH + λL)RL, the firm makes higher profits by

selling only to high WTP users. The proof is in Appendix F.5.

A few observations facilitate the comparison with the BPS, which is presented

in Section 4.3. First, the distribution of the user delay costs F is irrelevant to the

equilibrium outcome when the firm is the service provider. Second, pricing out the

low WTP customers entails a dead-weight loss of λL (RL − cf ). Third, the high WTP

customers pay exactly their WTP. They will pay more, e.g., if these customers lose

their best outside option.

The firm’s profit is likely to draw the attention of potential entrants seeking to

establish a competing payment service. Such competing payment services provide

agents with alternative options, thereby reducing their WTP R (the value of using

the BPS relative to the alternative options) and the price the firm can charge. How-

ever, the strong network effects and high setup costs that characterize the payments

industry are likely to deter entry.15 Even if there are multiple payment providers in

the market, as long as each serves a separate segment, the service providers enjoy

pricing power.16

14Recall that in our setting were there is no correlation between WTP and delay costs. Proposition
1 may not hold if such correlation exists.

15See, for example, Morningstar (2019), Evans & Schmalensee (2005), and references therein.
16Edelman & Wright (2015) argue that price coherence of payment cards (i.e., the restriction

not to surcharge for payment by card) results in inefficiency that is not mitigated by competition.
Another illustration of the ability to exercise market power is Apple’s ability to collect 15 basis
points from each transaction using the iPhone’s NFC capabilities (https://www.cardfellow.com/
blog/introduction-to-apple-pay/, retrieved Jan 2020). See also https://qz.com/1726203/

apple-is-suffocating-mobile-payment-rivals/.
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4 Analysis of the BPS

We analyze the equilibrium of the system under the assumptions stated earlier. Sub-

section 4.1 analyzes the behavior of miners in steps (i) and (ii). Subsection 4.2

analyzes the behavior of users in step (iii). Subsection 4.3 completes the analysis,

giving expressions for the system’s infrastructure level and welfare.

4.1 Miners, Small and Large

A small miner’s choice of block assembly policy does not affect the distribution of

block assembly policies η and cannot affect users’ fee choices. It follows that small

miners maximize their payoffs by selecting the block assembly policy A∗ that maxi-

mizes A∗ (b) ·b for any b. In words, A∗ (·) selects the K pending transactions offering

the highest fees. (If there are fewer than K pending transactions, A∗ (·) selects all of

them.)

A large miner’s choice of block assembly policy affects the distribution of block

assembly policies η, changing the induced subgame for small miners and users. It

may seem as though large miners can attempt to increase their payoffs by choosing a

block assembly policy different from A∗ to favorably affect users’ fee choices. However,

Theorem 1 shows that such attempts will not increase the miners payoffs; entry by

small miners renders the block assembly policy A∗ optimal for any large miners.

Theorem 1 considers the choices of large miners’ behavior in step (i), fixing possible

responses of small miners and users. That is, for any profile of choices of large miners,

we select an equilibrium play of small miners and users in the resulting subgame. Each

selection generates an induced game between large miners. We use x∗i to denote the

unique solution to c′i (x
∗
i ) = cm or x∗i = 0 if no solution exists.

Theorem 1. In any induced game between large miners, it is a dominant strategy

for each large miner i to choose the block assembly policy A∗ and the computational

power x∗i . Moreover, for any choice of computational power xi, we have that A∗, xi

dominates A, xi for any block assembly policy A.

In the equilibrium in which all miners choose A∗, the total amount of computa-

tional power in the network is

N =
Rev +e · S

cm
, (2)
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where Rev is the total transaction fees in USD paid by users per unit time and e is

the USD/bitcoin exchange rate.

Theorem 1 holds regardless of the number of large miners. In particular, free entry

of small miners precludes large miners from profitably affecting transaction fees even

if all large miners collude.

The proof relies on free riding by small miners. For example, large miner i may

choose to process only transactions with a fee above b′, leading to a subgame in which

some users increase their transaction fees above b′ to avoid being delayed when miner

i is selected. If the increased fees outweigh the loss from not processing transactions

with a fee lower than b′, choosing such a block assembly policy can increase miner

i’s expected transaction fees per block. However, this creates a larger increase in the

expected transaction fees per block of small miners because small miners benefit from

the increased fees while still processing all transactions. Entry by small miners in-

creases the aggregate computational power so that small miners break even. Because

small miners collect more fees than a large miner attempting to affect fees, free entry

implies the large miner either breaks even or is strictly worse off.

Proof. Consider an arbitrary profile of choices by large miners and a subgame perfect

equilibrium of the induced subgame for small miners and users. By Assumption

3, there are small miners that are active. Consider such an active small miner.

Since small miners are non-atomic, the small miner’s choice of block assembly policy

A (·) does not affect η or N . Therefore, it does not affect G, γ and the steady-state

distribution of b. Since for any fixed distribution of b we have that Rev (A∗ | G, γ, η) =

maxA {Rev (A | G, γ, η)}, it is a best response for the active small miner to choose

A∗. Furthermore, any block assembly policy that constitutes a best response must

give the small miner the same payoff as A∗.

Also by Assumption 3, there are inactive small miners, and therefore small miners

must be indifferent between being inactive or active with A∗,

1

N

(
Rev (A∗ | G, γ, η) + e · S

)
− cm = 0 ,

yielding

Rev (A∗ | G, γ, η) + e · S = cmN . (3)

Now consider a large miner i who can affect the distribution η and thereby affect
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G, γ. Let xi, Ai denote the computational power and block assembly policy of miner

i, respectively. Fix the choices of other large miners, fix xi ≥ 0, and let GAi , γAi , ηAi ,

and NAi be distributions and values induced by a subgame perfect equilibrium of the

subgame induced by miner i’s choice of Ai, holding all other choices by large miners

fixed. We have that

xi
NAi

(
Rev

(
Ai | GAi , γAi , ηAi

)
+ e · S

)
− ci (xi)

≤ xi
NAi

(
Rev

(
A∗ | GAi , γAi , ηAi

)
+ e · S

)
− ci (xi) (4)

=
xi
NAi

cmN
Ai − ci (xi)

=cmxi − ci (xi) .

The inequality follows because holding G, γ, η,N fixed, A∗ delivers higher revenue

than any A. The first equality follows from (3).

For Ai = A∗, using (3) we have that

xi
NAi

(
Rev

(
Ai | GAi , γAi , ηAi

)
+ e · S

)
− ci (xi)

=
xi
NA∗ cmN

A∗ − ci (xi)

=cmxi − ci (xi) .

We thus showed that given any profile of choices of other large miners and any

best responses of users and small miners, miner i attains the maximal payoff of

sup
xi

{cmxi − ci (xi)} = cmx
∗
i − ci (x∗i )

by selecting the block assembly policy A∗ and the computational power x∗i that is

either the unique solution to c′i (x
∗
i ) = cm or x∗i = 0 if no solution exists.

Consider a profile where all active small miners choose A∗ and each large miner

i chooses A∗ and x∗i . Denote by η∗ the implied distribution of computational power,

which is given by η∗ (A∗) = N and η∗ (A) = 0 for allA 6= A∗. Complete the description

of the strategy profile by having small miners and users play some subgame perfect

equilibrium following any possible deviation by a large miners. The arguments above

show this profile constitutes a subgame perfect equilibrium, as large miners, small
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miners, and users all play a best response.

Since ρ < 1, all transactions are eventually processed and Rev = Rev (A∗ | G, γ, η∗)
is equal to the total transaction fees (in USD) per unit time under a subgame perfect

equilibrium of the induced subgame for users (which will be characterized in the next

section). Rewriting (3) we have that

N =
Rev +e · S

cm
.

Large miners can make positive profits if their average cost per computational

unit is below cm.17 For the case where large miners do not have a computational cost

advantage, we obtain the following immediate corollary of Theorem 1.

Corollary 1. If all large miners have the same cost cm per computational unit, that

is, ci(x) = cmx for all large miners i, then all miners make zero profit.

While choosing block assembly policy A∗ is a weakly dominant strategy, we have

not yet ruled out other equilibria in which large miners may choose other block

assembly policies. To formally preclude other equilibria, we introduce a perturbation

that ensures the distribution of pending transaction has full support. Let G0 be a

distribution with strictly positive density over R+ (e.g., the half-normal distribution).

The ε-perturbed system is given by adding to the original game exogenous arrivals

of transactions and blocks. Additional transactions arrive according to a Poisson

process with rate ε, each with a fee independently drawn from G0. Additional blocks

arrive according to a Poisson process with rate ε, and these blocks process all pending

transactions (regardless of their number). The ε-perturbed game is identical to the

original game, except for payoffs being determined by the steady-state distribution of

the ε-perturbed system.

We say that two block assembly policies A,A′ are G0-equivalent if A (b) = A′ (b)

with probability 1 for b that is generated by independently drawing a geometrically

distributed number of transactions from G0. Notice that if A,A′ are G0-equivalent,

they are also payoff equivalent. For any ε > 0, the argument in the proof of Theorem

1 implies that any block mining policy A that is not G0-equivalent to A∗ is strictly

17For example, miners who position their servers near dams can have lower cost due to cheap
electricity. If such opportunities are scarce and can support only a limited number of servers they
will not be competed away.

21

Electronic copy available at: https://ssrn.com/abstract=3025604



dominated. Thus, the equilibrium described in Theorem 1 is the unique equilibrium

(up to payoff irrelevant variations) that survives the perturbation.

Proposition 2. For any ε > 0, in any subgame perfect equilibrium of the ε-perturbed

game, all active miners choose the block assembly policy that is G0-equivalent to A∗.

Proof. Let Rev (A | G, γ, η,G0, ε) denote the expected transaction fees per block in

the ε-perturbed game. If A (b) 6= A∗ (b) with positive probability for b (given the

steady-state distribution of pending transaction b), we have that

Rev (A | G, γ, η,G0, ε) < Rev (A∗ | G, γ, η,G0, ε) .

Thus, we can replace the weak inequality in (4) with a strict inequality. Following

the remainder of the proof of Theorem 1, it follows that xi, A is strictly dominated by

x∗i , A
∗. Finally, we have that if A (b) = A∗ (b) with probability 1 (given the steady-

state distribution of pending transaction b) it must be that A,A∗ are G0-equivalent,

since for any k there is a positive probability that a clearing block will be immediately

followed by k arrivals of transactions drawn from G0.

Entry by small miners is essential for Theorem 1. Suppose a single large miner

can control all the mining infrastructure and preclude entry. While the blockchain

protocol provides some security guarantees even when there is a single miner, a single

miner will be able to set a minimal transaction fee because the single miner can ensure

that any transaction that offers a lower fee will not be processed. The single miner

can preclude entry of small miners if it maintains the reward per computational unit

strictly below cm and can make positive profits if his own cost is lower than cm.

Our analysis presents a stylized view of miners, thereby abstracting from var-

ious real-world issues. Actual miners incur fixed costs to purchase mining equip-

ment; available equipment is heterogeneous in price, quality, and vintage; innovative

equipment manufacturers are also miners; electricity costs are location- and possibly

miner-dependent. Future work will take up these nuances.

4.2 User Behavior and Equilibrium Transaction Fees

We now characterize user behavior in step (iii). The analysis in Section 4.1 shows

that all miners, small and large, choose the block assembly policy A∗. The remainder

of the paper maintains that miners follow this behavior and characterizes the induced
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subgame for users. In this context, the term equilibrium means the subgame perfect

equilibrium behavior of users in the subgame induced by all miners choosing A∗, i.e.,

each block processes the K pending transactions which offer the highest transaction

fees. The number of miners does not affect µ, the rate at which blocks are generated,

or K, the block size, and therefore the number of miners does not affect users’ choice

of transaction fees.

From a user’s perspective, the higher the fee he offers, the more likely the transac-

tion will be included in an earlier block. Consider an equilibrium where all potential

users participate and post their transactions in the system, with G (·) denoting the

cumulative distribution function of the chosen transaction fees. A user i with delay

cost ci and WTP Ri who decides to post a transaction chooses his transaction fee b

to maximize his net reward

Ri − b− ci ·W (b | G) , (5)

with W (b | G) = W (b | G, 1, η∗) denoting the equilibrium expected delay given trans-

action fee b and the CDF G. For brevity, we omit the dependence on the distribution

of block assembly policies, as we maintain that all miners adopt the block assembly

policy A∗. The following lemma characterizes the equilibrium expected delay.

