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A. The Weighted Regression Method: Practical Implementation

In this section, we describe the practically implementable variation of the weighted regression
method that is demonstrated in the numerical results of Section 6.3. In this two-pass procedure, we
will first approximate L(ω) with an unweighted regression and obtain r̂; from r̂, we will construct
an approximation to the weight function hopt(·) of (37) to be used subsequently in a weighted
regression.

Following Remark 6, let m = 1 and n = k. As k → ∞, Lemma 1 and (11) imply that, for a
fixed scenario ω,

(A.1)
√
k (Φ (ω) r̂ +M (ω)− L (ω)) d→ N

(
0,Φ (ω) (ΣM + Σv) Φ (ω)>

)
.

Equation (A.1) suggests that when k is large, it is reasonable to approximate the distribution of
the portfolio loss L (ω) given ~ω and ~ζ by a normal distribution with mean Φ (ω) r̂ + M (ω) and
variance Φ (ω) (ΣM + Σv) Φ (ω)> /k. Given this approximation, we can approximate hopt(·) with
its posterior mean:

(A.2) E
[
hopt (ω)

∣∣∣ ~ω, ~ζ] ≈ N
 √k (Φ (ω) r̂ +M (ω)− c)√

Φ (ω) (ΣM + Σv) Φ (ω)>

 .
(Notice that r̂ depends on ~ω and ~ζ.) If the basis functions are well-chosen, the model error M(ω) is
small in magnitude relative to the unweighted regression approximation Φ(ω)r̂. Further, in practice,
we observe that the denominator of the argument in the right-hand side of (A.2) does not vary by
more than one order of magnitude. These observations suggest an overall approximation for the
globally optimal weight function hopt(·):

(A.3) h (ω) = N

(√
k (Φ (ω) r̂ − c)

Γ

)
,
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for some constant Γ > 0. Using the weight function (A.3), we have a two-pass weighted regression
procedure:

• the first pass is an unweighted regression and provides Φ (ω) r̂, an approximation of L (ω)
used to determine weights;

• based on Φ (ω) r̂, the second pass is a weighted regression with weights defined by (A.3).

Notice that this two-pass weighted regression procedure assigns weights with a weight function
inspired by hopt(·), and it does not depend on information of L (ω) or any quantities that are
unknown in practice. The two-pass weighted regression method is compared with the unweighted
regression method in Section 6.3.

B. Proofs for Section 4

This section presents the proofs of the results in Section 4, where the asymptotic analysis of the
regression estimator has been established. First, we show the following lemma, which establishes
the existence and uniqueness of the optimal solutions to (10) and (13).

Lemma 3. Given Assumptions A1 and A2, the function g (·) is strictly convex over Rd, and the
function (1/n)

∑n
i=1G(·, ω(i), ζ(i)) is strictly convex over Rd almost surely.

Proof. As a function of r, the Hessian matrix of (1/n)
∑n
i=1G(·, ω(i), ζ(i)) is

∇2
(

1
n

n∑
i=1

G
(
r, ω(i), ζ(i)

))
= ∇2

(
1
n

n∑
i=1

(
L̂
(
ω(i), ζ(i))− Φ

(
ω(i))r)2

)

= 2
n

n∑
i=1

Φ
(
ω(i))>Φ

(
ω(i)),

which is positive semidefinite almost surely under Assumption A2. Therefore, 1
n

∑n
i=1G(·, ω(i), ζ(i))

is strictly convex almost surely.
The Hessian matrix of g (r, ω) is

∇2 (g (r, ω)) = ∇2
(

E
[(
L̂ (ω, ζ)− Φ (ω) r

)2
])

= ∇2
(
rE
[
Φ (ω)>Φ (ω)

]
r
)

= 2Id.

Therefore, g (r) is strictly convex.
�

Given Assumptions A1 and A2, according to Lemma 3, the optimal solutions to (10) and (13)
exist and are unique almost surely.

