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Abstract

We develop an approach based on temporal difference learning to address schedul-
ing problems in complex queueing networks such as those arising in service, com-
munication, and manufacturing systems. One novel feature is the selection of basis
functions, which is motivated by the gross behavior of the system in asymptotic
regimes. Another is the use of polytopic structure to efficiently identify desired ac-
tions from an intractable set of alternatives. Application to input-queued crossbar
switch models with up to hundreds of queues and quadrillions of alternative actions
yield scheduling policies outperforming a heuristic recently shown to have certain
optimality properties in the heavy traffic scale. We also extend the approach to a
setting where aspects of the queueing network are not modeled and we must rely
instead on empirical data. This data-driven approach is useful, for example, when
the statistical structure of arrivals is poorly understood but historical data traces
are available.

1. Introduction
In principle, optimal control problems can be solved by the methods of dynamic programming.
However, the curse of dimensionality often gives rise to prohibitive computational requirements.
Approximate dynamic programming (ADP) methods aim to circumvent this computational burden
and yet obtain near optimal control policies.

ADP has a long history, dating back to early work in the 1950s [1, 2, 3], but the past two decades
have witnessed a vibrant research activity in this area. Several books and papers review segments of
the growing literature [4, 5, 6, 7, 8, 9], which covers algorithms, theoretical analyses, computational
studies, and applications. Many ideas emerging from this line of research are useful to the design
of solution methods for particular problems. However, there is no ‘turn-key’ ADP algorithm that
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is effective across the entire range of optimal control problems. Rather, for a problem at hand, one
can combine and customize ingredients from the literature to generate an effective algorithm. This
process is somewhat of an art, requiring tinkering and iterative trial and error.

In this paper, we develop an ADP approach to address scheduling problems in complex queueing
networks. This is a broad class of optimal control problems that subsumes many useful models
of service, communication, and manufacturing systems. Practical instances typically give rise to
enormous state and action spaces, which grow exponentially in the number of queues. Our aim is
to provide a streamlined method that can be applied to problems in this class without significant
custom design or trial and error.

As opposed to the broader class of general optimal control problems, queueing networks possess
a lot of special structure. Further, this structure is well-studied, with a large literature of theoretical
and empirical work. Many heuristics have been proposed and analyzed. Sophisticated mathematical
tools such as fluid and diffusion limit models offer intuition that guide the design of scheduling
policies. It is through leveraging this special structure and the wealth of knowledge about it that
we hope to develop a turn-key ADP approach.

Our approach uses temporal difference learning (TD-learning) [10] to fit a linear combination of
basis functions to the dynamic programming differential cost function. We propose a new method
for selecting the basis functions, which is motivated by the gross behavior of the system in the
asymptotic regimes. In particular, the asymptotic theory suggests use of a basis consisting of ridge
functions with orientations given by workload vectors and individual queue lengths.

Scheduling decisions can be made by taking actions that are greedy with respect to an ap-
proximate differential cost function. However, action spaces in queueing problems are typically
enormous, making it impossible to enumerate and evaluate each alternative to identify a greedy ac-
tion. This presents an obstacle both to real-time control and the application of TD-learning, which
requires simulation of state trajectories controlled by greedy policies associated with intermediate
approximations to the differential cost function. To address this issue, we develop a scalable method
that exploits polytopic structure to efficiently compute greedy actions.

As a case study, we apply our approach to models of input-queued crossbar switches. These
models involve up to hundreds of queues and quadrillions of alternative actions. Scheduling policies
generated by our approach reduce average delay by up to about 4.5% relative to MWM-0+, a
well studied heuristic for which a notion of heavy traffic scale optimality has been established
[11, 12]. This result is somewhat surprising considering a sentiment among some researchers in the
networking community that this heuristic is near optimal.

We also extend our ADP approach to a setting where aspects of the queueing network are not
modeled and the optimization process relies instead on empirical data. This data-driven approach
can be viewed as integrating ideas from Q-learning [13] in a way that leverages the special structure
of queueing problems to simplify representation of the Q-function. We anticipate that this data-
driven approach will be useful in many applied contexts. For example, this approach alleviates the
need to formulate a model when the statistical structure of arrivals is poorly understood. Instead,
the ADP algorithm can work directly with historical data traces.

To summarize, contributions of this paper include:

1. a method for selecting basis functions, which is motivated by the gross behavior of queueing
networks in the asymptotic regime of heavy traffic;

2. a scalable method that exploits polytopic structure to efficiently compute greedy actions;
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3. application to crossbar switch models, leading to scheduling policies that reduce average delay
by up to about 4.5% relative to MWM-0+;

4. a data-driven ADP method that can be applied when aspects of the queueing network are
not modeled and the optimization process must rely instead on empirical data.

These contributions build on other recent work about ADP in queueing networks. This includes
simple case studies carried out by de Farias and Van Roy [14, 15], Choi and Van Roy [16], and
Adelman [17], as well as the work of Veatch [18]. The latter also leverages insights from asymptotic
regimes, but this work differs from ours in a crucial way. The basis functions proposed there
grow combinatorially in the size of the network, and computing policies for a particular problem
instance requires solution of an LP that is exponential in the number of buffers. Hence the examples
considered are quite small (up to six buffers).

The rest of the paper is organized as follows. In Section 2, we describe a prototypical mathe-
matical model for a queueing network and the formulation of the associated control problem as a
Markov decision process. In Section 3, we present ADP as a method for finding control policies and
discuss properties of the queueing network which are important for efficient implementation. In
Section 4, we present a method for basis function selection. In Section 5, we discuss a data-driven
ADP methodology. Finally, in Section 6, we present empirical results in the case of an input-queued
crossbar switch.

2. A Prototypical Queueing Network
In this section, we describe a prototypical mathematical model of a queueing network, and we
represent the associated optimal control problem as a Markov decision process. At a high-level, this
model describes an open queueing network operating in continuous-time, with multiple classes of
jobs, and where processor sharing is not allowed. Scheduling decisions are allowed to be preemptive.
Both controlled and uncontrolled routing is allowed, as are activities which must simultaneously
process multiple inputs. Arrival processes are assumed to be Poisson and service times are assumed
to be exponential.

This framework is not meant to be comprehensive in its scope—indeed, the case study we
consider in Section 6 does not fall within this formulation. However, it is sufficiently general to
cover many queueing networks of interest and to be illustrative in broader contexts.

2.1. System Evolution
Consider a queueing network consisting of a set I = {1, . . . , I} of buffers (queues). The network
operates in continuous time. Each buffer holds a set of jobs awaiting service and is of infinite
capacity. Arrivals from outside the system occur according to independent Poisson processes, and
we use λi ≥ 0 to denote the arrival rate for buffer i.