Lemma 1. In any equilibrium in which all potential users participate, the expected

delay for a user with delay cost ci is

µ−1WK (ρ̂ (ci)) (6)

where ρ̂ (ci) = λF̄ (ci) /Kµ = ρ · F̄ (ci) is the effective load from transaction with

higher delay cost, and the function WK (·) gives the expected number of blocks that

pass until the transaction is processed.

The function WK(·) is specified in Appendix F.1. In particular, WK (0) = 1 and

W ′
K (ρ̂) ≥ 0 for ρ̂ ∈ [0, 1).

The intuition for Lemma 1 is as follows. Users face a queuing game where higher

transaction fees imply higher processing priority. Standard arguments (see Hassin &

Haviv (2003)) imply that users with higher delay cost will pay higher transaction fees

and receive higher priority, and therefore the arrival rate of transactions with higher

priority is λ · F̄ (c). Analysis of the stochastic system shows that the number of blocks

that pass until a transaction is processed depends only on the block size K and the
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effective load from higher priority transactions ρ̂ (ci) = λF̄ (ci) /Kµ. Although ρ < 1

implies the system has sufficient capacity to process all transactions on average, the

randomness of the arrival times implies the possibility of backlogs. The expression

(6) captures the expected wait from such cases. Finally, the term µ−1 in (6) enables

the statement of the result in terms of calendar time rather than the number of

blocks. The particular function WK(·) endogenously arises by the incentives set in

the protocol. Appendix E provides a plot of WK(·).
Users’ individual optimization implies:

Proposition 3. Assuming that all potential users participate, there is a unique equi-

librium. In it, a user with waiting cost ci ∈ [0, c̄] chooses to pay a transaction fee

b (ci), given by

b (ci) = ρ

ˆ ci

0

f (c) · c · µ−1W ′
K

(
ρF̄ (c)

)
dc. (7)

These transaction fees coincide with the payments that result from selling priority

of service in a VCG auction.

The net reward for a user with delay cost ci and WTP Ri is

u (Ri, ci) = Ri − µ−1

ˆ ci

0

WK

(
ρF̄ (c)

)
dc. (8)

The Bitcoin protocol indirectly entails a priority auction, although no auctioneer

is present. Users with higher waiting costs pay higher transaction fees and wait

less. Users’ bids have the VCG property that each user bids an amount equal to the

externality he imposes on others by delaying their transactions. Equation (8) implies

that users with lower delay cost ci bear lower total costs (total of paid fees and delay

costs). This is due to information rents. The highest costs are born by users with

ci = c̄ and are equal to R̄ = µ−1
´ c̄

0
WK

(
ρF̄ (c)

)
dc.

The equilibrium allocation of priority is efficient. However, the allocation of delay

takes the particular form because of the blockchain design. A different design or

increased values of µ,K can reduce waiting costs for all transactions. Note that

transaction fees depend on ρ and therefore will change with changes in λ, µ,K.

Finally, we verify that all potential users prefer to participate under the assump-

tion that WTP is sufficiently high given the load ρ.
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Lemma 2. Let R̄ = µ−1
´ c̄

0
WK

(
ρF̄ (c)

)
dc. If RH ≥ RL > R̄ there is a unique

equilibrium where all potential users participate. In equilibrium, all users receive

strictly positive net reward.

Thus, equilibrium behavior of users does not depend on their WTP R, assum-

ing that it is sufficiently high. All users participate regardless of their WTP, and

the transaction fees paid are independent of WTP. Each user pays a fee equal to

the externality he imposes on other users, and since all transactions are eventually

processed, the externality involves only delays to other transactions.

Transaction fees under the firm and the BPS depend on different parameters. The

firm sets prices based on user WTP, and transactions that do not pay the required

fee are not processed. Under the BPS, prices are determined in equilibrium based

on user delay costs. All transactions are processed regardless of the fees they offer.

Some users offer higher fees to reduce delays. Transactions which offer lower or zero

fees are processed with greater delays. The BPS transaction fees depend only on the

parameters K,µ, ρ, and the distribution of delay costs F . The transaction fees are

nominally denominated in the system’s native currency, but their value in USD is

independent of the exchange rate e.

We summarize these results in the following theorem.

Theorem 2. Let ρ = λ/µK ∈ (0, 1) and assume that

RH ≥ RL > R̄ = µ−1

ˆ c̄

0

WK

(
ρF̄ (c)

)
dc. (9)

There is a unique equilibrium where all potential users participate and receive strictly

positive surplus. Equilibrium transaction fees paid by users are independent of user

WTP RH , RL, and of the exchange rate e.

Despite having excess capacity (i.e., ρ < 1), the system raises strictly positive

revenue from transaction fees.

As seen in Section 3, a profit-maximizing firm will raise prices until some users

receive no net benefit. The possibility that all users are net beneficiaries of the system

distinguishes its service from a similar service provided by a profit-maximizing firm.

Another distinguishing feature of the system is its commitment to congestion

pricing, a commitment that is difficult to modify even when circumstances change.

Thus, the users are protected from being held up should they get locked into the
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BPS: if users lose their alternative payment methods then their WTP for the system

goes up, but because transaction fees are independent of the WTP R (given that

RH , RL are sufficiently high), users are protected from price increases. In contrast,

users should be wary of getting locked into a conventional payment system, as a firm

would raise prices should its users lose their alternative options (Grossman & Hart

1986).

We highlight this as the following corollary.

Corollary 2. Assume that the conditions of Theorem 2 are satisfied. Then, an in-

crease in WTP R does not change equilibrium transaction fees.

Corollary 2 may appear as good news to users. However, the pricing level depends

on the congestion in the system ρ = λ/µK and may be inefficient.

4.3 Determination of Infrastructure Level and Welfare

Building on the two preceding subsections, this subsection shows the total revenue

from transaction fees and the system’s level of infrastructure. Moreover, it calculates

the welfare level associated with the BPS and compares it to that delivered by a profit-

maximizing firm. The following considers the equilibrium characterized by Theorems

1 and 2, and assumes the conditions of Theorem 2 are satisfied.

Aggregating (7) over all users delivers

Theorem 3. Total revenue from transaction fees per unit time is

RevK(ρ) = Kρ2

ˆ c̄

0

cf(c)F̄ (c)W ′
K

(
ρF̄ (c)

)
dc. (10)

Equation (10) complements equation (2) to determine the network’s computa-

tional power in equilibrium. Equation (10) shows that total revenue from transaction

fees depends only on K, ρ, and the distribution of delay costs F . It implies that

the revenue depends on µ and λ only through ρ = λ/µK. Thus, holding the type

distribution function F fixed, a system with double the demand λ and double the

block rate µ will raise the same amount of revenue as the original system but will

have twice as many users, each of whom will pay half the transaction fee paid by the

corresponding user in the original system.

Note that there is no guarantee that the equilibrium number of miners is adequate

for the system’s reliability and security. The protocol can dictate the amount of newly
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minted coins S that are awarded to miners, but the exchange rate e may fluctuate

during the life of the system. The revenue from transaction fees does not depend

on the exchange rate, but varies with the congestion ρ which is a function of the

predetermined parameters µ,K as well as the potential demand λ that may change

over time. Moreover, a shortage of mining resources does not lead to higher fees or

a more favorable exchange rate; if anything, it is likely to result in the opposite. On

the other hand, an abundance of mining resources does not lead to lower fees or a

less favorable exchange rate. The equilibrium analysis is applicable if user WTP for

the system RH , RL are sufficiently high given the equilibrium number of miners N .

Next, we calculate welfare by accounting for the total benefits and costs of the

system. Since all users are served, the system generates λHRH + λLRL for users per

unit time. The users pay transaction fees and incur delay costs. All miners receive a

reward equal to cm per mining unit. Marginal miners whose cost is cm will therefore

break even and spend all the revenue they receive on operating costs.

Theorem 4. If all miners have a cost cm per computational unit and no new coins

are minted18 then welfare is given by

λHRH + λLRL −DelayCostK (ρ)− cm ·N (11)

where the total delay costs incurred by users is

DelayCostK (ρ) = Kρ

ˆ c̄

0

cf (c)WK

(
ρF̄ (c)

)
dc. (12)

Miners break even and spend all the revenue they receive on operating costs.

The total benefit from processing transactions is λHRH+λLRL, as all transactions

are processed. The cost cm ·N is the cost of server infrastructure, where competition

between the miners ensures that infrastructure is provided at cost cm and miners make

no profit. The delay costs DelayCostK (ρ) are necessary in order to raise revenue from

users, as users have an incentive to pay higher transaction fees only if transactions

with low fees suffer delays.

If, in deviation from the theorem’s assumption, some miners have an average cost

18That is, S = 0, as will be the case for the BPS in the long run. Currently the BPS funds most
of its mining cost by minting new coins. The welfare calculations remain unchanged if the BPS can
mint a finite amount of new coins and the opportunity cost of awarding the coins to miners is equal
to its value. We defer determination of the welfare costs of minting new coins to future work.
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lower than cm, they make a profit. In such case, welfare will be higher by these

miners’ profit.

This allows us to compare the BPS and a conventional payment system that is

run by a firm. Under our assumptions, the cost of operating the BPS is cm · N ,

while the cost of operating a firm-run payment system is cf ·λH . It appears that it is

more expensive to run the BPS because the decentralized protocol requires additional

computational overhead. Moreover, if the BPS is successful and popular, the implied

congestion can lead to an equilibrium value of N that is too high. The BPS also

has the additional delay cost DelayCostK (ρ), while the firm processes transactions

immediately. On the other hand, the BPS serves all potential demand, while under

the firm there is a dead-weight loss because RL users are not served, losing λL · RL

of potential generated value. Altogether, we get that if

λLRL > cm ·N − cfλH + DelayCostK (ρ) (13)

welfare is higher under the BPS than under a firm. Note that the two sides of

inequality (13) depend on different sets of parameters, and therefore the comparison

can go either way. Essentially, the BPS allows society to pay for a more costly

infrastructure on which competitive pricing is guaranteed, and that can be beneficial

if dead-weight loss is substantial.

Beyond this calculations-based comparison, there are differences worth mention-

ing. For instance, a firm-run system operates under the legal system and can offer

procedures to retrieve lost accounts and reverse erroneous or fraud-inspired payments.

The BPS cannot offer such services, but is transparent and does not require trust in

any individual component.

5 Protocol Design for Efficient Congestion Pricing

The following corollary of Section 4 motivates this section’s main question, namely

how to set the system’s parameters K and µ in response to λ in order to achieve

desired combinations of fee revenue and delays.

Corollary 3. In equilibrium, if ρ = 0, both delay cost and revenue are zero. For any

fixed K, both revenue (and with it, infrastructure provision by miners) and delay cost

are strictly increasing in ρ.
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Figure 2 shows how revenue from transaction fees and delay cost vary with ρ

under the parameters K = 2, 000 and c ∼ U [0, 1]. The figure assumes that all

agents participate, and therefore revenue tends to infinity as ρ → 1. When agents

choose whether to participate, revenue will be bounded, as agents may not participate

as the system gets congested (see Appendix B). The figure looks similar for other

distributions of delay costs (see Appendix E for a plot of other distributions).
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Figure 2: Revenue and delay cost for varying congestion level ρ. Delay costs are distributed according
to c ∼ U [0, 1] and the block size is K = 2, 000.

The current Bitcoin protocol uses fixed capacity parameters K and µ, and there-

fore the congestion ρ varies with demand. This is undesirable, as the amount of

revenue generated can be too high or too low relative to the desired levels of reliabil-

ity and security. An alternative design should adjust K,µ to accommodate demand

variations and thereby maintain desirable levels of congestion and revenue.