We use the following notation: ~ω denotes the n outer stage scenarios,

~ω ,
(
ω(1), . . . , ω(n))>,
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~ζ denotes the inner stage uncertainty,

~ζ ,
(
ζ(1), . . . , ζ(n))>,

Φ (~ω) is an n-by-d matrix,

Φ (~ω) ,


φ1
(
ω(1)) · · · φd

(
ω(1))

... . . . ...
φ1
(
ω(n)) · · · φd

(
ω(n))

 ,

and L̂
(
~ω, ~ζ

)
is an n-by-1 column vector,

L̂
(
~ω, ~ζ

)
,
(
L̂
(
ω(1), ζ(1)), . . . , L̂(ω(n), ζ(n)))> .

From regression theory, the unique optimal solution to (13) takes the form

(B.1) r̂ =
(
Φ (~ω)>Φ (~ω)

)−1
Φ (~ω)> L̂

(
~ω, ~ζ

)
.

Then we estimate the risk measure by

α̂REG(m,n) , E
[
f (Φ (ω) r̂)| ~ω, ~ζ

]
.

From Assumption A1, the disturbance term ε (ω, ζ) of (12) satisfies

(B.2) E [ε (ω, ζ)|ω] = 0,

and

(B.3) Var (ε (ω, ζ)|ω) = v (ω)
m

.

We define
ε
(
~ω, ~ζ

)
,
(
ε
(
ω(1), ζ(1)), . . . , ε(ω(n), ζ(n)))> .

From the definition of the model error M (·) in Section 4 and the projection theorem, the basis
functions φ1 (·) , . . . , φd (·) are orthogonal to M (·), i.e.,

(B.4) E [φ` (ω)M (ω)] = 0,

for ` = 1, . . . , d. We define
M (~ω) ,

(
M
(
ω(1)), . . . ,M(

ω(n)))> .
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B.1. Differentiable Case

Lemma 1. Suppose Assumptions A1, A2, and A3 hold. As the number of scenarios n→∞,

√
n (r̂ − r∗) d→ N

(
0,ΣM + Σv

m

)
,

where
ΣM , E

[
M2 (ω) Φ (ω)>Φ (ω)

]
, Σv , E

[
v (ω) Φ (ω)>Φ (ω)

]
.

Therefore, as n→∞,
‖r̂ − r∗‖2 = OP (1)√

n
.

Proof. From Theorem 5.3 in White (2001), we have

(B.5)
(
Cov

(
n−

1
2 Φ>(~ω)(M(~ω) + ε(~ω, ~ζ))

))− 1
2 √n(r̂ − r∗) d→ N (0, Id) .

Note that using (B.2) and (B.4),

Cov
(
n−

1
2 Φ>(~ω)(M(~ω) + ε(~ω, ~ζ))

)
= 1
n

E
[(

Φ>(~ω)(M(~ω) + ε(~ω, ~ζ))
) (

Φ>(~ω)(M(~ω) + ε(~ω, ~ζ))
)>]

= 1
n

E
[
Φ>(~ω)M(~ω)M>(~ω)Φ(~ω)

]
+ 1
n

E
[
Φ>(~ω)E

[
ε(~ω, ~ζ)ε>(~ω, ~ζ)

∣∣∣ ~ω, ~ζ]Φ(~ω)
]

+ 2
n

E
[
Φ>(~ω)M(~ω)E

[
ε>(~ω, ~ζ)

∣∣∣ ~ω, ~ζ]Φ(~ω)
]
.

From (B.3),

E
[
ε(~ω, ~ζ)ε>(~ω, ~ζ)

∣∣∣ ~ω, ~ζ] =



v(ω(1))
m 0 · · · 0

0 v(ω(2))
m

. . . ...
... . . . . . . 0
0 · · · 0 v(ω(n))

m

 .
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Further,

1
n

E
[
Φ>(~ω)M(~ω)M>(~ω)Φ(~ω)

]

= 1
n


E
[
n∑
i=1

φ2
1(ω(i))M2(ω(i))

]
· · · E

[
n∑
i=1

φ1(ω(i))φd(ω(i))M2(ω(i))
]

... . . . ...