There is a set J = {1, . . . , J} of activities. Each activity j ∈ J processes inputs from some
subset of the buffers simultaneously. This relationship is encoded in a matrix B ∈ RI×J by setting
Bij = 1 if jobs from buffer i are processed by activity j, and setting Bij = 0 otherwise. The set of
buffers associated with an activity j is referred to as the constituency of that activity and denoted
by Bj . The processing time required by activity j is an independent exponential random variable
with parameter µj ≥ 0.
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Once a job is processed, it may be routed to a different queue or it may leave the system. In
particular, upon a service completion for an activity j ∈ J , one job is removed from each constituent
buffer i ∈ Bj . There is a sub-stochastic routing matrix P j ∈ RI×I so that the departing job is
routed to another buffer i′ ∈ I with probability P ji′i. With the remaining probability 1−

∑
i′∈I P

j
i′i,

the job leaves the system.
At each point in time, the evolution of the system is controlled by a scheduling decision that

specifics which activities are to be undertaken. This decision will result in an allocation (action)
represented by a vector u ∈ RJ . Here, uj = 1 if activity j is to be employed, and uj = 0 otherwise.
Thus,

(2.1) uj ∈ {0, 1}, j ∈ J .

This setting, where fractional allocation of activities is disallowed, is referred to as non-processor
sharing.

The set of admissible allocations is further restricted by a set K = {1, . . . ,K} of common
resources (for example, processors or servers). It is assumed that each activity may require some
subset of the resources to perform its service. The resource consumption matrix A ∈ RK×J is
defined by setting Akj = 1 if activity j requires the resource k, and Akj = 0 otherwise. We preclude
any resource from simultaneously being used in multiple activities. Hence we require allocations u
to satisfy

(2.2) Au ≤ 1.

Here, 1 is a vector with every component set to 1.
Finally, an activity cannot be employed if there is not an available job in each of its constituent

buffers. This results in another constraint on allowable allocations u, when the buffer lengths are
given by the vector q ∈ ZI+,

(2.3) uj = 0, if qi = 0, ∀ j ∈ J , i ∈ Bj ,.

We make the following definition.

Definition 1. (Admissible Allocations) Denote by A(q) ⊂ RJ the set of all permitted allo-
cations when the buffer lengths are given by q ∈ ZI+, that is, those vectors u ∈ RJ satisfying
(2.1)–(2.3). Denote by A ⊂ RJ the set of all permitted allocations ignoring restrictions imposed
by buffer lengths, that is, those vectors satisfying (2.1) and (2.2).

Let us denote the allocation applied at time τ by u(τ). If the vector of buffer lengths at time
τ is q(τ), we require that u(τ) ∈ A(q(τ)). Further, the process {u(τ)} must be non-anticipatory,
and is allowed to be preemptive. We call such a process a policy. Define the average cost given a
policy u and an initial state q(0) = q by

(2.4) lim sup
T→∞

Eu
[

1
T

∫ T

0
c · q(τ) dτ

∣∣∣∣∣ q(0) = q

]
.

Here, the c ∈ RI
+ is a vector of holding costs. We assume that c > 0. Our objective is to find a

policy which achieves a minimal average cost.
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2.2. Stability
We wish to avoid situations where the average cost (2.4) is infinite under every policy. In order to
address this, define the matrix R ∈ RI×J by

Rij = µj

Bij −∑
i′∈I

Bi′jP
j
i′i

 , ∀ i, i′ ∈ I, j ∈ J .

Given an allocation u ∈ A, the vector Ru is the vector of mean rates at which buffers are drained.
The static planning linear program [19] is given by

(2.5)

minimize ρ
subject to Rx = λ,

Ax ≤ ρ1,
x ≥ 0.

The optimal value ρ∗ of this LP is called the load of the system. Intuitively, for each activity j ∈ J ,
we can interpret the decision variable xj as the fraction of time in which activity j is employed
under some policy over a long time horizon. The first constraint forces the average rate of buffer
growth to be zero over the time horizon. The second constraint forces the decision variable ρ to be
an upper bound on the mean utilization of any resource. This interpretation can be made rigorous
on the fluid scale (see [20], for example). It follows that, if ρ∗ > 1, there exists no policy under
which the system is stable.

We make the following assumption.

Assumption 1. The optimal value ρ∗ of the static planning LP (2.5) is strictly less than 1.

2.3. Markov Decision Process Formulation
It is convenient from an analytical perspective to reduce the optimal control problem from the
continuous-time setting described in Section 2.1 to that of a discrete-time, countable state Markov
decision process (MDP). Given the memory-less characteristic of the Poisson arrivals and expo-
nential service times, this can be accomplished via the process of uniformization [9]. Specifically,
assume, without loss of generality, that time is normalized so that∑

i∈I
λi +

∑
j∈J

µj = 1.

We consider the state of the system at discrete times t = 0, 1, . . . corresponding to ‘events’, that is,
arrivals of either new jobs or ‘virtual service tokens’ to the system.

Denote the buffer lengths in the system at time t by q(t) ∈ ZI+, and the scheduling decision
at time t by u(t) ∈ A(q(t)). We restrict the policies under consideration to stationary policies.
Under a stationary policy (or ‘feedback law’), the scheduling decision is determined exclusively as
a function of the buffer lengths. That is, there is a function u : ZI+ → RJ so that u(t) = u(q(t)),
for all t. Given a stationary policy u, q(t) evolves as a discrete-time, countable state Markov chain.
Given an initial state q(0) = q, we can define the long-term average cost

η(q, u) = lim sup
T→∞

Eu
[

1
T

T−1∑
t=0

c · q(t)
∣∣∣∣∣ q(0) = q

]
.
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The classical dynamic programming approach to optimal control is to find a function V ∗ :
ZI+ → R and a scalar η∗ ∈ R that solve the Bellman equation

(2.6) V ∗(q) + η∗ = min
u∈A(q)

c · q + Eu [V ∗(q(t+ 1)) | q(t) = q] , ∀ q ∈ ZI+.

If a solution exists and satisfies certain technical conditions (see [21], or [22, 23, 18] for a discussion
in the context of queueing networks), then the following hold:

(a) The optimal average cost is equal to η∗ and is independent of the initial state, that is

η∗ = min
u
η(q, u), ∀ q ∈ ZI+.

(b) If u∗ is a stationary policy such that

(2.7) u∗(q) ∈ argmin
u∈A(q)

Eu [V ∗(q(t+ 1)) | q(t) = q] , ∀ q ∈ ZI+,

then u∗ achieves the optimal average cost.

(c) If u∗ is a stationary policy satisfying the conditions of part (b), then u∗ also achieves the
optimal average cost in the original continuous-time setting (2.4).

We call the function V ∗(·) the differential cost function.

3. Approximate Dynamic Programming
The analysis in Section 2.3 suggests a standard plan of attack for determining an optimal stationary
policy:

1. Solve the Bellman equation (2.6) in order to obtain the differential cost function V ∗(·).

2. Define the policy by acting greedily with respect to the differential cost according to (2.7).

Both of these steps may be intractable, however. Solving the Bellman equation is notoriously
difficult when the state and action spaces are large. In the case of closed queueing networks,
where jobs do not enter or leave the system and the state space is finite, the problem is known
to be provably intractable [24]. The case we consider, with a countable state space, would seem
to be more difficult. Further, even if the differential cost function was known, the policy selection
equation (2.7) is a combinatorial optimization problem and it is not clear that this can be solved
efficiently. In this section, we address these two issues.