While our focus is on the economic aspects of the design, we note that designing

such a decentralized protocol raises engineering challenges. First, the protocol must

maintain agreement on K,µ among the independently operating miners. Thus, the

parameter adjustment rule must be encoded in the protocol and use only information

shared among all miners. If ρ < 1, a rule that uses the volume of recently processed

transaction as a proxy for demand can dynamically adjust K,µ and maintain agree-

ment on them.19 Second, the consensus protocol may constrain K,µ. The Nakamoto

19Such a rule can be implemented by modifying the adjustment of the hash difficulty (as explained
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consensus protocol requires that block inter-arrival times are sufficiently large relative

to the network lag given the block size.20 New designs may allow a larger range of

parameters.21 In the analysis below, we determine the ideal K,µ from an economic

perspective. Addressing the engineering limitations is left for future work. Our sug-

gestion can guide the choice of K,µ within the feasible range.

The choice of K,µ should achieve the target revenue from transaction fees and

should minimize the delay costs imposed on users. Note that by an appropriate choice

of K,µ in response to demand λ, we can achieve the desired ρ and desired revenue

from transaction fees in USD, regardless of exchange rate fluctuations. Although

transaction fees are denominated in bitcoin, their USD value reflects the USD value

of shortening delays. The protocol obtains the USD market value of delay reduction

without the need to learn the exchange rate.

Raising revenue from transaction fees requires positive ρ and therefore delay costs.

To better understand the dependency on K,µ, and the implied trade-offs between

revenue and delay costs, we provide the following simplified approximate expressions.

Lemma 3. For any ρ̂ ∈ [0, 1) we have that22

lim
K→∞

WK(ρ̂) = W∞(ρ̂) = 1 +
1

ρ
e−1/ρ + o

(
1

ρ
e−1/ρ

)
where the function W∞ : [0, 1)→ [1,∞) is explicitly given in Appendix F.4. Moreover,

W∞ (0) = 1,W ′
∞ (0) = 0 and W ′

∞ (ρ̂) > 0 for ρ̂ ∈ (0, 1).

A given transaction with ρ̂ ∈ [0, 1) will be processed within WK (ρ̂) blocks on

average. We have that 1 ≤ WK (ρ̂) < ∞ because the inclusion of a transaction in

in Appendix A). Currently, the difficulty adjusts in accordance with the total computing power of
the network to maintain average block mining frequency of 10 minutes. Our suggested alternative
design can similarly adjust the difficulty to maintain that on average a fraction ρ of blocks is used.

20Croman et al. (2016) studies the limitations of the computer network operating the BPS. Pass
et al. (2017) provides theoretical bounds for block rate in the Nakamoto consensus.

21Bitcoin’s capacity limitations led to many suggestions of alternative protocols. For example,
Sompolinsky & Zohar (2015) suggests the GHOST protocol in which blocks form a tree (instead of
a chain); Gilad et al. (2017) and Bentov et al. (2016) suggest alternative proof of stake protocols.
Many of these suggested protocols maintain the main features of our model (in particular, batch
processing of transactions), and can incorporate similar congestion pricing mechanisms.

22Given arbitrary functions f(·) and g(·) and a positive function h(·), as ρ → 0, we will say that
f(ρ) = g(ρ) + O(h(ρ)) if lim supρ→0 |f(ρ) − g(ρ)|/h(ρ) < ∞, i.e., if the difference between f and
g is asymptotically bounded above by some constant multiple of h. Similarly, we will say that
f(ρ) = g(ρ) + o(h(ρ)) if lim supρ→0 |f(ρ)− g(ρ)|/h(ρ) = 0, i.e., if the difference between f and g is
asymptotically dominated by every constant multiple of h.
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a block depends both on how many pending transactions have accumulated at the

time the block is generated as well as how the priority of the given transaction ranks

among the accumulated transactions. The former is random due to the random time

between blocks, and the latter is random due to the random arrival of transactions.

When blocks are fairly large, there is still randomness due to their random arrival

time, but the arrival of higher priority transactions does not create much additional

randomness.23 As a result, WK (ρ̂) is almost independent of K for large K. Calcula-

tions show that the approximation already appears good for K = 20; with Bitcoin’s

K = 2000 we can comfortably use this approximation. For additional intuition and

the proof of Lemma 3, see Appendix F.4.

Using Lemma 3, we can give the following simplified expressions for revenue and

delay costs.

Theorem 5. For a fixed-load ρ ∈ [0, 1), as the block size K →∞, we have that24

RevK(ρ) = K · Rev∞(ρ) + o(K),

DelayCostK(ρ) = K ·DelayCost∞(ρ) + o(K),

where

Rev∞(ρ) , ρ

ˆ c̄

0

(
F̄ (c)− cf(c)

)
W∞

(
ρF̄ (c)

)
dc,

DelayCost∞(ρ) , ρ

ˆ c̄

0

cf(c)W∞
(
ρF̄ (c)

)
dc.

Theorem 5 offers simple approximations of the dependencies of revenue and delay

23To gain intuition, consider a user i with delay costs ci that posts a transaction at time t0 when
there are no pending transactions. The following block arrives after some random time t ·µ−1, where
t ∼ Exp(1). The probability that i’s transaction is included in the following block is the probability
that, between t0 and t0 + t · µ−1, less than K higher priority transactions arrive. The number of
higher priority transactions given t has distribution Xt ∼ Poisson

(
λF̄ (ci) · tµ−1

)
= Poisson (t ·Kρ̂).

The realized number is random because t is random and also because the number of arrivals given t,
Xt, is random. However, the variance of Xt is of order K, and therefore, as K →∞, the number of
arrivals given t measured in block equivalents, Xt/K, can be well approximated by its expectation
tρ̂. Thus, the probability that the transaction will be included in the next block converges according
to P(Xt < K)→ P

(
t < ρ̂−1

)
, which only depends on ρ̂.

24Given arbitrary sequences {fK} and {gK}, and a positive sequence {hK}, as K → ∞, we
will say that fK = gK + o(hK) if lim supK→∞ |fK − gK |/hK = 0, i.e., if the difference between
f and g is asymptotically dominated by every constant multiple of h. Similarly, we will say that
fK = gK + Ω(hK) if lim infK→∞ |fK − gK |/hK > 0, i.e., if the difference between f and g is
asymptotically bounded below by some constant multiple of h.
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costs on K. The expressions Rev∞(ρ),DelayCost∞(ρ) are functions of only ρ and

F . To a good approximation, the dependency of RevK(ρ),DelayCostK(ρ) on K is

only through a scaling factor of both of these expressions. See Appendix E for plots

showing the goodness of approximation.

Note that Theorem 5 critically relies on the randomness of block inter-arrival

times. If ρ < 1 and blocks were to arrive at deterministic fixed time intervals (say,

exactly every 10 minutes), then for large K every pending transaction would be pro-

cessed in the next block. Hence users would not have incentive to pay any transaction

fees. The random arrival of blocks allows the system with large blocks to generate

revenue even when ρ < 1.
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Figure 3: The parametric curve (Rev∞ (ρ) ,DelayCost∞ (ρ)) for ρ ∈ [0, 1), describing (up to a
scaling by blocksize) the achievable combinations of revenue and delay cost for systems with large
blocksize. The distribution of delay costs is taken to be c ∼ U [0, 1].

Figure 3 plots how the pairs (Rev∞ (ρ) ,DelayCost∞ (ρ)) vary with ρ, assuming the

distribution of delay costs is c ∼ U [0, 1]. From Theorem 5, the pairs (RevK (ρ) ,DelayCostK (ρ)),

for any fixed K and varying ρ, are scaled versions of the depicted curve. Thus, the

curve informs us of the delay costs that are necessary for raising a given amount of

revenue for any K.

The figure shows that a significant amount of delay cost is necessary to raise even

a small amount of revenue. We formally show this in Theorem 6.
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Theorem 6. For any F , as ρ→ 0, we have that

Rev∞(ρ) = O
(
e−1/ρ

)
,

DelayCost∞(ρ) = ρ · E [c] + o (ρ) .

In other words, for small values of the load ρ, the delay cost grows linearly but the

revenue grows more slowly than any polynomial.

The intuition is as follows. For ρ ≈ 0, all transactions are likely to be processed

in the next block regardless of their priority because the block is unlikely to reach its

maximal size. In contrast, total delay costs scale linearly, as every transaction needs

to wait for at least one block and higher ρ implies more waiting. Therefore, as the

load increases from ρ ≈ 0, both revenue and delay costs increase but delay costs grow

more than exponentially faster than revenue.

Together with Theorem 5, this implies that using a larger K to raise a desired level

of revenue R∗ will yield unfavorable results. We formally state this as the following

theorem.

Theorem 7. Consider a desired level of revenue R∗ > 0 and a block size K. De-

fine DelayCost∗K(R∗) to be the delay cost required to achieve revenue R∗ under the

approximation for large K, i.e.,

DelayCost∗K(R∗) , K DelayCost∞
(
Rev−1

∞ (R∗/K)
)
,

with Rev−1
∞ (R∗) , inf

{
ρ > 0 : Rev∞(ρ) ≥ R∗

}
being the minimal load required

to achieve revenue R∗.

Then,

DelayCost∗K(R∗) = Ω

(
K

logK

)
.

Figure 4 illustrates the possible attainable values for revenue and delay given

different values of K and ρ, assuming delay costs are distributed uniformly in [0, 1].

Each curve shows the attainable values for revenue and delay for a fixed value of K

and a range of possible ρ. The plot shows that a lower value of K allows raising any

level of revenue at a lower delay cost to users.

Each curve’s two main features are (i) monotonicity, i.e., longer delays are required

to generate more revenue, and (ii) the curve is asymptotically vertical at the origin,

i.e., to move from zero to some revenue, the delay cost has to be substantial. These
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Figure 4: Possible pairs of revenue and delay cost as ρ varies, for different values of K, where delay
costs are distributed according to c ∼ U [0, 1].

insights transcend the specific U [0, 1] distribution of c underlying the figure. However,

note that these calculations ignore technological constraints and assume that no users

opt out of the system. All curves are approximately a scaled version of the curve in

Figure 3 (note the logarithmic scale for the vertical axis), as implied by Theorem 5.

To summarize, this analysis suggests the following simple adaptations to the cur-

rent protocol. First, a smaller block size K is preferable. Second, an adjustment

of the block rate to µ = λ/ (Kρ∗) in response to demand λ. This keeps congestion

constant at ρ∗, yielding a stable, desired level of revenue.25

6 Data

6.1 Mining Profitability

We compare our results to empirical estimates given by Croman et al. (2016), who

estimate that the total expenditure of miners during October 2015 was approximately

5,840 USD per block. Croman et al. (2016) attribute the vast majority of the cost

to the costs of electricity and hardware used in the attempts to get selected to mine

25Clearly, there are communication and other limitations that limit the range of feasible µ and K.
This paper ignores these engineering challenges.
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the next block. During that period, the mining reward per block was 25 bitcoins plus

negligible transaction fees, or approximately 6,000 - 7,500 USD (the bitcoin-USD

exchange rate fluctuated during the month). This back of the envelope calculation

suggests that miners who buy electricity at market prices approximately break even,

which is consistent with our analysis. Websites that offer information to potential

miners about mining profitability of various cryptocurrencies26 give advice that is

consistent with this observation. Furthermore, while some groups controlled a signif-

icant fraction of the computational power in the network, there is no evidence that

even large miners tried to influence fee levels.

6.2 The Relation Between Congestion and Transaction Fees

Average block size in MB can be used as a measure of the actual congestion in the

BPS. In practice, the BPS limited blocks to 1MB of data per block until August 21st

2017. This corresponds to approximately K = 2, 000 transactions per block. In our

model, the congestion parameter ρ is equal to the average number of transactions per

block divided by K. Analogously, we interpret the average size of a block relative to

the 1MB limit as a proxy for congestion ρ. Each point in Figure 1 corresponds to one

day in the BPS, displaying daily average transaction fees per block and daily average

block size.27 The plot also includes a solid line generated by our model as follows. We

set K = 2, 000, and normalize time so that a time unit is 10 minutes and set µ = 1.

The distribution of users’ delay cost is unknown and arbitrarily set to F = U [0, c̄]

with c̄ = 0.1 USD/10 minutes. The resulting total revenue per unit time Rev2000 (·)
is the expected total transaction fees per block, which is displayed by the solid black

line in Figure 1.