E
[
n∑
i=1

φd(ω(i))φ1(ω(i))M2(ω(i))
]
· · · E

[
n∑
i=1

φ2
d(ω(i))M2(ω(i))

]


=


E
[
φ2

1(ω)M2(ω)
]

· · · E
[
φ1(ω)φd(ω)M2(ω)

]
... . . . ...

E
[
φd(ω)φ1(ω)M2(ω)

]
· · · E

[
φ2
d(ω)M2(ω)

]


= E
[
M2(ω)Φ(ω)>Φ(ω)

]
.

Therefore,

(B.6) Cov
(
n−

1
2 Φ>(~ω)(M(~ω) + ε(~ω, ~ζ))

)
= E

[
M2(ω)Φ(ω)>Φ(ω)

]
+ 1
m

E
[
v(ω)Φ(ω)>Φ(ω)

]
.

From (B.5) and (B.6), we have that

(
ΣM + 1

m
Σv

)− 1
2 √

n (r̂ − r∗) d→ N (0, Id) ,

where ΣM and Σv are defined by (17). Based on the result above, we have that

n ‖r̂ − r∗‖22 =
(√
n (r̂ − r∗)

)> (√
n (r̂ − r∗)

)
= OP (1) ,

as n→∞, and the result follows.
�

Theorem 1. Suppose that Assumptions F1, A1, A2, and A3 hold. Then there exists a sequence of
random variables {BM,n}, for n = 1, 2, . . . , satisfying

BM,n
P→ B∗M , E

[
f (Φ(ω)r∗)

]
− α,

so that
√
n
(
α̂REG(m,n) − α−BM,n

)
d→ N

(
0,E

[
f ′ (L (ω)) Φ (ω)

] (
ΣM + Σv

m

) (
E
[
f ′ (L (ω)) Φ (ω)

])>)
,

where ΣM and Σv are defined by (17). Further, the asymptotic bias B∗M satisfies

∣∣B∗M − E
[
f ′ (L (ω))M (ω)

]∣∣ ≤ Udiff
2 E

[
(M (ω))2

]
.
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Proof. By Taylor’s theorem,

f (Φ (ω) r̂)− f (L (ω)) = f ′ (L (ω)) (Φ (ω) r̂ − L (ω))

+1
2f
′′ (L (ω) + θ · (Φ (ω) r̂ − L (ω))) (Φ (ω) r̂ − L (ω))2 ,

where θ ∈ (0, 1) is a random variable. Then

α̂REG(m,n) − α = E
[
f (Φ (ω) r̂)| ~ω, ~ζ

]
− E [f (L (ω))]

= E
[
f ′ (L (ω)) (Φ (ω) r̂ − L (ω))

∣∣ ~ω, ~ζ](B.7)

+ E
[ 1

2f
′′ (L (ω) + θ · (Φ (ω) r̂ − L (ω))) (Φ (ω) r̂ − L (ω))2

∣∣∣∣ ~ω, ~ζ] .
For the first term in (B.7),

E
[
f ′ (L (ω)) (Φ (ω) r̂ − L (ω))

∣∣ ~ω, ~ζ] = E
[
f ′ (L (ω)) Φ (ω)

]
(r̂ − r∗)− E

[
f ′ (L (ω))M (ω)

]
.