3.1. Affine Expectations and the Allocation Polytope
Consider a function V : ZI+ → R. We wish to define a policy by acting greedily with respect to
V (·) as an estimate of the relative cost of possible future states. That is, we would like to solve the
combinatorial optimization problem

(3.1) min
u∈A(q)

Eu [V (q(t+ 1)) | q(t) = q] .
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First, notice that the objective is an affine function of the allocation u. To see this, we first
define some additional notation. For a vector a ∈ ZI+, denote by P j(a) the probability that a
service completion by activity j ∈ J results in exactly ai jobs being routed to each buffer i ∈ I.
For each activity j ∈ J , denote by Bj ∈ ZI+ the jth column of the constituency matrix B. Given
the dynamics described in Section 2.3, we have the explicit expression

(3.2) Eu [V (q(t+ 1)) | q(t) = q] =
∑
i∈I

λiV (q + ei) +
∑
j∈J

µj
∑
a∈ZI+

P j(a)V (q −Bj + a)uj .

Here, ei ∈ ZI+ is a unit vector that is zero except in component i.
We make the following definition.

Definition 2. (Affine Expectations) A queueing network has the affine expectations property
if there are functionals ∆ and Ξ, so that for every V : ZI+ → R, q ∈ ZI+, and u ∈ A(q),

Eu [V (q(t+ 1)) | q(t) = q] = (∆V )(q) + (ΞV )(q) · u.

Examining (3.2), it is clear that the affine expectations property holds for the class of queueing
networks under consideration. For other queueing networks, such as the example considered in
Section 6, this may not be true.

Given the linear objective in the optimization problem (3.1), we may consider relaxing the
discrete set of admissible allocations A(q) to a bounded convex polytope whose vertices lie in A(q).
Consider the following definition:

Definition 3. (Allocation Polytope) Denote by Ā ⊂ RJ the bounded polytope consisting of
vectors u with

0 ≤ u ≤ 1,
Au ≤ 1.

For q ∈ ZI+, denote by Ā(q) ⊂ Ā the bounded polytope consisting of vectors further satisfying

uj = 0, if qi = 0, ∀ j ∈ J , i ∈ Bj ,.

Observe that the polytopes Ā(q) and Ā are obtained by relaxing the integrality constraint (2.1)
imposed on A(q) and A, respectively, in Definition 1. These polytopes can be described with at
most J +K constraints. However, in order to proceed, we must make the following assumption.

Assumption 2. The vertices of the polytope Ā are contained in the set A.

It is not difficult to see that, given Assumption 2, the vertices of the polytope Ā(q) are contained
in the set A(q), for every q ∈ ZI+. Then, we can determine a policy that acts greedily with respect
to some function V (·) by computing an optimal basic solution for the linear program

(3.3) min
u∈Ā(q)

(ΞV )(q) · u.

Several remarks are in order. First, note that both the affine expectations property and As-
sumption 2 are assumptions on the representation of the control space of the problem. Indeed,
any Markov decision process with a finite control space can be described in a way such that policy

7



decisions can be computed by solving an LP of the form (3.3). We can consider actions (alloca-
tions) as elements of a vector space by identifying them with vectors of transition probabilities,
so that the one-step expectation is a linear function of the choice of action. We can then define
an admissible polytope by taking the convex hull of the set of available actions at each state. In
general, however, this trivial representation results in a polytope that may be of high dimension
and may involve many linear constraints. This may result in a linear program with an intractable
number of variables and constraints, even in a moderately-sized problem. Implicit in Assumption 2
is the idea that, for many queueing networks, a natural and compact description of the control
space results in an equally compact description of its convex hull.

Second, observe that Assumption 2 holds for many queueing networks of interest. It holds
for the class of reversed Leontief networks [20], and the further special case of unitary networks
[25]. Reversed Leontief networks are defined by the property that each activity participates in a
single resource constraint. That is, the matrix A has a single non-zero entry in each column. More
generally, the assumption holds when the resource constraints possess a ‘network flow’ structure
[26, Chapter 7]. This includes the example considered in Section 6.

Finally, observe that if a queueing network allows processor sharing, then the integrality con-
straint (2.1) for admissible allocations does not apply. Hence, Assumption 2 is immediately satisfied.
Assumption 2 has been previously noted by Dai and Lin [20] in this setting. In particular, recall
that, from Section 2.2, analysis of the static planning LP (2.5) yields necessary conditions for the
existence of a stabilizing policy. For queueing networks with processor sharing, sufficient conditions
can similarly be developed. In the non-processor sharing case, this is also true, if Assumption 2 is
satisfied.

3.2. Differential Cost Approximation
The intractability of solving the Bellman equation (2.6) suggests the following alternative approach.
Instead of trying to exactly determine the differential cost function V ∗(·), we may seek to find a
function which is easier to compute and which serves as a good approximation to V ∗(·). In this
paper, we focus on linear parameterizations, that is, we attempt to find a good approximation for
V ∗(·) in the span of a finite set of basis functions,

(3.4) V ∗(q) ≈ Ṽ (q, r) =
L∑
`=1

r`φ`(q).

Here, for each 1 ≤ ` ≤ L, φ` : ZI+ → R is a basis function which is chosen a priori, and r` ∈ R is a
scalar weight is to be computed algorithmically.

Temporal difference learning (TD-learning) [10] is a standard method to select a vector of weights
r in a manner that yields a good approximation to the differential cost function. To motivate this
algorithm, take as given a weight vector r. Let ur be the associated stationary policy, that is

ur(q) ∈ argmin
u∈A(q)

Eu
[
Ṽ (q(t+ 1), r)

∣∣∣ q(t) = q
]
.

Given an estimate of average cost η, consider the optimization problem

(3.5) min
r′

1
2

∥∥∥c · q − η + Eur
[
Ṽ (q(t+ 1), r)− Ṽ (q(t), r′)

∣∣∣ q(t) = q
]∥∥∥2

2,r
.
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Here, ‖ · ‖r is the weighted `2-norm defined by

‖f‖22,r =
∑
q∈ZI+

πr(q)f(q)2,

where πr(·) is the stationary distribution under the policy ur and f : ZI+ → R is a function on
the state space. Define T to be the operator that maps r to a parameter vector r′ that is optimal
for (3.5). T is sometimes called a projected Bellman operator. Intuitively, a fixed point of this
operator has small Bellman error on the most relevant portions of the state space, where relevancy
is determined by the stationary distribution.

TD-learning can be viewed as a stochastic approximation method for incrementally solving the
fixed point equation r = Tr. The algorithm maintains a set of weight vectors {r(t)} and average
cost estimates {η(t)} which are updated over time. In place of an optimal policy, the current weight
vector is used to select an allocation. In particular, at time t, the algorithm proceeds as follows:

1. The current state q(t) is observed.

2. An allocation decision u(t) is made as follows. With probability ε(t) ∈ [0, 1], an allocation in
A(q(u(t))) is chosen uniformly at random. This is referred to as exploration. Otherwise, the
allocation is selected according to

(3.6) u(t) ∈ argmin
u∈A(q(t))

Eu
[
Ṽ (q(t+ 1), r(t))

∣∣∣ q(t)] .
The exploration probability ε(t) is typically chosen to be small and non-increasing.