Note that the solid line produced by our model matches the broad patterns in

the data. Figure 1 shows that transaction fees are negligible when congestion is

low. Transaction fees become substantial when congestion reaches 80%. Transaction

fees increase rapidly as congestion approaches 1, even though the system has excess

capacity.

26https://www.coinwarz.com/cryptocurrency/, retrieved 6/20/2017.
27Transaction fee and block size data is from http://blockchain.info, and the number of blocks

per day is from https://data.bitcoinity.org. Each point is a daily average over the interval
4/1/2011–6/30/2017. The starting date 4/1/2011 was selected as this is roughly when the fees per
block started exceeding 1 USD. The end date does not extend to present day because the BPS
changed the method for calculating a block’s size in August 2017.
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7 Conclusion

Bitcoin presents a computer science breakthrough, showing the feasibility of a de-

centralized payment system that relies on a collection of unrelated parties without

the need for a central intermediary. This paper shows that Bitcoin also provides an

economic innovation that can address concerns of the harm of monopoly power of

platforms. The BPS shows the feasibility of a decentralized platform in which users

are protected from the harms of monopoly pricing, even if users have no alternative

to the platform. The platform can fund itself by user fees that are determined in a

market equilibrium. Competition and free entry among the service providers renders

all participants to be price takers.

Critical ingredients of our analysis are costly effort on the part of miners combined

with free entry and exit. Our results can be extended to other protocols, e.g., Proof

of Stake, should they retain these ingredients. Issues left unaddressed in this paper

include engineering challenges limiting the scale at which a decentralized system can

operate; ensuring the security of the system against attacks; determination of the

coin’s exchange rate and its volatility.

A comprehensive comparison between the BPS and a traditional payment system

operated by a profit-maximizing firm requires consideration of multiple attributes,

many of which are outside the scope of this paper’s analysis. As opposed to traditional

systems, the BPS does not require trust in any entity. On the other hand, the BPS

cannot provide some services: for instance, transactions cannot be reversed in case

of error or fraud, and users who lose the credentials to their accounts cannot retrieve

their balances.

We think of the BPS as a blueprint showing the feasibility of a decentralized

design. The BPS demonstrates the power of competition and free entry of service

providers within a platform. Future work is likely to improve upon these insights and

apply them in other domains.

Since service provision requires resource expenditure, the operation of a decentral-

ized platform necessitates a means to transfer value from users to service providers.

The BPS allows such value transfers under the assumption that balances within its

system (denominated in the system’s native coin, bitcoin) are valuable. Determina-

tion of this value is left for future work.

Another feature that sets Bitcoin apart is that a protocol, rather than a managing

organization, runs Bitcoin. Unlike a managing organization, a protocol lacks an easily
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workable mechanism to change prices, offerings, and rules, implying the stability of

these attributes. Such stability can be considered an asset or a liability of the system.

The blockchain protocol presents a novel economic design that would merit an

economist’s attention and scrutiny even if it had not been functional. Currently, the

BPS handles daily transactions worth several billion dollars in aggregate. It can serve

as a compelling proof of concept that should further encourage economists to study

this marvelous structure and its future descendants.
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A A Brief Description of the Bitcoin Payment Sys-

tem

This appendix provides a simplified explanation of the permissionless blockchain pro-

tocol that underlies the Bitcoin Payment System and is the basis of many other

cryptocurrencies. The description focuses on the economic elements.28 In order to

describe what the Bitcoin system does, it is useful to first explain what is needed

for a payment system, such as PayPal or FedWire, or the maintenance of electronic

balances in a modern bank.

An electronic payment system functions as a record (or a ledger) of accounts.

Each account is associated with a user and his balance. It allows users to check their

balances, and it allows a user to debit his balance and credit the debited amount to

another account. Only an account owner can debit the account. Balances do not

change without a legal transfer, i.e., a transfer that conforms to the system’s stated

rules.

One simple implementation is just a spreadsheet (or another bookkeeping device)

that only a trusted authority can modify. Allowing multiple computers to maintain

and update the ledger requires a more elaborate structure. This distributed ledger

structure requires synchronization across the servers but is, in principle, more robust

than a single server system. Maintaining consensus in a distributed computer system

has been known to be straightforward as long as the computers are trusted (see

Tanenbaum & Van Steen (2007)).

The Bitcoin system is designed for an environment which lacks a trusted authority.

Therefore, its ledger must be maintained and updated by a collection of computer

servers, called miners, none of which are trusted. They are assumed to be selfish, i.e.,

to respond to incentives in a profit-maximizing way. Moreover, they offer or withdraw

their services according to profit opportunities they perceive.

Although legal transactions are processed by untrusted miners, the system as a

whole is secure, i.e., it processes all legal transactions and no other transactions. The

collection of miners jointly holds a single ledger, meaning that there must be consensus

among miners about current balances. Moreover, consensus must be maintained as

balances change.

28In particular, this description omits discussion of potential attacks on the system. For further
details and an explanation of the cryptographic elements of the system please refer to Narayanan
et al. (2016).
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Bitcoin’s ledger is a public database called blockchain, which can be verified by

third parties through cryptography. The system arranges for the miners to be com-

pensated for their services in such a way that when each of them maximizes his profit

and believes that other miners similarly maximize their profits, the system has the

properties sketched above.

Initially, all balances are at zero. Over time, the protocol mints new coins which it

adds to the balances of successful miners. The system holds the record of all balance

changes. The manifestation of a transaction is a message which a sending account

transmits to all the miners. It states the sending account, receiving account, amount

transferred, transaction fee, and cryptographic signature by the sending account. A

transaction is processed by adding the appropriate message to the end of the ledger.

The cryptographic signature allows any third party to verify that the transaction was

indeed authorized by the holder of the sending account. Since the ledger is public,

any third party can verify that the sender indeed held a balance sufficient for the

transfer.

The public ledger is saved in the distributed blockchain format, in which the

transaction data is partitioned into a sequence of blocks. These blocks are periodic

updates to the ledger. Notably, the ledger does not update instantly following the

appearance of a new transaction. Rather, it updates on average every ten minutes

with a block summarizing a subset of the recent pending transactions which hadn’t

been included in a previous block. Remaining unprocessed transactions wait to be

processed in future blocks. As of July 2017, the maximal block size is 1MB.29

New transactions are processed when they are included in a block that is added to

the ledger, which happens as follows. Each miner holds a copy of the current ledger

i.e., all previous blocks. All transaction requests are broadcast to all miners. The

set of pending transactions that reaches each miner may vary slightly across miners

due to network imperfections, rendering non-trivial the choice of a universally agreed

upon record of transactions. To ensure that Bitcoin maintains a unique record of

transactions, a single miner is selected to add a block of transactions to the ledger.

Since there is no trusted authority to make the selection, a tournament is used to

randomly select a winning miner. To participate in the tournament, miners exert

effort30 (known as proof of work) that is useful only for generating a verifiable random

29As of July 2017, the protocol limits each block to 1MB of data to ensure each block can be
transmitted promptly throughout the network. This limits each block to no more than approximately
2,000 transactions, as the average transaction uses 0.5KB of data (Zohar 2015).

30The tournament selects a random winner without the need of a trusted authority through use of
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selection of a miner without the need of a trusted randomization device.

Periodically (currently approximately every 10 minutes), the tournament ran-

domly selects one miner as the winner, assigning his block as the next in the chain,

thereby making that block a mined block. The mined block is transmitted to all the

other miners, who verify the legality of that block and vet all transactions included

in the block. Miners add a newly mined legal block to their copy of the ledger and

proceed to add new blocks on top of it. Miners ignore mined blocks that are not legal.

The tournament-winning miner is paid a reward when he mines a new block but

can withdraw his reward only after newer blocks augment the chain on top of his

block. Other miners will build on top of his block only if they consider it legal.

Hence, the incentive is to assemble and create legal blocks. Consensus forms on a

ledger that includes the new block. The process continues in the same manner for

the following ten minutes (on average) and so on.31

The miner that created a block is paid from two sources. One consists of newly

minted coins, the exact number of which is protocol-determined and is decreasing

with time. (Crediting successful miners with newly minted coins moves the system

early on from having zero balances to having positive ones.) The second consists of

the fees offered by the transactions in the mined block. This second source is the

focus of the paper.

This system will have the following desired properties. All miners are synchronized

a hash function. The hash function is a deterministic one-way function that produces a hash value,
interpreted as a pseudo-random real number between 0 and 1. A block is said to be a winning block
if it is a legal block and its hash value is below a target value. A legal block contains, in addition to
transaction data, an unrestricted “nonce” field for which the miner can input any numerical value.
The cryptographic properties of the hash function imply that finding such a block requires a brute-
force search, iterating over numerical values for the nonce and computing the hash value for each of
them. Roughly speaking, each attempt for a value of the nonce generates an independent random
draw of a hash value, distributed uniformly between 0 and 1.

To participate in the tournament, miners assemble their blocks and use their computational power
to iterate over values of the nonce. Each attempt for a nonce value has an independent probability
of generating a winning block, with probability equal to the target value. Because the target value
is very small, a miner’s chance to win the tournament within a time period is proportional to the
number of nonce values attempted within the period. A miner with a winning block is said to “mine
the block”, and the winning block can be verified by any third party by recomputing the hash.

The target value adjusts over time so that a block is mined every 10 minutes (on average). For
example, if the overall computational power of miners doubles, then the target value is halved and
twice as many attempts (on average) are required to find a winning block.

31There is a small probability that two or even more blocks are vying to be accepted as the newest
block. This situation is called a fork. Bitcoin’s convention calls for newer blocks to be built on top
of the longest chain. This convention resolves forks. Eyal & Sirer (2014) analyze strategic issues
between miners.
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to hold the same ledger of processed transactions. No single miner controls the system,

because every 10 minutes the ability to process transactions is given to a randomly

chosen miner. Balances change only with a legal transaction because any transaction

that is added is vetted by other miners to be valid, and transactions cannot be deleted

from the ledger.
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Online Appendix for “Monopoly without a

Monopolist: An Economic Analysis of the Bitcoin

Payment System”

B Endogenous Entry

The analysis in Section 4.2 assumed that the reward RL, RH is sufficiently high for

all users receive positive net reward. Lemma 2 shows that all users receive positive

net reward if ˆ c̄

0

µ−1WK

(
ρF̄ (c)

)
dc ≤ RL.

This section extends the analysis to values ofR for which the inequality is not satisfied.

For simplicity, assume that RH = RL = R ≥ 0 and let c∗ ∈ [0, c̄] be the unique

solution to

ˆ c∗

0

µ−1WK

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc = R.

It is straightforward to verify that, in equilibrium, users with delay cost ci /∈ [0, c∗]

opt out of the system, and that a user with delay cost ci ∈ [0, c∗] chooses a transaction

fee

b (ci) = ρ

ˆ ci

0

f (c) · c · µ−1W ′
K

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc.

The system’s revenue and total delay cost are given by

RevK(ρ|R) = Kρ2

ˆ c∗

0

cf(c)
(
F̄ (c)− F̄ (c∗)

)
W ′
K

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc,

DelayCostK(ρ|R) = Kρ

ˆ c∗

0

cf(c)WK

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc.
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Figure 5: Total revenue per block as a function of ρ when c ∼ U [0, 1]. The curve Rev2000(ρ) shows
total revenue from transaction fees when WTP is sufficiently high so that the participation constraint
does not bind for any user, and it is only defined for 0 ≤ ρ < 1. The curve Rev2000(ρ|R = 10) shows
total revenue from transaction fees when all users have WTP equal to 10 USD, and it is defined for
any ρ ≥ 0.

The infrastructure available to the system is given by the number of miners

N =
RevK(ρ|R)

cm
.

Note that these expressions coincide with their counterparts in Section 4.2 when

c∗ = c̄. Figure 5 provides an illustration of these results.

C Endogenous Willingness To Pay

The model allows us to solve for miner and user behavior given exogenously specified

user WTP. The analysis assumed (Assumption 1) that users consider the system to

be a reliable means of sending transactions and, in particular, that the system has

sufficient mining resources for its operation and security. This section builds up on

Appendix B to extend the analysis and allow for endogenous determination of the
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user’s WTP R given the system’s aggregate computational power N .32 Analogous

extensions can extend the model to allow for an endogenous exchange rate e.