Further, from Lemma 1, we have that

√
n
(
E
[
f ′ (L (ω)) Φ (ω)

])
(r̂ − r∗)

d→ N

(
0,E

[
f ′ (L (ω)) Φ (ω)

] (
ΣM + Σv

m

) (
E
[
f ′ (L (ω)) Φ (ω)

])>)
,

(B.8)

as n→∞.
Combining (B.7) and (B.8), and letting

(B.9)
BM,n , E

[
f ′ (L (ω))M (ω)

]
− E

[ 1
2f
′′ (L (ω) + θ · (Φ (ω) r̂ − L (ω))) (Φ (ω) r̂ − L (ω))2

∣∣∣∣ ~ω, ~ζ] ,
equation (18) follows. From Lemma 1,

r̂
P→ r∗,

and then by the continuous mapping theorem,

(B.10) α̂REG(m,n) = E
[
f (Φ(ω)r̂)

∣∣∣ ~ω, ~ζ ] P→ E
[
f (Φ(ω)r∗)

]
.

Also notice that equation (18) implies

(B.11) α̂REG(m,n) − α−BM,n
P→ 0.

Combining (B.10) and (B.11),

(B.12) BM,n
P→ B∗M = E

[
f (Φ(ω)r∗)

]
− α.
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Given (16) and (B.9),

∣∣BM,n − E
[
f ′ (L (ω))M (ω)

]∣∣ ≤ ∣∣∣∣E [ 1
2f
′′ (L (ω) + θ · (Φ (ω) r̂ − L (ω))) (Φ (ω) r̂ − L (ω))2

∣∣∣∣ ~ω, ~ζ]∣∣∣∣
≤ Udiff

2 E
[
(Φ (ω) r̂ − L (ω))2

∣∣∣ ~ω, ~ζ]
= Udiff

2 E
[
(Φ (ω) r̂ − Φ (ω) r∗)2

∣∣∣ ~ω, ~ζ]+ Udiff
2 E

[
(M (ω))2

]
,(B.13)

where we have used (B.4) in equation (B.13). From Lemma 1, we have

Udiff
2 E

[
(Φ (ω) r̂ − Φ (ω) r∗)2

∣∣∣ ~ω, ~ζ] = Udiff
2 (r̂ − r∗)> E

[
Φ (ω)>Φ (ω)

]
(r̂ − r∗)

= Udiff
2 ‖r̂ − r∗‖22 = OP (1)

n
.(B.14)

From (B.12), (B.13), and (B.14), we have

∣∣B∗M − E
[
f ′ (L (ω))M (ω)

]∣∣ ≤ Udiff
2 E

[
(M (ω))2

]
.

�

B.2. Lipschitz Continuous Case

Theorem 2. Suppose that Assumptions F2, A1, A2, and A3 hold. Then as the number of scenarios
n→∞, (

α̂REG(m,n) − α
)2
≤ U2

LipE
[
(M (ω))2

]
+OP

( 1
n

)
.

Proof. Note that

α̂REG(m,n) − α = E
[
f (Φ (ω) r̂)| ~ω, ~ζ

]
− E [f (L (ω))] = E

[
f (Φ (ω) r̂)− f (L (ω))| ~ω, ~ζ

]
.

From the Lipschitz continuity condition (21) and Jensen’s inequality,(
α̂REG(m,n) − α

)2
=
(
E
[
f (Φ (ω) r̂)− f (L (ω))| ~ω, ~ζ

])2

≤ E
[(
f (Φ (ω) r̂)− f (L (ω))

)2∣∣∣ ~ω, ~ζ]
≤ U2

LipE
[(

Φ (ω) (r̂ − r∗)−M (ω)
)2∣∣∣ ~ω, ~ζ]

= U2
LipE

[(
Φ (ω) (r̂ − r∗)

)2∣∣∣ ~ω, ~ζ]+ U2
LipE

[
(M (ω))2

]
,

where we have used (B.4). Then, by the orthonormality of Φ(·),(
α̂REG(m,n) − α

)2
≤ U2

LipE
[
(Φ (ω) (r̂ − r∗))2

∣∣∣ ~ω, ~ζ]+ U2
LipE

[
(M (ω))2

]
= U2

Lip ‖r̂ − r∗‖
2
2 + U2

LipE
[
(M (ω))2

]
.(B.15)
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From Lemma 1, as n→∞,
√
n (r̂ − r∗) d→ N

(
0,ΣM + Σv

m

)
.