3. The temporal difference is a scalar d(t) ∈ R is computed according to

d(t) = c · q(t)− η(t)

+ Eu(t)
[
Ṽ (q(t+ 1), r(t))− Ṽ (q(t), r(t))

∣∣∣ q(t)] .(3.7)

This quantity represents an estimate of the Bellman error at the current state q(t) given
weights r(t) and average cost estimate η(t).

4. The weights and average cost estimate are updated according to

r(t+ 1) = r(t) + γ1(t)d(t)∇rṼ (q(t), r(t)).(3.8)
η(t+ 1) = (1− γ2(t))η(t) + γ2(t)c · q(t).(3.9)

Here, γ1(t), γ2(t) > 0 are step-sizes that is chosen to be small and non-increasing. The vector
d(t)∇rṼ (q(t), r(t)) represents a stochastic estimate of a descent direction in the optimization
problem (3.5).

TD-learning is one of a number of stochastic approximation methods for approximate dynamic
programming. We have chosen it because it is simple to describe and is commonly used. Different
algorithms have been explored in the literature, and we refer the curious reader to recent surveys
on this topic [4, 5, 6, 7, 8, 9].
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4. Basis Function Architecture
The most difficult and crucial aspect of the ADP methodology is the selection of basis functions.
One would like to select a broad set of basis functions whose span is likely to be close to the
true differential cost function on relevant portions of the state space. For example, in a queueing
network under light traffic, one may consider a set of basis functions including indicator functions
for all ‘small’ states and functions describing asymptotic behavior for ‘large’ states. This way,
the differential cost function can be approximated to a fine level of detail on the ‘small’ states,
where the process is most often expected to live. However, this architecture quickly proves to be
cumbersome since the number of basis functions will grow exponentially in the dimension of the
state space. Further, it may fail to yield good policies under higher levels of load.

A more useful approach is to attempt to identify the salient features in the problem which
are most important to good decision-making, and hence are likely to yield policies with good
performance. This is most often accomplished through structural intuition and specific analysis of
the problem at hand.

In the queueing network context, significant structural intuition can be obtained via analysis of
the problem in the asymptotic fluid and diffusion limit regimes. The key insight of these methods is
the identification of critical bottlenecks or ‘workloads’, which have the most impact on performance.
By selecting basis functions which capture this insight, we can hope to design a tractable set of basis
functions that yield good performance. In this section, we demonstrate this with one particular
asymptotic method, and the performance of the resulting policies can be seen in Section 6. This
also suggests an alternative perspective on ADP for queueing networks: we can view asymptotic
methods as providing the insights necessary to construct a manageable class of good policies, and
ADP as an algorithmic methodology to optimize within this class on a non-asymptotic scale.

4.1. The Fluid Control Problem
One class of differential cost approximations that have been proposed for queueing networks involve
using the value function for the fluid optimal control problem [23, 18]. We digress briefly to give a
formal description of this problem (see [22, 27], for example, for a more complete account).

A fluid path with initial condition x ∈ RI
+ is a continuous and almost everywhere differentiable

map q̃(·, x) : [0,∞)→ RI . The dynamics of this path are constrained by

q̃(0, x) = x,(4.1)
q̃(t, x) ≥ 0, ∀ t ≥ 0,(4.2)

q(t, x)− q(s, x)
t− s

∈ V, ∀ t > s ≥ 0.(4.3)

Here, V is a polytope describing the set of allowed ‘velocities’ and is given by

V = {Ru+ λ ∈ RI | u ∈ RJ , u ≥ 0, Au ≤ 1}.

Definition 4. (Fluid Optimal Control Problem) The fluid optimal control problem is the
optimization problem

(4.4) V f (x) = min
∫ ∞
0

c · q̃(t, x) dt,

where the minimization is constrained to paths q̃(·, x) satisfying (4.1)–(4.3). The function V f (·) is
referred to as the fluid value function.
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For certain classes of queueing networks [22], the fluid value function is related to the differential
cost function to the stochastic queueing network by

lim sup
‖x‖→∞

∣∣∣∣∣V f (x)− V ∗(x)
‖x‖2

∣∣∣∣∣ = 0.

This suggests that for large states (heavily congested networks), the fluid value function may be
useful as a differential cost approximation. The ADP method proposed by Veatch [18] considers
such an approach by defining a set of basis functions which are piecewise quadratic over regions of
the state space corresponding to the structure of the optimal fluid control policy. However, outside
of small examples or special cases, it is difficult to compute the fluid value function or the associated
optimal control policies (see [28] for recent progress in this area). Further, the number of basis
functions with such an approximation will grow exponentially in the number of buffers. Hence,
approximations based on the structure of the optimal fluid control policy will prove intractable for
large queueing networks.

4.2. The Relaxed Fluid Control Problem and Workload
Observe that, by Assumption 1, the polytope V contains the origin, and hence can be described by
linear constraints as

V = {v ∈ RI | ζi · v ≥ −(1− ρi), 1 ≤ i ≤ N}.

Here, for each i, the vector ζi is called a workload vector, and scalar ρi < 1 is the associated load.
We define the ith component of the workload process w(t, x) by wi(t, x) = ζi · q(t, x). Note that the
velocity constraint (4.3) is equivalent to

wi(t, x)− wi(s, x)
t− s

≥ −(1− ρi), ∀ t > s ≥ 0, 1 ≤ i ≤ N.

The workload relaxation (see [23] for a full account) is based on the idea of replacing the
complex fluid control problem (4.4) with a simpler problem. This simpler problem seeks to retain
the important features of the fluid control problem, but allows for both easier identification of
good policies and visualization of network behavior. The simplification is based on the idea of
relaxing the velocity set V to obtain a lower-dimensional and hopefully simpler control problem. In
particular, n distinguished workload vectors are selected, with n� min{I,N}. Typically these are
the workload vectors with the highest loads and thus represent bottlenecks in the system. As we will
see shortly, the workload relaxation reduces the fluid optimal control problem from an optimization
over paths in an I-dimensional space to an optimization over paths in an n-dimensional space.

To begin, we will assume the workload vectors are numbered so that these critical workload
vectors are ζ1, . . . , ζn, and that these vectors are linearly independent. We define Λ ∈ Rn×I to be
a matrix with rows (ζ1, . . . , ζn)>. The relaxed set of allowable velocities is defined by

V̂ = {v ∈ RI | ζi · v ≥ −(1− ρi), 1 ≤ i ≤ n}.

The relaxed queue length process process q̂(·, x) : [0,∞) → RI
+ has its velocity constrained to

satisfy

(4.5) q̂(t, x)− q̂(s, x)
t− s

∈ V̂, ∀ t > s ≥ 0.
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Definition 5. (Relaxed Optimal Control Problem) The relaxed optimal control problem is
defined by

(4.6) min
∫ ∞
0

c · q̂(t, x) dt.

Here, the path q̂(·, x) is required to satisfy (4.1)–(4.2) and the relaxed velocity constraint (4.5).