For tractability, we assume all agents have the same WTP R = ψ (N), which is

a function of the system’s aggregate computational power N . Users endogenously

choose whether to participate as a function of their perceived WTP ψ (R). In par-

ticular, ψ can capture that users believe the system is unreliable with computational

power N ′ by ψ (N ′) < 0. Negative WTP implies that users choose to not participate.

We change the game described in Section (2) to allow for endogenous WTP by

requiring that agents have correct beliefs on N and that their WTP is R = ψ (N).

That is, equilibrium R,N must satisfy

R = ψ (N)

N =
Rev (R) + e · S

cm
.

Appendix B derives Rev (R) for any possible R. If R ≤ 0, then none of the users

participate and Rev (R) = 0. If R ≥ 0 we have that

Rev (R) = RevK(ρ|R) = Kρ2

ˆ c∗

0

cf(c)
(
F̄ (c)− F̄ (c∗)

)
W ′
K

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc,

where c∗ is the unique solution to

ˆ c∗

0

µ−1WK

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc = R ,

if R ≤ R̄ = µ−1
´ c̄

0
WK

(
ρF̄ (c)

)
dc, and c∗ = c̄ if R ≥ R̄.

Let Rev
(
R̄
)

= maxR Rev(R) be the maximal total revenue from transaction fees,

which is achieved when all users participate. Let N̄ =
(
Rev

(
R̄
)

+ e · S
)
/cm de-

note the corresponding aggregate computational power. The following corollaries are

immediate.

Corollary 4. If ψ (e·S/cm) < 0, that is, the system is not reliable if there is zero

revenue from transaction fees, then there is an equilibrium in which none of the users

participate.

32For some considerations (e.g., security of the system), the users WTP should depend on the total
payment to miners in USD, rather than the system’s total computational power N . The derivation
below allows for either interpretation because, in equilibrium, the total payment to miners is cmN ,
which is a constant multiple of the system’s total computational power N .
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Corollary 5. If ψ
(
N̄
)
≥ R̄, the equilibrium analyzed in Section 4 is also an equilib-

rium under endogenous WTP.

It is natural to consider users that deem the system to be unreliable when the

computational power is below some minimal required N0, that is, ψ (x) < 0 for any

x ≤ N0. Currently, the majority of miner compensation comes from newly minted

coins e ·S. This amount provides sufficient computational power for the reliability of

the system, that is, e·S/cm > N0. If newly minted coins by themselves are insufficient

(because, e.g., the protocol mints less coin), then the system is susceptible to failure

when congestion is low and revenue from transaction fees is insufficient.

Corollary 6. Suppose that ψ (x) < 0 for any x ≤ N0, and that e·S/cm < N0. Then

there exists ρ0 such that for any ρ < ρ0 there is a unique equilibrium in which none

of the users participate. The proof follows from Corollary (3), which shows that the

maximal total revenue from transaction fees Rev
(
R̄
)

is increasing in ρ and is equal

to zero when ρ = 0.

The following example provides simplified expressions under additional assump-

tions.

Example. Suppose that µ = 1, K = 1, and c ∼ U [0, 1]. For these parameters, we

have that R̄ = 1/ (1− ρ), and the equation that defines c∗ simplifies to

R =

ˆ c∗

0

µ−1WK

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc =

c∗

1− c∗ρ
.

Therefore, we have that for 0 ≤ R ≤ R̄

c∗ =
R

1 + ρR
,

and the implied revenue from transaction fees is

RevK(ρ|R) = Kρ2

ˆ c∗

0

cf(c)
(
F̄ (c)− F̄ (c∗)

)
W ′
K

(
ρ
(
F̄ (c)− F̄ (c∗)

))
dc

=
c∗ (2− c∗ρ)

1− c∗ρ
+

2 log (1− c∗ρ)

ρ

=
R (2 + ρR)

1 + ρR
− 2 log (1 + ρR)

ρ
.
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Plugging these expressions into the endogenous WTP conditions, we get that WTP

R can arise in equilibrium only if: (i) R = ψ
(
N̄
)
≥ R̄, or (ii) R = ψ (0) ≤ 0, or (iii)

0 ≤ R ≤ R̄ and

R = ψ

(
R(2+ρR)

1+ρR
− 2 log(1+ρR)

ρ
+ e · S

cm

)
.

D Attributes of Transaction Fees
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Figure 6: The dependence of equilibrium transaction fees on congestion ρ for fixed user’s delay cost
c. Block size is taken to be K = 2, 000, block arrival rate µ = 1, and delay costs are distributed
according to c ∼ U [0, 1].

Figure 6 and 7 illustrate how transaction fees depend on the user’s delay cost c and

the overall congestion ρ. Both figures display equilibrium fees when c is distributed

uniformly over [0, 1], the block size is K = 2, 000, and µ = 1. Figure 6 shows

how the transaction fees chosen by users in equilibrium vary with the overall system

congestion ρ. Transaction fees are very small when the system is not congested but

can be arbitrarily high as ρ approaches 1.

Figure 7 shows that the transaction fees increase with the user’s delay cost but

do not vary much among users with high delay cost. An intuitive explanation is that

such users that offer high fees the probability that a transaction is processed in the

next block is high and does not vary much with further fee increases. Because all
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Figure 7: The dependence of equilibrium transaction fees on the user’s delay cost c for fixed conges-
tion ρ. Block size is taken to be K = 2, 000, block arrival rate µ = 1, and delay costs are distributed
according to c ∼ U [0, 1].

users within the same block are treated equally, there is little competition for priority

among users with high delay costs.

To form a complementary interpretation, observe that the expected wait for a

user with cost ci is WK(ρ̂) with ρ̂ , ρF̄ (ci) < F̄ (ci). When ρ̂ is small, the expected

wait WK(ρ̂) is not very sensitive to variations in ρ̂, and therefore users with a high

ci are only slightly harmed when someone gains priority over them. However, WK(ρ̂)

can be very sensitive to changes in ρ̂ when ρ̂ is close to 1, and thus the externality

on users with low delay cost can be substantial. All users with sufficiently high delay

cost, for example ci > 0.7, impose the same externality to other users with delay

costs cj ∈ [0, 0.7] plus a relatively small externality to other users with delay costs

cj ∈ (0.7, ci).

E Additional Figures

This appendix provides additional plots showing the goodness of approximation in

Theorem 5, illustrating the delay function WK(ρ), and showing that different wait-

ing cost distribution yield similar results. Table 1 presents a regression analysis to
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complement Figure 1.
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Figure 8: Normalized revenue RevK(ρ)/K when c ∼ U [0, 1] and K ∈ {20, 200, 2000, 20000}, com-
pared to the limiting values obtained from the approximation using W∞ (·). The plot may appear to
have only one line because all lines overlap.
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OLS Regression Results

==============================================================================

Dep. Variable: FeeTotUSD R-squared: 0.802

Model: OLS Adj. R-squared: 0.801

Method: Least Squares F-statistic: 1840.

Date: Thu, 10 Sep 2020 Prob (F-statistic): 0.00

Time: 18:19:30 Log-Likelihood: -28760.

No. Observations: 2283 AIC: 5.753e+04

Df Residuals: 2277 BIC: 5.757e+04

Df Model: 5

Covariance Type: nonrobust

===================================================================================

coef std err t P>|t| [0.025 0.975]

-----------------------------------------------------------------------------------

const 3214.2896 2759.495 1.165 0.244 -2197.098 8625.677

predictedRev 11.4300 1.194 9.575 0.000 9.089 13.771

BlkSizeMeanByte -0.2900 0.009 -32.948 0.000 -0.307 -0.273

PriceUSD 209.1827 6.613 31.631 0.000 196.214 222.151

HashRate 0.0881 0.004 21.462 0.000 0.080 0.096

ROI30d 5.2354 20.068 0.261 0.794 -34.118 44.589

==============================================================================

Omnibus: 1500.842 Durbin-Watson: 0.147

Prob(Omnibus): 0.000 Jarque-Bera (JB): 52550.476

Skew: 2.585 Prob(JB): 0.00

Kurtosis: 25.928 Cond. No. 2.45e+06

==============================================================================

Table 1: Regression of total daily transaction fees in USD from April 1, 2011 to June 30, 2017
on predicted transaction fees (see Section 6.2), daily average block size, the bitcoin to USD ex-
change rate, Hashrate, and the 30 day change in the bitcoin to USD exchange rate. Data source:
https://coinmetrics.io/community-network-data/.
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Figure 9: Normalized revenue RevK(ρ)/K when c ∼ U [0, 1] and K ∈ {20, 200, 2000, 20000}, com-
pared to the limiting values obtained from the approximation using W∞ (·). The plot may appear to
have only one line because all lines overlap.
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Figure 10: The expected delay in blocks WK (ρ) of the lowest priority transaction given ρ = λ/µK
and K ∈ {20, 200, 2000, 20000}.

Figure 11: Revenue for K = 2000 and waiting costs c distributed (i) uniformly on [0, 1], (ii) as an
exponential with mean 1, (iii) as a Log-normal with mean and variance equal to 1. All were calculated
using the asymptotic approximation. The plot also shows Rev2000 (ρ) for the uniform distribution in
a dotted line that overlaps the asymptotic approximation.
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Figure 12: Delay costs for K = 2000 and waiting costs c distributed (i) uniformly on [0, 1], (ii) as an
exponential with mean 1 (iii) as a Log-normal with mean and variance equal to 1. All were calculated
using the asymptotic approximation. The plot also shows Rev2000 (ρ) for the uniform distribution in
a dotted line that overlaps the asymptotic approximation.

F Proofs

F.1 Queueing Analysis

In this section, we will establish the main queueing result, which is the waiting time

expression of Lemma 1. We begin with a standard result from the analysis of bulk

service systems (e.g., Section 4.6, Kleinrock 1975):

Lemma A1. Consider a queue system consisting of a single queue, with arrivals ac-

cording to a Poisson process of rate λ ≥ 0 and bulk service in batches of size up to

K ≥ 1 with service times exponentially distributed with parameter µ > 0. Suppose

that the load ρ , λ/(µK) ≥ 0 satisfies ρ < 1. Then, the queueing system is stable,

and the steady-state queue length Q has the geometric distribution

P(Q = `) = (1− z0)z`0, ` = 0, 1, . . . .

Here, the parameter of the geometric distribution z0 , z0(ρ,K) is given as unique
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solution of the polynomial equation

zK+1 − (Kρ+ 1)z +Kρ = 0,

in the interval [0, 1).

Lemma A1 and Little’s Law are used to prove the following, which implies Lemma 1:

Lemma A2. Consider a transaction, and let λ̂ be the arrival rate of higher priority

transactions (i.e., transaction that offer greater fees). The expected time until the

transaction is processed is a function of the block size K, the block arrival rate µ, and

the load parameter ρ̂ , λ̂/µK ∈ [0, 1), and is equal to

µ−1WK (ρ̂) =
1

µ

1

(1− z0)
(
1 +Kρ̂− (K + 1)zK0

) .
Here, z0 , z0(ρ̂, K) ∈ [0, 1) is the polynomial root defined in Lemma A1.

The quantity WK(ρ̂) ≥ 1 is the expected waiting time measured in blocks. It

satisfies

W ′
K(ρ̂) > 0, ∀ ρ̂ ∈ (0, 1).

Finally, we have that

WK(0) = 1; lim
ρ̂→1

WK(ρ̂) =∞; W ′
K(0) = 0, if K > 1; lim

ρ̂→1
W ′
K(ρ̂) =∞.

Proof. While this result can be established directly using a generating function argu-

ment, we will instead use a more intuitive approach based on Little’s Law.

To start, consider a queueing system with arrival according to a Poisson process of

rate λ̂, exponential service time with parameter µ, and batch size K. Define W̄K(ρ)

to be the average waiting time of a user in this system measured in multiples of the

mean service time µ−1. Here, we highlight the dependence on the load ρ̂ = λ̂/µK.

Lemma A1 implies that the mean queue length is given by

E[QK ] =
z0(ρ̂, K)

1− z0(ρ̂, K)
.