From the continuous mapping theorem, as n→∞, nU2
Lip ‖r̂ − r∗‖

2
2 converges to a generalized chi-

square distribution. Therefore, for any ε > 0, there exist ∆ε > 0 and Nε > 0, such that for any
n > Nε,

P
(
nU2

Lip ‖r̂ − r∗‖
2
2 > ∆ε

)
< ε,

which implies that
U2

Lip ‖r̂ − r∗‖
2
2 = OP

( 1
n

)
.

With (B.15), the result follows.
�

In order to prove Lemma 2, Theorem 3, and Corollary 2, we need the following lemmas.

Lemma 4. For any r ∈ Rd,
g (r)− g (r∗) = ‖r − r∗‖22 .

Therefore, for any r ∈ Rd and Rρ defined by (22), we have

Rρ =
{
r ∈ Rd : g (r) ≤ g (r∗) + ρ

}
.

Proof. By the projection theorem and the fact that Φ is orthonormal,

g (r) = E
[(
L̂ (ω, ζ)− Φ (ω) r

)2
]

= E
[(
L̂ (ω, ζ)− Φ (ω) r∗ + Φ (ω) r∗ − Φ (ω) r

)2
]

= E
[
(Φ (ω) (r − r∗))2

]
+ E

[(
L̂ (ω, ζ)− Φ (ω) r∗

)2
]

− 2E
[
(Φ (ω) (r − r∗))

(
L̂ (ω, ζ)− Φ (ω) r∗

)]
= ‖r − r∗‖22 + g (r∗)− 2 (r − r∗)> E

[
Φ (ω)>

(
L̂ (ω, ζ)− Φ (ω) r∗

)]
= ‖r − r∗‖22 + g (r∗) .

�

Given Rρ, define

(B.16) r̂ρ ∈ argmin
r∈Rρ

1
n

n∑
i=1

G
(
r, ω(i), ζ(i)

)
,

which is the sample optimal solution of r over Rρ. Under Assumptions A1 and A2, according to
Lemma 3, the optimal solution r̂ρ exists and is unique almost surely.

8



Lemma 5. For ρ > 0, r̂2ρ ∈ Rρ if and only if r̂ ∈ Rρ.

Proof. Notice that r̂ ∈ Rρ implies r̂2ρ = r̂, and thus r̂ ∈ Rρ implies r̂2ρ ∈ Rρ.
On the other hand, if r̂2ρ ∈ Rρ and r̂ /∈ Rρ, we must have r̂ /∈ R2ρ. Therefore, we can have

1
n

n∑
i=1

G
(
r̂, ω(i), ζ(i)

)
<

1
n

n∑
i=1

G
(
r̂2ρ, ω

(i), ζ(i)
)
.

Then for any ϕ ∈ (0, 1), by the convexity of (1/n)
∑n
i=1G(·, ω(i), ζ(i)),

1
n

n∑
i=1

G
(
ϕr̂2ρ + (1− ϕ) r̂, ω(i), ζ(i)

)
≤ ϕ 1

n

n∑
i=1

G
(
r̂2ρ, ω

(i), ζ(i)
)

+ (1− ϕ) 1
n

n∑
i=1

G
(
r̂, ω(i), ζ(i)

)
<

1
n

n∑
i=1

G
(
r̂2ρ, ω

(i), ζ(i)
)
,

and thus ϕr̂2ρ + (1− ϕ) r̂ /∈ R2ρ, i.e.,

g (ϕr̂2ρ + (1− ϕ) r̂) > g (r∗) + 2ρ.