The key insight of the relaxed formulation is that the dimension of the problem (4.6) can be
reduced via a change of coordinates. In particular, define the space

W = {w | w = Λx, x ∈ RI
+} ⊂ Rn,

We define a relaxed workload process ŵ(·, x) : [0,∞) → Rn to be a path which satisfies the
constraints

ŵ(0, x) = Λx,(4.7)
ŵ(t, x) ∈ W, ∀ t ≥ 0,(4.8)

ŵi(t, x)− ŵi(s, x)
t− s

≥ −(1− ρi), ∀ t > s ≥ 0, 1 ≤ i ≤ n.(4.9)

We define the effective cost ĉ(w) for a workload w ∈ W as the solution of the linear program

(4.10)
ĉ(w) = minimize c · x

subject to Λx = w,
x ≥ 0.

Definition 6. (Workload Relaxation) The workload relaxation is defined to be the optimization
problem

(4.11) min
∫ ∞
0

ĉ(ŵ(t, x)) dt,

over paths ŵ(·, x) satisfying (4.7)–(4.9).

We can provide an equivalence between the relaxed optimal control problem (4.6) and the
workload relaxation (4.11). Assume that q̂(·, x) is an optimal solution to the relaxed optimal
control problem (4.6), and define

ŵ(t, x) , Λq̂(t, x), ∀ t ≥ 0.

Then, ŵ(·, x) is optimal for the workload relaxation (4.11).
Conversely, define a map X : W → RI

+ by

(4.12)
X (w) ∈ argmin c · x

subject to Λx = w,
x ≥ 0.

Assume that ŵ(·, x) is optimal for the workload relaxation (4.11), and define

q̂(t, x) , X (ŵ(t, x)) , ∀ t ≥ 0.

Then, q̂(·, x) is an optimal solution to the relaxed optimal control problem (4.6).
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4.3. Proposed Basis Functions
The discussion in the previous section suggests the following procedure for solving the relaxed
optimal control problem (4.6):

(i) Determine the optimal path ŵ(·, x) for draining workload from the system, according to the
workload relaxation (4.11).

(ii) While following the optimal workload trajectory, rearrange the queue lengths in the system
so as to minimize cost at a given level of workload. This is done by implementing an optimal
lifting map X (·) of the form (4.12).

We will identify features of control policies that allow the execution of the two-step procedure. By
proxy, identifying basis functions that capture such features will enable us to characterize a set of
policies for the original, stochastic queueing network, that contains policies with good performance.
ADP can then be used to optimize within this policy class.

First, consider the problem of implementing an optimal lifting map. The program (4.12) greedily
minimizes the instantaneous cost subject to velocity constraints. Literal implementation in the
stochastic queueing network of this would imply the scheduling policy

u(q) ∈ argmin
u∈A(q)

Eu
[∑
i∈I

ciqi(t+ 1)
∣∣∣∣∣ q(t) = q

]

= argmin
u∈A(q)

Eu
[∑
i∈I

ci
(
qi(t+ 1)− qi(t)

) ∣∣∣∣∣ q(t) = q

]
, ∀ q ∈ ZI+.

(4.13)

This greedy rule is not sensible. It depends only on the identity of non-empty queues and otherwise
completely ignores queue lengths. This can result in inefficient allocation of server effort when
some queues are near zero. The greedy rule will always give priority to the same queues given
a particular configuration of non-emptiness, even if this results in allocating server effort towards
queues which are close to empty, only to result in future idleness. In fact, the greedy rule can often
fail to stabilize the network. Therefore, we want to implement an optimization problem that is
“close” to (4.12) but guarantees some prioritization of longer queues so as to avoid idleness. One
way to do this is via the greedy minimization of the function

(4.14) Ṽ (q) =
∑
i∈I

ciq
1+α
i ,

for small α > 0. As α ↓ 0, the solutions of the this family of problems will converge to those of
(4.12). For each fixed α > 0, however, the function (4.14) will offer some priority to the service
of longer queues. Moreover, policies that greedily minimize (4.13) are closely related to so-called
MaxWeight-0+ policies, which been shown to have good asymptotic properties in some critically
loaded settings [29, 11, 12].

Next, consider the structure of the workload relaxation (4.11). The fact that the velocity
constraints (4.9) are separable in terms of individual workload components, suggests a greedy
policy where each component is drained as fast as permitted by (4.9). This is optimal under
certain technical conditions, when, for example, the workload dimension n is 1 or 2. In general,
however, the greedy path may fail to be optimal for two reasons. First, the cost function ĉ(·) can
be non-monotonic. In such cases, the optimal workload trajectory can counterintuitively involve
allowing some components of the workload to increase. Second, the greedy path as described above
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may not be well-defined on the boundary of the workload space W. On the boundary, which
corresponds to configurations where some servers are forced to idle, it may not be possible to drain
each workload component simultaneously at the maximum rate.

We consider differential cost approximations of the form

(4.15) Ṽ (q) =
∑
i∈I

Fi(qi) +
n∑
i=1

Gi(ζi · q).

Here, the functions {Fi(·), Gi(·)} are one-dimensional functions. The functions {Gi(·)} capture the
desire to greedily minimize each component of the workload process. The functions {Fi(·)} seek
to implement an optimal lifting map, by spanning policies of the form (4.14). These functions
can linearly parameterized by picking a set of one-dimensional basis functions (for an example, see
Section 6). Assuming a fixed number of linear parameters per basis function, the complexity of
the resulting approximation scales according to I + n. In many problem instances, the number
of relevant workload vectors n is constant, or (as in the example in Section 6) sub-linear in the
number of buffers I. In particular, the complexity does not scale with the size of the control space
and hence this method can be applied to very large queueing networks.

Note that, in addition, the basis function architecture defined by (4.15) is sufficiently flexible to
capture the general class of ‘back pressure’ or MaxWeight scheduling policies [30, 31, 20, 29]. This
guarantees, for example, that stabilizing policies exist within the span of these basis functions.

ADP can be used to fit the precise values of the linear parameters in a particular problem
instance. This allows algorithmic determination of, for example, which workload components are
most important, or how to trade off the conflicting goals of greedily minimizing workload and
shifting the work currently in the system to a lower cost configuration.

5. A Data-Driven Methodology
Most approaches to optimal control require knowledge of an underlying probabilistic model of the
system dynamics. This typically requires that certain assumptions be made, and entails a separate
estimation step to estimate the parameters of the model.

In a queueing network, it is often the case that the service and routing processes are well
understood. For example, they may be deterministic, or they may be under the control of the system
designer and easy to model probabilistically. The exogenous arrival processes, on the other hand,
are a different matter. Their structure may be poorly understood, and there may be correlations
which are difficult to estimate. However, it is usually the case that significant historical data is
available in terms of data traces. In this section, we will describe how the ADP algorithm described
in Section 3 can be extended in a way that can operates directly with such data traces, without
making explicit probabilistic assumptions regarding the arrivals or requiring a separate estimation
step.