Applying Little’s Law,
z0(ρ̂, K)

1− z0(ρ̂, K)
= λ̂

W̄K(ρ̂)

µ
. (14)

57

Electronic copy available at: https://ssrn.com/abstract=3025604



Now, Little’s Law (14) holds no matter what the service discipline. In particular,

we can specialize to the case where users are given preemptive priority service, where

each user is given a priority type drawn uniformly over the interval [0, ρ̂], and where

service for users of lower numerical priority type preempts service for higher numerical

priority type. Define WK(ρ) to be the expected waiting time (in multiples of the mean

service time) for users with priority type ρ ∈ [0, ρ̂]. Then,

W̄K(ρ̂) =
1

ρ̂

ˆ ρ̂

0

WK(ρ) dρ.

Substituting into (14), we have that

z0(ρ̂, K)

1− z0(ρ̂, K)
= K

ˆ ρ̂

0

WK(ρ) dρ.

Differentiating with respect to ρ̂ and simplifying, we have that

WK(ρ̂) =
∂ρ̂z0(ρ̂, K)

K (1− z0(ρ̂, K))2 . (15)

In order to simplify this expression, we will use the implicit function theorem.

Denote by QK(z, ρ̂) the degree K polynomial in z defined by

zK+1 − (Kρ̂+ 1)z +Kρ̂ =
(
z0(ρ̂, K)− z

)
QK(z, ρ̂), ∀ (z, ρ̂) ∈ R× [0, 1). (16)

This polynomial exists and is unique since z0 , z0(ρ̂, K) is a root of the degree K+ 1

polynomial on the left side. We apply the implicit function theorem and differentiate

(16) with respect to (z, ρ̂) ∈ R× [0, 1) to obtain

(K + 1)zK − (Kρ̂+ 1) = −QK(z, ρ̂) +
(
z0(ρ̂, K)− z

)
∂zQK(z, ρ̂), (17)

−Kz +K = ∂ρ̂z0(ρ̂, K)QK(z, ρ̂) +
(
z0(ρ̂, K)− z

)
∂ρ̂QK(z, ρ̂). (18)

Substituting z = z0(ρ̂, K) into (17), we have that

QK(z0, ρ̂) = 1 +Kρ̂− (K + 1)zK0 . (19)
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The same substitution into (18) yields that

∂ρ̂z0(ρ̂, K) = K
1− z0

QK(z0, ρ̂)
= K

1− z0

1 +Kρ̂− (K + 1)zK0
. (20)

Substituting (19)–(20) into (15) yields the desired result that

WK (ρ̂) ,
1

(1− z0)
(
1 +Kρ̂− (K + 1)zK0

) . (21)

We will now show that W ′
K(ρ̂) > 0. Differentiating (21),

W ′
K(ρ̂) =

(
QK(z0, ρ̂) +K(K + 1)(1− z0)zK−1

0

)
∂ρ̂z0(ρ̂, K)−K(1− z0)(

(1− z0)QK(z0, ρ̂)
)2

Substituting z = z0(ρ̂, K) into (17), we have that

∂ρ̂z0(ρ̂, K) =
K(1− z0)

QK(z0, ρ̂)
= K(1− z0)2WK(ρ̂).

Then,

W ′
K(ρ̂) = K

(
QK(z0, ρ̂) +K(K + 1)(1− z0)zK−1

0

)
−QK(z0, ρ̂)

(1− z0)QK(z0, ρ̂)3

=
K2(K + 1)zK−1

0

QK(z0, ρ̂)3

= K2(K + 1)zK−1
0 (1− z0)3WK(ρ̂)3.

(22)

Since the waiting time must be at least one block, WK (ρ̂) ≥ 1. Since z0 < 1 and, if

ρ̂ ∈ (0, 1), z0 6= 0 also, we have that W ′
K(ρ̂) > 0. Furthermore, since z0(0, K) = 0, it

is clear that

WK(0) = 1, W ′
K(0) =

2 if K = 1,

0 if K > 1.

Finally, we consider the asymptotic limits of WK(·) and W ′
K(·) as ρ̂→ 1. Factoring

the defining polynomial for z0 ∈ [0, 1), we have that

0 = zK+1
0 − (Kρ̂+ 1)z0 +Kρ̂ = (1− z0)

(
Kρ̂−

K∑
`=1

z`0

)
.
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Therefore, z0 satisfies

ρ̂ =
1

K

K∑
`=1

z`0 ≤
1

K

K∑
`=1

z0 = z0 < 1,

where the inequalities follow since z0 ∈ [0, 1). Taking a limit as ρ̂→ 1, clearly z0 → 1

and QK(z0, ρ̂)→ 0. Therefore, from (21), WK (ρ̂)→∞, and also from (22),

lim
ρ̂→1

W ′
K(ρ̂) = lim

ρ̂→1

K2(K + 1)zK−1
0

QK(z0, ρ̂)3
=∞.

F.2 Equilibrium

Proof of Proposition 3: We consider agents equilibrium decisions conditional on be-

ing forced to participate. Let G denote the the cumulative distribution function of

transaction fees in some equilibrium, and let b(ci) be a transaction fee chosen by

agents with delay cost ci. Consider a user i with delay cost ci. The user chooses his

transaction fee b to maximize his net reward

Ri − b− ci ·W (b | G) ,

with W (b | G) denoting the expected delay given transaction fee b and the CDF G.

By Lemma 1, the expected delay is decreasing with b, and standard arguments (see

Lui (1985), Hassin & Haviv (2003)) imply that b (ci) is increasing in ci and b (0) = 0.

Monotonicity of b (·) implies that G (b (c)) = F (c). Therefore, we have that

ρ̂ (ci) =
λ · (1−G (b (ci)))

µK
= ρ · F̄ (ci) ,

and

W (b | G) = µ−1WK

(
ρ · Ḡ (b)

)
= µ−1WK

(
ρ · F̄ (ci)

)
.
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Each agent is bidding optimally if and only if

b(ci) ∈ arg min
b
{c ·W (b | G) + b}.

The first order condition implies

W ′ (bi | G) = − 1

ci
.

Plugging in G′ (bi) = f (ci) /b
′ (ci), we have that

µ−1W ′
K

(
ρ · Ḡ (b)

)
· (−ρf (ci) /b

′ (ci)) = − 1

ci
,

or

b′ (ci) = ciρf (ci)µ
−1W ′

K

(
ρF̄ (ci)

)
.

Integration, together with the fact that b (0) = 0 yields

b (ci) = ρ

ˆ ci

0

f (c) · c · µ−1W ′ (ρF̄ (c)
)
dc.

Transaction fees coincide with the payments that result from selling priority in a VCG

auction because of revenue equivalence. To directly see that b(ci) is the externality

imposed by ci, write the expected wait in terms of arrival rate of higher priority

transactions as µ−1W̃K

(
λ̂
)
, µ−1WK

(
λ̂/µK

)
. The transaction sent by ci affects the

waiting time of transactions with lower priority that are sent by users with 0 ≤ c < ci;

higher priority transactions are not affected. Integration over all affected types implies

that the externality imposed by a marginal increase in the volume of transaction from

users with ci is ˆ ci

0

λf (c) · c · µ−1W̃ ′
K

(
λF̄ (c)

)
dc = b (ci) .
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Finally,

b (ci) = ρ

ˆ ci

0

cf (c)µ−1W ′
K

(
ρF̄ (c)

)
dc

= −
ˆ ci

0

c
(
µ−1WK

(
ρF̄ (c)

))′
dc

=

ˆ ci

0

µ−1WK

(
ρF̄ (c)

)
dc−

[
cµ−1WK

(
ρF̄ (c)

)]∣∣ci
0

=

ˆ ci

0

µ−1WK

(
ρF̄ (c)

)
dc− ciµ−1WK

(
ρF̄ (ci)

)
=

ˆ ci

0

µ−1WK

(
ρF̄ (c)

)
dc− ciW (b | G) .

Therefore,

u (Ri, ci) = Ri − ci ·W (b(ci) | G)− b(ci)

= Ri −
ˆ ci

0

µ−1WK

(
ρF̄ (c)

)
dc.

Proof of Lemma 2: First, assume that all users participate. From Proposition 3, the

equilibrium net surplus of an agent (Ri, ci) conditional on all agents participating is

u (Ri, ci) = Ri − µ−1

ˆ ci

0

WK

(
ρF̄ (c)

)
dc.

Because u (Ri, ci) is decreasing in Ri, ci we have that for all (Ri, ci)

u (Ri, ci) ≥ u (RL, c̄)

= RL − µ−1

ˆ c̄

0

WK

(
ρF̄ (c)

)
dc

= RL − R̄ > 0.

Additionally, we have that WK is an increasing function, which implies that the

utility u (RL, c̄) increases if less agents participate. Therefore, it is a strict best

response for all agents to participate regardless of the participation decisions of other

users. In other words, all agents participate in equilibrium and receive net surplus

u (Ri, ci) ≥ u (RL, c̄) > 0.
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Proof of Theorem 2: From Lemma 2, we have that all agents participate and receive

strictly positive surplus. From the expressions derived in Proposition 3, we have

that transaction fees b (ci) are independent of the user’s WTP and the exchange

rate (a change in the exchange rate may change the nominal value written into the

transaction, as users observe the exchange rate. Users trade off fees in USD against

delay cost in USD equivalents).

Finally, if ρ > 0 we have that b (ci) > 0 and the system raises strictly positive

revenue.

Proof of Corollary 2: Note that if the conditions of Theorem 2 are satisfied, they will

also be satisfied if we increase WTP R of some or all the users. Therefore, both before

and after the increase, the equilibrium transaction fees are given by b (ci) which is

independent of WTP R.

F.3 Delay and Revenue

In this section, we establish results relating to the total revenue generated by users

and the total delay cost experienced by users in equilibrium. Theorems 3 and 4,

which provide an expressions for the total revenue and delay cost, are implied by the

following result:

Theorem A3. The total revenue per unit time raised from users is

RevK(ρ) = Kρ2

ˆ c̄

0

cf(c)F̄ (c)W ′
K

(
ρF̄ (c)

)
dc (23)

= Kρ

ˆ c̄

0

(
F̄ (c)− cf(c)

)
WK

(
ρF̄ (c)

)
dc. (24)

The total delay cost per unit time incurred by users is

DelayCostK(ρ) = Kρ

ˆ c̄

0

cf(c)WK

(
ρF̄ (c)

)
dc. (25)

The total overall cost per unit time borne by users is

TotalCostK(ρ) , RevK(ρ) + DelayCostK(ρ) = Kρ

ˆ c̄

0

F̄ (c)WK

(
ρF̄ (c)

)
dc. (26)

Proof. Transactions arrive per unit time at rate λ, and the expected revenue per
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transaction is ˆ c̄

0

f(c)b(c) dc.

Therefore, the total expected revenue per unit time is

RevK(ρ) = λ

ˆ c̄

0

f(c)b(c) dc

= Kρ2

ˆ c̄

0

ˆ c

0

f(c)sf(s)W ′
K

(
ρF̄ (s)

)
ds dc

= Kρ2

ˆ c̄

0

ˆ c̄

s

f(c)sf(s)W ′
K

(
ρF̄ (s)

)
dc ds

= Kρ2

ˆ c̄

0

sf(s)F̄ (s)W ′
K

(
ρF̄ (s)

)
ds.

This establishes (23). For (24), we integrate by parts with

u = KρsF̄ (s), du = Kρ
(
F̄ (s)− sf(s)

)
ds,

dv = ρf(s)W ′
K

(
ρF̄ (s)

)
ds, v = −WK

(
ρF̄ (s)

)
,

to obtain

RevK(ρ) = uv
∣∣∣c̄
0
−
ˆ c̄

0

v du

= Kρ

ˆ c̄

0

(
F̄ (s)− sf(s)

)
WK

(
ρF̄ (s)

)
ds,

as desired.

For the delay cost, note that the expected delay cost per transaction is

ˆ c̄

0

f(c) · cµ−1WK

(
ρF̄ (c)

)
dc.

Since transactions arrive at rate λ, the total expected revenue per unit time is then

DelayCostK(ρ) = λ

ˆ c̄

0

cf(c)µ−1WK

(
ρF̄ (c)

)
dc

= Kρ

ˆ c̄

0

cf(c)WK

(
ρF̄ (c)

)
dc,

as desired. The expression for total cost per unit time (26) follows by combining (24)
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and (25).