However, we know that g (·) is convex and thus continuous, and then

ρ+ g (r∗) ≥ g (r̂2ρ) = lim
ϕ→1

g (ϕr̂2ρ + (1− ϕ) r̂) ≥ g (r∗) + 2ρ,

which is a contradiction.
�

Lemma 6. Suppose that Assumptions F2, A1, A2, A4, and A5 hold. Let ρ > 0 be an arbitrary
constant. Then consider any θ ∈ (0,∞) and suppose that

(B.17) n ≥ C ′λ2

ρ

(
d ln

(
2
√

2C ′′Λ2ρ√
ρ

)
+ ln

(1
θ

))
,

where λ is defined in Assumption A5, C ′ and C ′′ are universal constants, i.e., they do not depend
on the problem, and

Λρ , (2√ρ+ 1) d+ 2E
[
(M (ω))2

]
+ 2E

[
(ε (ω, ζ))2

]
.

Then,
P (r̂ /∈ Rρ) ≤ θ.

Proof. When θ ≥ 1, the result is trivial. When θ ∈ (0, 1), the result follows from Corollary 5.20 in
Shapiro et al. (2009) and Lemma 5 above. In the setting here, we let r = 2ρ, ε = ρ, δ = 0, and then
a = 2ρ. Also notice that in our problem, γ = 2, c = 1, and D∗a = D∗2ρ = 2

√
2ρ. Further, compared
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to the notation of Shapiro et al. (2009), we use G (·) as F (·), g (·) as f (·), Ψr′,r′′ (·) as Mx′,x (·), n
as N , d as n, and Λ2ρ as L.

Assumption (M5) in Shapiro et al. (2009) is from our Assumption A4, i.e., the moment gener-
ating functions of ‖Φ (ω)‖22, (M (ω))2, and (ε (ω, ζ))2 are finite-valued in a neighborhood of zero.
In particular,

∣∣G (r′, ω, ζ)−G (r′′, ω, ζ)∣∣
=
∣∣∣∣(L̂ (ω, ζ)− Φ (ω) r′

)2
−
(
L̂ (ω, ζ)− Φ (ω) r′′

)2
∣∣∣∣

=
∣∣∣(Φ (ω) r′ + Φ (ω) r′′ − 2L̂ (ω)

)
Φ (ω)

(
r′ − r′′

)∣∣∣
≤
∣∣∣Φ (ω)

(
r′ − r∗

)
+ Φ (ω)

(
r′′ − r∗

)
+ 2Φ (ω) r∗ − 2L̂ (ω)

∣∣∣ ‖Φ (ω)‖2
∥∥r′ − r′′∥∥2

≤
(
‖Φ (ω)‖2

∥∥r′ − r∗∥∥2 + ‖Φ (ω)‖2
∥∥r′′ − r∗∥∥2 + 2

∣∣∣L̂ (ω, ζ)− Φ (ω) r∗
∣∣∣) ‖Φ (ω)‖2

∥∥r′ − r′′∥∥2

≤
(
‖Φ (ω)‖2

√
2ρ+ ‖Φ (ω)‖2

√
2ρ+ 2 |M (ω) + ε (ω, ζ)|

)
‖Φ (ω)‖2

∥∥r′ − r′′∥∥2

=
(
2
√

2ρ ‖Φ (ω)‖22 + 2 |M (ω) + ε (ω, ζ)| ‖Φ (ω)‖2
) ∥∥r′ − r′′∥∥2

≤
(
(2
√

2ρ+ 1) ‖Φ (ω)‖22 + |M (ω) + ε (ω, ζ)|2
) ∥∥r′ − r′′∥∥2

≤
(
(2
√

2ρ+ 1) ‖Φ (ω)‖22 + 2 (M (ω))2 + 2 (ε (ω, ζ))2
) ∥∥r′ − r′′∥∥2 .