In Section 3, the fundamental object under consideration was the differential cost function V ∗(·),
which captures the relative desirability of states assuming an optimal control policy. An alternative
and equivalent representation is to consider the Q-function. Intuitively, the Q-function captures
the relative cost of the choice of a particular allocation for the next time-step at a given state,
assuming that an optimal policy is used for all future time steps. Specifically, given the differential
cost V ∗(·) and the optimal average cost η∗, we define the Q-function Q∗(·, ·) by

Q∗(q, u) = c · q − η∗ + Eu [V ∗(q(t+ 1)) | q(t) = q] , ∀ q ∈ ZI+, u ∈ A(q).
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Minimizing this equation over u ∈ A(q) and comparing to the Bellman equation (2.6), we have

V ∗(q) = min
u∈A(q)

Q∗(q, u), ∀ q ∈ ZI+.

In fact, the Bellman equation (2.6) can be written in an equivalent form that only involves Q-
functions,

Q(q, u) + η = c · q + Eu
[

min
u′∈A(q(t+1))

Q(q(t+ 1), u′)
∣∣∣∣∣ q(t) = q

]
,

∀ q ∈ ZI+, u ∈ A(q).
(5.1)

Further, optimal stationary policies can be defined by

u∗(q) ∈ argmin
u∈A(q)

Q∗(q, u), ∀ q ∈ ZI+.

Q-learning [13] is an approximate dynamic programming technique that seeks to find a good
approximation to the Q-function Q∗(·, ·). Analogous to the approximations described in Section 3.2,
we consider approximations that are linearly parameterized over the span of a finite set of basis
functions. In particular, consider, for each 1 ≤ ` ≤ L, a basis function ψ`(·, ·) which maps pairs
of states and admissible allocations to real numbers. Given a vector of weights r ∈ RL, we allow
approximations of the form

Q∗(q, u) ≈ Q̃(q, u, r) =
L∑
`=1

r`ψ`(q, u).

Given such an approximation, the allocation decision at time t can then be made according to the
rule

(5.2) u(t) ∈ argmin
u∈A(q(t))

Q̃(q(t), u, r).

In particular, this rule does not involve any knowledge of the underlying system dynamics.

5.1. Basis Function Selection
Q-learning is typically considered to be intractable for MDPs with large control spaces. This is for
two reasons. First, the selection of basis functions for the Q-function is much more difficult than
the selection of basis functions for the differential cost functions, because of the fact that the Q-
function Q∗(·, ·) we seek to approximate inhabits a much bigger space. Second, given a Q-function
approximation, the decision rule (5.2) may be intractable to solve.

The special structure of the queueing network under consideration allows us to overcome these
difficulties. In particular, we can impose a particular functional form on the basis functions. To
see this, note that

Q∗(q, u) = c · q − η∗ + Eu [V ∗(q(t+ 1)) | q(t) = q]
= c · q − η∗ + (∆V ∗)(q) + (ΞV ∗)(q) · u,

where ∆ and Ξ are the functionals defined in Section 3.1. Thus, we need only consider basis
functions that are affine in the choice of allocation. That is,

ψ`(q, u) = ψ1
` (q) + ψ2

` (q) · u,
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where ψ1
` : ZI+ → R and ψ2

` : ZI+ → RJ are, respectively, real- and vector-valued functions on the
state space. For basis functions with such affine structure, the decision rule (5.2) can be efficiently
implemented using the LP relaxation proposed in Section 3.1.

The class of basis functions can be further restricted by requiring that ψ2
` (·) lie in the range of

the functional Ξ. Note that, up to scaling, the functional Ξ has no dependence on arrival rates. A
natural way to do this is as follows:

1. Select a set of basis functions {φ`(·) | 1 ≤ ` ≤ L0} for the differential cost function. This can
be done, for example, using the techniques described in Section 4. Define corresponding basis
functions for the Q-function by

ψ1
` = 0, and ψ2

` = Ξφ`, ∀ 1 ≤ ` ≤ L0.

2. For the remaining basis functions {ψ`(·, ·) | L0 < ` ≤ L}, allow ψ1
` (·) to be arbitrary and set

ψ2
` = 0.

5.2. Parameter Optimization
Similar to the TD-learning procedure described earlier, Q-learning attempts to find a set of param-
eters r that are a fixed point for a projected version the Bellman equation (5.1) by a method of
stochastic approximation. The method we describe here differs from the method in Section 3.2 in
two ways. First, it is a batch gradient variation, as opposed to the incremental gradient variation
of TD-learning described earlier. A batch method updates the parameter vector only after process-
ing a series of time-steps, rather than after every time-step. Batch methods are more natural to
describe when considering a finite trace of historical data, rather than an infinite simulated sample
path, however the difference between these methods is mainly an implementation concern. Second,
since the arrival rates are not known, the Markov chain can no longer be uniformized. Hence, the
evolution of system will be considered in continuous-time in a discrete event framework.

Assume there is some long time horizon [0, T ] for which a data trace of arrivals is available.
We will track the system at discrete event times 0 = t0 < t1 < · · · < tK = T . These event times
correspond to arrivals or service completions. We take as given initial values for the parameter
vector r and an average cost estimate η. We can compute a sample trajectory of buffer lengths
{q(t0), . . . , q(tK)} and of allocation decisions {u(t0), . . . , u(tK)} inductively as follows. As time
t0 = 0, set q(0) = 0. Then, at each event index k ≥ 0:

1. With probability ε ∈ [0, 1], the allocation decision u(tk) is chosen uniformly at random from
the set A(q(tk)). Otherwise, u(tk) is chosen according to

(5.3) u(tk) ∈ argmin
u∈A(q(tk))

Q̃(q(tk), u, r).

2. Random exponential samples are generated for the remaining service times of all the activities
that are employed under the allocation u(tk). Denote by τk the minimum of the corresponding
service completion times and the next arrival as specified by the historical trace data. If
τk ≥ T , we set K = k+ 1, q(tk+1) = q(tk), and end the simulation. Otherwise, set tk+1 = τk.
If the next event is an arrival, set q(tk+1) by adding the corresponding arrival to q(tk). If
the next event is a service completion, then random samples are generated to determine the
routing of the completed jobs, and q(tk+1) is set appropriately.

16



Consider the least squares minimization

(5.4) min
r′

1
2T

K−1∑
k=0

(
(c · q(tk)− η)(tk+1 − tk) + Q̃(q(tk+1), u(tk+1), r)− Q̃(q(tk), u(tk), r′)

)2
.

This can be thought of as a sample path variation of the optimization problem (3.5). We can adjust
the parameter vector r using the gradient of the objective in (5.4), and update the average cost
estimate η according to the realized average cost along the sample path. Specifically, we have

r := r + γ1
T

K−1∑
k=0

d(tk)∇rQ̃(q(tk), u(tk), r),

η := (1− γ2)η + γ2
T

K−1∑
k=0

c · q(tk)(tk+1 − tk),

where d(tk) is the temporal difference

d(tk) = (c · q(tk)− η)(tk+1 − tk) + Q̃(q(tk+1), u(tk+1), r)− Q̃(q(tk), u(tk), r),

and γ1, γ2 > 0 are step-sizes. The process is then repeated with a new sample path generated using
the same historical trace data for arrivals, but with the allocation decisions made using the new
parameter vector r, and with new random samples for service completions and routing events.