Corollary 3, which establishes that total revenue and delay costs are increasing as

functions of the load parameter ρ, is implied by the following result:

Corollary A4. In equilibrium, if ρ = 0, both revenue and delay cost are zero. For all

ρ ∈ (0, 1),

Rev′K(ρ) = Kρ

ˆ c̄

0

F̄ (c)2W ′
K

(
ρF̄ (c)

)
dc > 0,

DelayCost′K(ρ) =
TotalCostK(ρ)

ρ
> 0.

In other words, both revenue (and with it, infrastructure provision by miners) and

delay cost are strictly increasing in ρ.

Proof. Differentiating (24) and applying (23),

Rev′K(ρ) = K

ˆ c̄

0

(
F̄ (c)− cf(c)

)
WK

(
ρF̄ (c)

)
dc

+Kρ

ˆ c̄

0

(
F̄ (c)2 − cf(c)F̄ (c)

)
W ′
K

(
ρF̄ (c)

)
dc

=
RevK(ρ)

ρ
+Kρ

ˆ c̄

0

F̄ (c)2W ′
K

(
ρF̄ (c)

)
dc− RevK(ρ)

ρ

= Kρ

ˆ c̄

0

F̄ (c)2W ′
K

(
ρF̄ (c)

)
dc.

Similarly, differentiating (25) and applying (23) and (26),

DelayCost′K(ρ) = K

ˆ c̄

0

cf(c)WK

(
ρF̄ (c)

)
dc+Kρ

ˆ c̄

0

cf(c)F̄ (c)W ′
K

(
ρF̄ (c)

)
dc

=
DelayCostK(ρ)

ρ
+

RevK(ρ)

ρ
=

TotalCostK(ρ)

ρ
.

F.4 Large Block Asymptotics

In this section, we establish asymptotic results in a “large block size” asymptotic

regime. This is a regime where we consider a sequence of systems where the load

parameter ρ , λ/(µK) ∈ [0, 1) is held constant, while the block size K →∞.
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The first result we establish in this regime is Lemma 3. The core of this Lemma is

the observation that, in the large block regime, the expected waiting time measured

in blocks, WK(ρ), is independent of K. The main intuition for this result is as follows.

Fix the value of ρ. Consider a sequence of systems, indexed by the block size K, each

with load ρ, as K →∞. When K is large, the arrival rate of new transactions must

be very large relative to the service rate as which blocks are generated. Without loss

of generality, suppose that the arrival rate of the Kth system is λK = ρK and the

service rate of every system is µ = 1, so the the load of each system is λK/(µK) = ρ

as desired. Now, over an interval of time of length t, the number of arrivals is given

by a Poisson(λKt) = Poisson(ρKt) distribution. Measured in units of the block size,

this scaled number of arrivals process has the distribution

1

K
Poisson(ρKt)→ ρt,

as K → ∞, where the convergence is because the random variable on the left side

has variance tending to zero, and hence is well-approximated by its mean. In other

words, in this asymptotic regime, the number of new transactions is approximately

deterministic and of order K, while services are at random times and also of order

K. Therefore, it is natural to expect that the number of queued transactions, scaled

by the block size K, converges in distribution as K →∞.

The following lemma makes this intuition precise:

Lemma A5. Consider a sequence of bulk service queueing systems (as in Lemma A1)

indexed by block size K ≥ 1 with a fixed load parameter ρ ∈ (0, 1), as K → ∞.

Define the random variable QK to be the steady-state distribution of the system when

the block size is K.

Then, QK is geometrically distributed with parameter z0(ρ,K) (cf. Lemma A1),

where z0(ρ,K) asymptotically satisfies

z0(ρ,K) = 1− α(ρ)/K + o(1/K), (27)

as K →∞. Here, where α(ρ) > 0 is the unique strictly positive root of the transcen-

dental algebraic equation

e−α + ρα− 1 = 0.

Moreover, define Q̃K , QK/K to be the random variable corresponding to the

steady-state queue length when the block size is K, measured in units of the block size
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K. Then, as K → ∞, Q̃K converges in distribution to an exponential distribution

with parameter α(ρ).

Proof. Fix ρ ∈ (0, 1).

First, we will show that α(ρ) is well-defined. Define the transcendental function

T (α) , e−α + ρα− 1.

Clearly T (0) = 0, T ′(0) < 0, and limα→∞ T (α) = ∞. By the intermediate value

theorem, there is at least one strictly positive root. Further, since T ′′(α) > 0 for all

α ≥ 0, the root must be unique. Thus,

T (α) < 0, ∀ 0 < α < α(ρ); T (α) > 0, ∀ α > α(ρ). (28)

Next, we wish to prove (27). From Lemma A1, recall the polynomial defining z0,

PK(z) , zK+1 − (Kρ+ 1)z +Kρ.

Note that

PK(0) = Kρ > 0, PK(1) = 0, P ′K(1) = K(1− ρ) > 0,

so PK(z) must be positive for z sufficiently close to zero, and must be negative for

z sufficiently close to (but less than) 1. Since z0 is the unique root of PK(·) in the

interval [0, 1), we have that

PK(z) > 0, ∀ 0 ≤ z < z0(ρ,K); PK(z) < 0, ∀ z0(ρ,K) < z < 1. (29)

Now, fix an arbitrary ε > 0. Define

νK , 1− α(ρ) + ε

K
, νK , 1− α(ρ)− ε

K
.
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Then,

lim
K→∞

PK(νK) = lim
K→∞

νK+1
K − (Kρ+ 1)νK +Kρ

= lim
K→∞

νK

(
1− α(ρ) + ε

K

)K
+ (Kρ+ 1)

α(ρ) + ε

K
− 1

= e−
(
α(ρ)+ε

)
+ ρ
(
α(ρ) + ε

)
− 1

= T
(
α(ρ) + ε

)
> 0,

where (28) is used for the final inequality. Thus, for all K sufficiently large, PK(νK) >

0. By (29), this implies that, for all K sufficiently large, z0(ρ,K) > νK . Combining

this with an analogous argument applied to νK , we have that, for all K sufficiently

large,

1− α(ρ) + ε

K
< z0(ρ,K) < 1− α(ρ)− ε

K
,

or equivalently, ∣∣∣∣z0(ρ,K)−
(

1− α(ρ)

K

)∣∣∣∣ < ε

K
.

Since ε is arbitrary, we have established (27).

To prove the convergence of Q̃K to the appropriate exponential distribution, notice

that, for t ≥ 0,

P(Q̃K ≥ t) = P(QK ≥ tK) = P(QK ≥ dtKe) = z0(ρ,K)dtKe = z0(ρ,K)K(dtKe/K).

(30)

Then,

lim
K→∞

logP(Q̃K ≥ t) = lim
K→∞

(dtKe/K) ·K log z0(ρ,K)

= t · lim
K→∞

K log z0(ρ,K)

= −tα(ρ),

(31)

where we have applied (27) and the fact that log(1− x) = −x+O(x2) as x→ 0.

The following lemma builds on the prior result to establish the first part of

Lemma 3, which is that the expected waiting time (measured in blocks) converges

and is independent of K:
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Lemma A6. Consider a fixed load parameter ρ̂ ∈ (0, 1). As block size K increases,

the expected waiting time measured in blocks converges according to

lim
K→∞

WK(ρ̂) = W∞(ρ̂).

Here, W∞(ρ̂) is the asymptotic expected delay (measured in blocks), defined for ρ̂ ∈
(0, 1) by

W∞(ρ̂) ,
1

1−
(
1 + α(ρ̂)

)
e−α(ρ̂)

, (32)

where α(ρ̂) > 0 is defined in Lemma A5. For ρ̂ = 0, define W∞(ρ̂) , 1 to coincide

with the limiting value.

Moreover, the asymptotic expected delay satisfies

W ′
∞(0) = 0; W ′

∞(ρ̂) > 0, ∀ ρ̂ ∈ (0, 1).

Proof. The result is trivial for ρ̂ = 0.

Fix ρ̂ > 0. Equation (27) implies that there exists a sequence {εK} with limit

εK → 0, such that

z0(ρ̂, K) = 1− α(ρ̂) + εK
K

.

Then,

lim
K→∞

WK (ρ̂)−1 = lim
K→∞

(1− z0)
(
1 +Kρ̂− (K + 1)zK0

)
= α(ρ̂)ρ̂− lim

K→∞

K + 1

K

(
α(ρ̂) + εK

)
zK0 .

But, as in (30)–(31), zK0 → e−α(ρ̂). Also, from the transcendental algebraic equation

defining α(ρ̂), we have that

ρ̂ =
1− e−α(ρ̂)

α(ρ̂)
.

Therefore,

lim
K→∞

WK (ρ̂)−1 = α(ρ̂)ρ̂− α(ρ̂)e−α(ρ̂) = 1− (1 + α(ρ̂)) e−α(ρ̂),

as desired.

It remains to establish that W ′
∞(ρ̂) > 0. Applying the implicit function theorem
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to differentiate the equation T
(
α(ρ̂)) = 0 with respect to ρ̂, we have that

−e−α(ρ̂)α′(ρ̂) + α(ρ̂) + ρ̂α′(ρ̂) = 0.

Simplifying, we obtain that

α′(ρ̂) =
α(ρ̂)

e−α(ρ̂) − ρ̂
= −α(ρ̂)2W∞(ρ̂).

Then, differentiating (32), we have that

W ′
∞(ρ̂) = − e−α(ρ̂)α(ρ̂)α′(ρ̂)

(1− (1 + α(ρ̂)) e−α(ρ̂))
2 = e−α(ρ̂)α(ρ̂)3W∞(ρ̂)3 > 0,

where the inequality holds for ρ̂ ∈ (0, 1). Observing that α(ρ̂) → ∞ as ρ̂ → 0, it

follows that W ′
∞(0) = 0.

Finally, we establish the second part of Lemma 3, which described the behavior

of the large block asymptotic waiting time in the low load regime, as follows:

Lemma A7. As ρ→ 0, we have that

W∞(ρ) = 1 +
1

ρ
e−1/ρ + o

(
1

ρ
e−1/ρ

)
,

Proof. First, we will derive an asymptotic expression for α(ρ) when ρ→ 0. Suppose

ρ > 0, if α > 0 is the solution of

e−α + ρα− 1 = 0,

then β , α− 1/ρ > −1/ρ must solve

−1

ρ
e−1/ρ = βeβ.

The two real solutions to this transcendental equation can be expressed as

β =Wi

(
−1

ρ
e−1/ρ

)
, ∀ i = −1, 0,

where W0(·) and W−1(·) are the two branches of the Lambert W -function (for the
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definition and properties of this function, see, e.g., Olver et al. 2010). Since β > −1/ρ,

we can restrict to the i = 0 case (the so-called ‘principal branch’), to obtain

α(ρ) =
1

ρ
+W0

(
−1

ρ
e−1/ρ

)
.

As x→ 0, from the Taylor expansion it is easy to see thatW0(x) = x+O(x2). Then,

as ρ→ 0,

α(ρ) =
1

ρ
+O

(
1

ρ
e−1/ρ

)
.

Now, we can analyze the asymptotic waiting time. As ρ→ 0, α(ρ)→∞, so that

(
1 + α(ρ)

)
e−α(ρ) → 0.

Since 1/(1− x) = 1 + x+O(x2) as x→ 0, we have that

W∞(ρ) = 1 +
(
1 + α(ρ)

)
e−α(ρ) + o

((
1 + α(ρ)

)
e−α(ρ)

)
= 1 + α(ρ)e−α(ρ) + o

(
α(ρ)e−α(ρ)

)
= 1 +

1

ρ
e−1/ρ + o

(
1

ρ
e−1/ρ

)
.

The following Theorem implies Theorems 5–6:

Theorem A8. For a fixed load ρ ∈ [0, 1), as the block size K →∞, we have that

RevK(ρ) = K · Rev∞(ρ) + o(K),

DelayCostK(ρ) = K ·DelayCost∞(ρ) + o(K),

TotalCostK(ρ) = K · TotalCost∞(ρ) + o(K),

where

Rev∞(ρ) , ρ

ˆ c̄

0

(
F̄ (c)− cf(c)

)
W∞

(
ρF̄ (c)

)
dc,

DelayCost∞(ρ) , ρ

ˆ c̄

0

cf(c)W∞
(
ρF̄ (c)

)
dc.