Since in a neighborhood of zero, the finiteness of the moment generating functions of ‖Φ (ω)‖22,
(M (ω))2, and (ε (ω, ζ))2 implies the finiteness of the moment generating function of(

2
√

2ρ+ 1
)
‖Φ (ω)‖22 + 2 (M (ω))2 + 2 (ε (ω, ζ))2 ,

Assumption (M5) in Shapiro et al. (2009) is satisfied.
Assumption (M6) in Shapiro et al. (2009) is from the Assumption A5. Notice that Assump-

tion A5 is weaker than Assumption (M6) in Shapiro et al. (2009), but according to the discussion
after Assumption (M6) in Shapiro et al. (2009), Assumption A5 here is sufficient.

�

Lemma 2. Suppose that Assumptions F2, A1, A2, A4, and A5 hold. Let ρ > 0 be an arbitrary
constant. Then for any positive integer n,

P (r̂ /∈ Rρ) ≤
(

2
√

2C ′′Λ2ρ√
ρ

)d
exp

(
− ρn

C ′λ2

)
,

where λ is defined in Assumptions A5, C ′ and C ′′ are universal constants (i.e., constants that do
not depend on the problem), and

Λρ , (2√ρ+ 1) d+ 2E
[
(M (ω))2

]
+ 2E

[
(ε (ω, ζ))2

]
.
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Proof. Define

θ ,

(
2
√

2C ′′Λ2ρ√
ρ

)d
exp

(
− ρn

C ′λ2

)
.

Then,

n = C ′λ2

ρ

(
d ln

(
2
√

2C ′′Λ2ρ√
ρ

)
+ ln

(1
θ

))
,

which satisfies (B.17), and thus, by Lemma 6,

P (r̂2ρ /∈ Rρ) ≤
(

2
√

2C ′′Λ2ρ√
ρ

)d
exp

(
− ρn

C ′λ2

)
.

From Lemma 5,
P (r̂ /∈ Rρ) = P (r̂2ρ /∈ Rρ) .

�

Lemma 7. For any ρ ≥ 2,
Λρ ≤

√
ρ√
2

Λ2.

Proof. Notice that for any ρ ≥ 2,

Λρ = (2√ρ+ 1) d+ 2E
[
(M (ω))2

]
+ 2E

[
(ε (ω, ζ))2

]
= √ρ

(2 + 1
√
ρ

)
d+

2E
[
(M (ω))2

]
√
ρ

+
2E
[
(ε (ω, ζ))2

]
√
ρ


≤ √ρ

(2 + 1√
2

)
d+

2E
[
(M (ω))2

]
√

2
+

2E
[
(ε (ω, ζ))2

]
√

2


=
√
ρ√
2

((
2
√

2 + 1
)
d+ 2E

[
(M (ω))2

]
+ 2E

[
(ε (ω, ζ))2

])
=
√
ρ√
2

Λ2.

�

Theorem 3. Suppose that Assumptions F2, A1, A2, A4, and A5 hold, and let δ > 0 be an arbitrary
positive constant. Then for any positive integer n,

E
[
(Φ (ω) (r̂ − r∗))2

]
= E

[
‖r̂ − r∗‖22

]
≤ 1
n1−δ + 2

3d
2 C ′

(
C ′′
)d (Λ2)d λ2n

(1−δ)d
2 −1 exp

(
− nδ

C ′λ2

)
+ 2dC ′ (C ′′)d (Λ2)d λ2

n
exp

(
− n

C ′λ2

)
= O

(
n−1+δ

)
.
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Proof. Notice that

E
[
(Φ (ω) (r̂ − r∗))2

]
= E

[
E
[
(Φ (ω) (r̂ − r∗))2

∣∣∣ ~ω, ~ζ]]
= E

[
(r̂ − r∗)> E

[
Φ (ω)>Φ (ω)

]
(r̂ − r∗)

]
= E

[
‖r̂ − r∗‖22

]
=
∫ ∞

0
P
(
‖r̂ − r∗‖22 > ρ

)
dρ.