There are a few implementation details to consider. Typically, the exploration probability ε
and the step-sizes γ1 and γ2 are taken to be decreasing from iteration to iteration. Further, it
may be computationally more efficient to incrementally adjust r and η along the sample trajectory
within each batch, in the style of the TD-learning algorithm described by (3.6)–(3.9). In particular,
incremental algorithms typically converge faster. A hybrid approach may also be considered. Here,
the historical data trace is divided into chunks, and the iterations of the algorithm cycle through
these chunks, updating r and η after processing each chunk.

6. Case Study: The Crossbar Switch
The input-queued crossbar switch is an architecture for moving data packets from a collection of
input ports (or sources) to a collection of output ports (or destinations). It is a common design
paradigm used, for example, in many routers for packet switched networks such as the Internet.
Making scheduling decisions for a crossbar switch can be viewed as an optimal control problem for
a queueing network. This control problem does not fall in the canonical formulation described in
Section 2, however. This is because a crossbar switch is most naturally modeled in a discrete time
setting and with deterministic service times. Nevertheless, in this section, we demonstrate that
many of the ideas from Section 3 can still be applied in this setting.

An n × n switch has n input ports, labeled from the set {1, . . . , n}, and n output ports, also
labeled from the set {1, . . . , n}. See Figure 1 for a schematic diagram of a 3× 3 switch . A packet
arrives at an input port, and must be transported to a certain output port. The switch fabric is
the mechanism by which the packets are transported. At each time-step, an allocation decision
is made to connect input ports to output ports. This decision subject to a matching condition
imposed by the switch fabric: at most one input port is connected to each output port, and at each
input ports is connected to at most one output port. Once the decision is made, for each connected
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Figure 1: A 3× 3 input-queued crossbar switch.

input-output pair (i, j), if there is a packet waiting at the input port i for the output port j, it
is transported in a single time-step. Thus, at each time-step, a maximum of n data packets are
processed and leave the system.

The evolution of a switch can be modeled as a queueing network as follows. The switch proceeds
in discrete time-steps t = 0, 1, . . .. There are n2 buffers. We denote the set of buffers by the set of
input-output pairs

I = {(i, j) | 1 ≤ i, j ≤ n}.

At each time t, we denote by qij(t) the length of the buffer of packets awaiting transport from input
port i to output port j. Let q(t) ∈ Rn2 be the vector of buffer lengths.

An allocation decision is represented by a vector u ∈ Rn2 . Here, uij = 1 if a packet from input
port i to output port j is to be transported, and uij = 0 otherwise. We define the set A(q) ⊂ Rn2

to be the set of admissible allocations given buffer lengths q. From the above discussion, u ∈ A(q)
if and only if:

uij ∈ {0, 1}, ∀ 1 ≤ i, j ≤ n,(6.1)
n∑
j=1

uij ≤ 1, ∀ 1 ≤ i ≤ n,(6.2)

n∑
i=1

uij ≤ 1, ∀ 1 ≤ j ≤ n,(6.3)

uij ≤ qij , ∀ 1 ≤ i, j ≤ n.(6.4)

Note that (6.2) and (6.3) enforce the matching condition. Also, this set is of the form described in
Definition 1.
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For each input-output pair (i, j) ∈ I, we assume that arrivals occur according to independent
Bernoulli processes with rate λij ∈ [0, 1]. Service times are deterministic and always equal to a
single time-step. An analysis of the dual of the static planning LP (2.5) reveals that for this system,
a necessary condition for the existence of a stable policy is1

λi⊕ =
n∑
j=1

λij ≤ 1, ∀ 1 ≤ i ≤ n,

λ⊕j =
n∑
i=1

λij ≤ 1, ∀ 1 ≤ j ≤ n.

The load of the system is
ρ∗ = max

i,j
{λi⊕, λ⊕j}.

We assume that ρ∗ < 1.
Our objective is to find an allocation policy u minimizing the long-term expected average delay,

lim sup
T→∞

Eu
[

1
T

T−1∑
t=0

1 · q(t)
]
.

6.1. Maximum Weight Matching
The input-queued crossbar switch has been studied extensively in the literature (see, for example,
[32, 33, 34, 35]). One class of heuristic policies that has been proposed is the class based on
maximum weight matching. Here, a weight function W : ZI+ → Rn2 is chosen, and a policy
decision is made at time t given buffer lengths q(t) = q by solving the optimization

max
u∈A(q)

W (q) · u.

Because of the structure of the constraint set, this optimization problem is a maximum weight
matching problem on a bipartite graph, and can be efficiently solved in O(n3) time. From the
discussion in Section 5, it is clear a choice of W (·) is equivalent to a choice of an approximate
Q-function.

MWM-α is a particular class of maximum weight matching policies parameterized by a scalar
α ≥ 0. The MWM-α policy uses the weight function

Wij(q) = qαijI{qij>0}.

1For a vector x ∈ Rn
2
, we use the notation

xi⊕ =
n∑
j=1

xij , ∀ 1 ≤ i ≤ n,

x⊕j =
n∑
i=1

xij , ∀ 1 ≤ j ≤ n.
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For example, where α = 0, the policy is greedy and seeks an allocation that serves as many data
packets in the next time-step as possible. As α→∞, the policy seeks to give priority to serving
packets from the longest buffers. When α = 1, the policy is a variant of a scheduling method
for wireless networks first proposed by Tassiulas and Ephremides [30, 31]. Subsequent work has
generalized these policies to larger classes of queueing networks [20, 29].

For α ∈ (0,∞), the MWM-α policy is known to be throughput optimal. That is, for any vector
of arrival rates λ with load less than 1, the MWM-α policy is stable [32, 34]. Further, it has been
observed that the average delay improves as α ↓ 0 [34]. The MWM-0 policy, however, is something
of a singularity. In particular, it can be unstable [35]. This is because MWM-0 is in some sense
underspecified. Imagine, for example, a switch state where every buffer is non-empty. Here, there
are n! admissible allocations matching each input to an output, each of these allocations serves
exactly n packets in the next time-step, and hence any of these allocations is optimal for MWM-0.

One can consider a sequence of MWM-α policies, with α ↓ 0. This sequence of policies is known
to have certain optimality properties in heavy traffic [29, 11, 12]. A limiting policy MWM-0+ can
be defined as follows. Note that, for α small,

Wij(q) ≈ (1 + α log qij)I{qij>0}.

The MWM-0+ policy selects an allocation by first considering the set of allocations computed by
MWM-0, and then breaking ties within this set using a secondary weight function log qij . Intuitively,
MWM-0+ seeks to greedily serve as many packets as possible, but breaks ties by favoring service
of longer buffers. MWM-0+ is conjectured to be optimal in the heavy traffic regime [11, 12].

6.2. Affine Expectations and the Allocation Polytope
The ADP method of Section 3 suggests computing an approximate differential cost function Ṽ :
Zn2

+ → R, and then selecting an allocation decision u(t) at time t by

(6.5) u(t) ∈ argmin
u∈A(q(t))

Eu
[
Ṽ (q(t+ 1))

∣∣∣ q(t)] .
In general, this is a combinatorial optimization problem with a decision space that is exponential
in size as a function of the switch size n. However, unlike the system described in Section 2, the
expectation in (6.5) is not an affine function of the allocation u, in general.