TotalCost∞(ρ) , Rev∞(ρ) + DelayCost∞(ρ) = ρ

ˆ c̄

0

F̄ (c)W∞
(
ρF̄ (c)

)
dc.
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Furthermore, for all ρ ∈ (0, 1),

Rev′∞(ρ) = ρ

ˆ c̄

0

F̄ (c)2W ′
∞
(
ρF̄ (c)

)
dc > 0,

DelayCost′∞(ρ) =
TotalCost∞(ρ)

ρ
> 0.

In other words, both the asymptotic revenue (and with it infrastructure provision by

miners) and the asymptotic delay cost are strictly increasing in ρ.

Finally, as ρ→ 0,

Rev∞(ρ) = O
(
e−1/ρ

)
,

DelayCost∞(ρ) = ρ · E [c] + o (ρ) .

In other words, for small values of the load ρ, the asymptotic delay cost grows linearly

in ρ, but the revenue grows slower than any polynomial in ρ.

Proof. Note that, from (24),

RevK(ρ)

K
= ρ

ˆ c̄

0

(
F̄ (c)− cf(c)

)
WK

(
ρF̄ (c)

)
dc. (33)

Since WK(·) is strictly increasing,

∣∣(F̄ (c)− cf(c)
)
WK

(
ρF̄ (c)

)∣∣ ≤ (F̄ (c) + cf(c)
)
WK (ρ) .

Now, pick any ρ̄ ∈ (ρ, 1). Then WK(ρ)→ W∞(ρ) < W∞(ρ̄) by Lemma A6, so for K

sufficiently large,

∣∣(F̄ (c)− cf(c)
)
WK

(
ρF̄ (c)

)∣∣ ≤ (F̄ (c) + cf(c)
)
W∞ (ρ̄) ,

which is integrable over c ∈ [0, c̄]. Then, we can apply the dominated convergence

theorem to (33) to obtain

lim
K→∞

RevK(ρ)

K
= ρ

ˆ c̄

0

(
F̄ (c)− cf(c)

)
W∞

(
ρF̄ (c)

)
dc , Rev∞(ρ),

as desired.

The asymptotic K → ∞ limits for delay cost and total cost can be established
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using similar dominated convergence theorem arguments. Further, the derivative

expressions can be derived directly by differentiation.

Finally, we wish to describe the asymptotic revenue Rev∞(ρ) and the asymptotic

delay cost DelayCost∞(ρ) as ρ→ 0. For the asymptotic revenue,

Rev∞(ρ) = ρ

ˆ c̄

0

(
F̄ (c)− cf(c)

)
W∞

(
ρF̄ (c)

)
dc

= ρ

ˆ c̄

0

(
F̄ (c)− cf(c)

) (
W∞

(
ρF̄ (c)

)
− 1
)
dc

where we have used the fact that

ˆ c̄

0

F̄ (c) dc =

ˆ c̄

0

cf(c) dc = E[c].

Then, applying Lemma A7

Rev∞(ρ) ≤ ρ

ˆ c̄

0

∣∣F̄ (c)− cf(c)
∣∣ · ∣∣W∞ (ρF̄ (c)

)
− 1
∣∣ dc

≤ ρ

ˆ c̄

0

(
F̄ (c) + cf(c)

)
· |W∞ (ρ))− 1| dc

≤ 2ρE(c) |W∞ (ρ))− 1|

≤ 2E(c)e−1/ρ + o
(
e−1/ρ

)
.

For the asymptotic delay cost, applying the dominated convergence theorem,

lim
ρ→0

DelayCost∞(ρ)

ρ
=

ˆ c̄

0

cf(c)W∞(0) dc = E[c].

The following theorem implies Theorem 7:

Theorem A9. Consider a target level of revenue R∗ > 0 and a block size K. De-

fine DelayCost∗K(R∗) to be the delay cost required to achieve revenue R∗, under the

asymptotic large K regime. That is, define

DelayCost∗K(R∗) , K DelayCost∞
(
Rev−1

∞ (R∗/K)
)
,

73

Electronic copy available at: https://ssrn.com/abstract=3025604



where

Rev−1
∞ (r) , inf

{
ρ > 0 : Rev∞(ρ) ≥ r

}
,

for r > 0.

Then, as K →∞,

DelayCost∗K(R∗) = Ω

(
K

logK

)
.

Proof. Define ρK , Rev−1
∞ (R∗/K), so that Rev∞(ρK) = R∗/K for all K. Then,

DelayCost∗K(R∗) = K DelayCost∞ (ρK)

= KρK

ˆ c̄

0

cf(c)W∞
(
ρKF̄ (c)

)
dc

≥ KρKE[c],

using the fact that W∞(·) ≥ 1. Hence, it suffices to prove that

ρK = Ω

(
1

logK

)
(34)

as K →∞.

Now, if ρK is bounded away from zero as K → ∞, (34) clearly holds. Assume

otherwise that ρK → 0 as K →∞. Theorem A8 implies that there exists a constant

C such that, for K sufficiently large,

R∗

K
= Rev∞(ρK) ≤ Ce−1/ρK .

Equivalently,

ρK ≥
1

logCK/R∗
,

for K sufficiently large, which establishes (34).

F.5 Profit-Maximizing Firm

Proof of Proposition 1. Notice that the firm can make a profit of λH (RH − cf ) by

processing only transactions of RH agents without delay at a fee RH . Since this

extracts all the possible surplus from RH agents, this is optimal for the firm out of

all pricing schemes that do not process transactions from RL agents.
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We follow to formulate the problem and show the firm cannot do better by pro-

cessing some transactions from RL agents. By the revelation principle, the firm’s

problem can be written as a choice of an incentive compatible direct mechanism

where the firm offers a menu {x (·, ·) ,W (·, ·) , b (·, ·)}. Agents report their type

(Ri, ci) ∈ {RH , RL} × R+. If x (Ri, ci) = 0, the agent’s transaction is not processed

and the agent does not pay or wait. If x (Ri, ci) = 1, the agent’s transaction is pro-

cessed after delay W (Ri, ci) and the agent is charged a transaction fee b (Ri, ci). If

x (Ri, ci) ∈ (0, 1) , the transaction is processed with probability x (Ri, ci), expected

delay W (Ri, ci) and expected transaction fee b (Ri, ci).

The utility of a risk neutral agent of type (Ri, ci) who reports (R, c) is

u (R, c|Ri, ci) = x (R, c)Ri − ci ·W (R, c)− b (R, c) ,

and we write u (Ri, ci) = u (Ri, ci|Ri, ci).

The firm’s problem is stated by the following optimization problem:

max
x,W,b

∑
τ∈{H,L}

λτ

ˆ c̄

0

(b (Rτ , c)− cfx (Rτ , c)) dF (c)

s.t.:

u (Ri, ci) ≥ u (R, c|Ri, ci) ∀Ri, ci, R, c (IC-R,c)

u (Ri, ci) ≥ 0 ∀Ri, ci (PC-R,c)

x (R, c) ∈ [0, 1] , W (R, c) ≥ 0, b (R, c) ≥ 0 .

(35)

The optimal value of (35) is bounded by the value of the firm’s problem when the

agent’s waiting cost ci is observed by the firm, which is given by

max
x,W,b

∑
τ∈{H,L}

λτ

ˆ c̄

0

(b (Rτ , c)− cfx (Rτ , c)) dF (c)

s.t.:

u (Ri, ci) ≥ u (R, ci|Ri, ci) ∀Ri, ci, R (IC-R)

u (Ri, ci) ≥ 0 ∀Ri, ci (PC-R,c)

x (R, c) ∈ [0, 1] , W (R, c) ≥ 0, b (R, c) ≥ 0 .

(36)

Because problem (36) is separable across different ci, the optimal value of (36) is

the total value of the optimal solutions for each fixed ci. We rewrite the problem for
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a fixed ci and omit the dependency on ci to obtain the problem (37)

max
x,W,b

∑
τ∈{H,L}

λτ (b (Rτ )− cfx (Rτ ))

s.t.:

u (Ri) ≥ u (R|Ri) Ri, R ∈ {RH , RL} (IC-R)

u (Ri) ≥ 0 Ri ∈ {RH , RL} (PC-R,c)

x (R) ∈ [0, 1] , W (R) ≥ 0, b (R) ≥ 0 .

(37)

Dropping the IC-RL and PC-RH constraints and plugging in expressions we obtain

the relaxed problem (38)

max
x,W,b

∑
τ∈{H,L}

λτ (b (Rτ )− cfx (Rτ )) (38)

s.t.:

x (RH)RH − c ·W (RH)− b (RH) ≥ x (RL)RH − c ·W (RL)− b (RL) (IC-RH)

x (RL)RL − c ·W (RL)− b (RL) ≥ 0 (PC-RL)

x (R) ∈ [0, 1] , W (R) ≥ 0, b (R) ≥ 0 .

If PC-RL does not bind in (38), we can increase b (RL) , b (RH) by the same amount

and increase the objective. Therefore, it must be that PC-RL binds in (38) and we

have

b (RL) = x (RL)RL − c ·W (RL) .

This allows us to replace IC-RH with

x (RH)RH − c ·W (RH)− b (RH) ≥ x (RL) (RH −RL) ,

and rewrite problem (38) as

max
x,W,b

λH (b (RH)− cf · x (RH)) + λL (x (RL)RL − c ·W (RL)− cf · x (RL)) (39)

s.t.:
x (RH)RH − c ·W (RH)− b (RH) ≥ x (RL) (RH −RL) (IC-RH)

x (R) ∈ [0, 1] , W (R) ≥ 0, b (R) ≥ 0 .

Considering problem (39), we see that W (RL) only appears in the objective, and

lowering it weakly increases the objective. W (RH) only appears in the constraint,

and lowering it relaxes the constraint. If the IC-RH does not bind, we can increase

b (RH) and increase the objective. Therefore, in any optimal solution we have that
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W (RH) = W (RL) = 0. This reduces (39) to a standard two-type price discrimination

problem.

Because the IC-RH must bind, we have

b (RH) = x (RH)RH − x (RL) (RH −RL) .

Plugging this into the objective and rearranging we obtain

λH (b (RH)− cf · x (RH)) + λL (x (RL)RL − c ·W (RL)− cf · x (RL))

=λH (x (RH)RH − x (RL) (RH −RL)− cf · x (RH)) + λL (x (RL)RL − cf · x (RL))

=x (RH) (λHRH − λHcf ) + x (RL) ((λL + λH) (RL − cf )− λH (RH − cf )) .

We assumed λHRH > (λH + λL)RL, which implies that (λL + λH) (RL − cf ) <

λH (RH − cf ). Therefore, the unique optimal solution of (39) is obtained by

x (RH) = 1, b (RH) = RH

and

x (RL) = b (RL) = W (RH) = W (RL) = 0 .

It is straightforward to verify that this solution satisfies all the constraints of (37), and

we have therefore obtained the unique optimal solution to (37). By integrating over

all c we also obtain the solution to (36), which is therefore also the unique optimal

solution to (35). That is, it is optimal for the firm to process only transactions of RH

agents without delay at a fee RH .

77

Electronic copy available at: https://ssrn.com/abstract=3025604


	Introduction
	Economic Model of Traditional Payment Systems and the BPS
	Users
	Payment System Run by a Firm
	Decentralized Cryptocurrency

	Analysis of the Firm
	Analysis of the BPS
	Miners, Small and Large
	User Behavior and Equilibrium Transaction Fees
	Determination of Infrastructure Level and Welfare 

	Protocol Design for Efficient Congestion Pricing
	Data
	Mining Profitability
	The Relation Between Congestion and Transaction Fees

	Conclusion
	A Brief Description of the Bitcoin Payment System
	Endogenous Entry
	Endogenous Willingness To Pay
	Attributes of Transaction Fees
	Additional Figures
	Proofs
	Queueing Analysis
	Equilibrium
	Delay and Revenue
	Large Block Asymptotics
	Profit-Maximizing Firm