Fortunately, there is a specific class of functions Ṽ (·) whose one-step expectations are affine as
a function of the allocation. Consider functions of the form

(6.6) Ṽ (q) =
∑
C∈C

FC(qC).

Here, C is a collection of subsets of the input-output pairs I. That is, each C ∈ C is a subset C ⊂ I.
We restrict these subsets to correspond to at most a single input or output port. In other words,
if C ∈ C, then either there exists an input port i so that

C ⊂ {(i, j) | 1 ≤ j ≤ n},

or there exists an output port j so that

C ⊂ {(i, j) | 1 ≤ i ≤ n}.
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Given a set C ∈ C, qC is the vector of corresponding buffer lengths, and FC(·) is a real-valued
function that only depends on the buffer lengths described in qC .

To verify the affine expectation property, consider a single subset C and the corresponding
function FC(·). For a binary vector a ∈ S = {0, 1}n2 , denote by Pλ(a) the probability that, in a
single time-step, there is an arrival to an input-output pair (i, j) ∈ I if and only if aij = 1. That
is,

Pλ(a) =
∏

(i,j)∈I
(λijaij + (1− λij)(1− aij)) .

Then, for a state q ∈ Zn2
+ and an allocation u ∈ A(q),

Eu [FC(q(t+ 1)) | q(t) = q] =
∑
a∈S

Pλ(a)FC

qC + aC −
∑

(i,j)∈C
uije

ij
C


=
∑
a∈S

Pλ(a)FC(qC + aC)

+
∑
a∈A

∑
(i,j)∈C

Pλ(a)
[
FC

(
qC + aC − eijC

)
− FC(qC + aC)

]
uij .

Here, eij ∈ Zn2
+ is a unit vector that is zero except in the (i, j)th component, and for a vector

x ∈ Zn2
+ , we denote by xC its restriction to the subset C. The second equality relies on the fact

that, because of the matching restriction, at most a single packet is served from a given input port
or to a given output port in any time-step.

Restricting the class of approximate differential cost functions under consideration to those of
the form (6.6), we can proceed as in Section 3.1. Define the allocation polytope Ā(q) ⊂ Rn2 by
relaxing the integrality condition (6.1) in the definition of A(q). That is, Ā(q) is the set of vectors
u ∈ Rn2

+ satisfying (6.2)–(6.4), and with 0 ≤ u ≤ 1. Note that for every q ∈ Zn2
+ , the vertices of

Ā(q) are contained in A(q). This follows from the fact that the constraints defining Ā(q) possess a
‘network flow’ structure [26, Chapter 7]. Hence, Assumption 2 holds, and the policy decision (6.5)
can be efficiently computed by linear programming or maximum weight matching methods.

6.3. Empirical Performance
In this section, we compare the performance of ADP-derived policies to those from the MWM-α
class. We consider an n×n switch, for varying choices of n, under uniform arrival rates, for varying
system loads ρ∗.

The basis function architecture used is of the following form:

(6.7) Ṽ (q, r) = r0 +
∑

(i,j)∈I
F (qij , r1) +

n∑
i=1

G(qi⊕, r2) +
n∑
j=1

G(q⊕j , r2).

Note that the workloads for this system are {qi⊕, q⊕j}, hence this architecture is of the type
suggested in Section 4. It is also of the form (6.6) than admits affine expectations. The functions
F (·, r) : Z+ → R and G(·, r) : Z+ → R are parameterized according to

F (x, r1) =
k−1∑
`=0

r1,`(x− `)+ + r1,kx log x, G(x, r2) =
k−1∑
`=0

r2,`(x− `)+ + r2,kx log x.
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Intuitively, these functions are allowed to be arbitrary for small values of the argument x, up to
some constant k. The tail behavior is a linear combination of the functions x and x log x. This tail
behavior is motivated by the structure of the MWM-α policy. MWM-α is qualitatively similar to
a policy which acts greedily with respect to a differential cost approximation of the form

Ṽ (q) =
∑

(i,j)∈I
q1+α
ij ≈

∑
(i,j)∈I

qij + αqij log qij .

Here, the approximation holds for α small.
Note also that our approximation architecture is invariant to permutations of input or output

labels or the transposition of inputs and outputs. This is because the dynamics of the system have
these same symmetries under uniform arrivals. In a more general setting, it is sensible to allow, for
example, the parameter set r1 to vary as a function of (i, j) in the first summation in (6.7).

The parameter set r was optimized using a discounted variation of the TD-learning update
equations (3.6)–(3.9). A constant step-size was used and no exploration was employed.
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Figure 2: Average delay performance of ADP-derived policies versus MWM-0.001, over varying
traffic load and switch size.

In Figure 2, we see the average delay performance of the ADP policies relative the MWM-0.001
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policy. The performance improvement is measured across a variety of problem instances obtained
by varying the switch size and the system load.

Note that in all instances, the ADP polices perform better. The improvement is most pro-
nounced at moderate loads of 0.7 to 0.8. In light traffic, the improvements are more modest.
Intuitively, this is because the scheduling problem is easier in light traffic where resources are less
constrained. For a higher load of 0.9, the performance improvement also slightly decreases. This
is consistent with the optimality properties that have been established for MWM-0+ in heavy
traffic. More interestingly, the delay improvement increases as the switch size increases. Modern
commercial routers typically employ switches with 16 to 64 ports, so the large switch regime is
the most relevant. Further, in limited experiments, greater improvements have been observed with
non-uniform arrival traffic.

Policy Differences
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Switch State

MWM-0+

ADP Policy

(a) The switch state and corresponding allocations selected
by MWM-0+ and ADP policies. The red circles indicate
buffers that are selected for service under the various allo-
cations.

Policy Differences
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MWM-0+ ADP Policy

(no arrivals)

two time steps to empty one time step to empty

(b) The evolution of the switch state over one time-step,
assuming no arrivals.

Figure 3: A comparison of MWM-0+ and ADP policies for a particular state of a 3× 3 switch.

In examining the policy decisions made by the ADP policies, we see that they typically act
greedily with respect to the one-step cost. That is, they attempt to serve as many packets as
possible, as in the case of the MWM-0 policy. However, ties are broken in a different way than the
MWM-0+ policy. In Figure 3(a), a particular switch for a 3× 3 switch is shown. MWM-0+ selects
one of 3 possible allocations, while the ADP policy limits itself to the first 2 (note that these two
allocations are equivalent under symmetry, so it is impossible to further distinguish them). All of
these allocations are greedy with respect to the one-step cost, but, in Figure 3(b), we see that the
3rd choice made by MWM-0+ is inferior to the others. In particular, if there are no arrivals, this
choice results in a switch state in the following time-step with a larger time-to-empty. It is precisely
the use of workload in the ADP basis function architecture that allows this type of decision to be
made. A similar structure exists in the ‘longest-port-first’ heuristic policy proposed in [33].

Finally, note that the input-queued crossbar switch is an example that possesses considerable
structure and symmetry. This has be exploited in the design of good heuristic policies. In large,
complex, and unstructured examples, it is can very difficult to design good heuristics. It is in such
cases that ADP-derived policies are likely to be most advantageous.
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