=
∫ ∞

0
P (r̂ /∈ Rρ) dρ,(B.18)

where we have used Lemma 4.
Without loss of generality, we consider an arbitrary positive constant δ ∈ (0, 1),

(B.19) E
[
‖r̂ − r∗‖22

]
=
∫ 1

n1−δ

0
P (r̂ /∈ Rρ) dρ+

∫ 1

1
n1−δ

P (r̂ /∈ Rρ) dρ+
∫ ∞

1
P (r̂ /∈ Rρ) dρ.

In order to bound (B.19), we bound each term separately. For the first term in (B.19),

∫ 1
n1−δ

0
P (r̂ /∈ Rρ) dρ ≤

1
n1−δ .

For the second term in (B.19), from Lemma 2 and Lemma 7,

∫ 1

1
n1−δ

P (r̂ /∈ Rρ) dρ ≤
∫ 1

1
n1−δ

(
2
√

2C ′′Λ2√
ρ

)d
exp

(
− ρn

C ′λ2

)
dρ

=
(
2
√

2C ′′Λ2
)d ∫ 1

1
n1−δ

ρ−
d
2 exp

(
− ρn

C ′λ2

)
dρ.

Define ρ′ , n1−δρ, i.e., ρ = ρ′/
(
n1−δ

)
. Then,

∫ 1

1
n1−δ

P (r̂ /∈ Rρ) dρ ≤
(
2
√

2C ′′Λ2
)d 1
n1−δ

∫ ∞
1

(
ρ′

n1−δ

)− d2
exp

(
− ρ
′nδ

C ′λ2

)
dρ′

=
(
2
√

2C ′′Λ2
)d 1

(n1−δ)1− d2

∫ ∞
1

(
ρ′
)− d2 exp

(
− ρ
′nδ

C ′λ2

)
dρ′

≤
(
2
√

2C ′′Λ2
)d 1

(n1−δ)1− d2

∫ ∞
1

exp
(
− ρ
′nδ

C ′λ2

)
dρ′

≤
(
2
√

2C ′′Λ2
)d 1

(n1−δ)1− d2

C ′λ2

nδ

∫ ∞
1

exp
(
− ρ
′nδ

C ′λ2

)
d

(
ρ′nδ

C ′λ2

)

=
(
2
√

2C ′′Λ2
)d 1

(n1−δ)1− d2

C ′λ2

nδ
exp

(
− nδ

C ′λ2

)
.
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For the third term in (B.19), with Lemmas 2 and 7,

∫ ∞
1

P (r̂ /∈ Rρ) dρ ≤
∫ ∞

1

(
2
√

2C ′′Λ2ρ√
ρ

)d
exp

(
− ρn

C ′λ2

)
dρ

≤
∫ ∞

1

(
2C ′′Λ2

)d exp
(
− ρn

C ′λ2

)
dρ

=
(
2C ′′Λ2

)d ∫ ∞
1

exp
(
− ρn

C ′λ2

)
dρ

=
(
2C ′′Λ2

)d C ′λ2

n
exp

(
− n

C ′λ2

)
.

Therefore, (B.19) becomes

E
[
‖r̂ − r∗‖22

]
≤ 1

n1−δ +
(
2
√

2C ′′Λ2
)d 1

(n1−δ)1− d2

C ′λ2

nδ
exp

(
− nδ

C ′λ2

)
+
(
2C ′′Λ2

)d C ′λ2

n
exp

(
− n

C ′λ2

)

= 1
n1−δ + 2

3d
2 C ′

(
C ′′
)d (Λ2)d λ2n

(1−δ)d
2 −1 exp

(
− nδ

C ′λ2

)
+ 2dC ′ (C ′′)d (Λ2)d λ2

n
exp

(
− n

C ′λ2

)
.

�

Corollary 2. Suppose that Assumptions F2, A1, A2, A4, and A5 hold, and let δ > 0 be an arbitrary
positive constant. Then, for any positive integer n,

E
[(
α̂REG(m,n) − α

)2
]

≤ U2
Lip

(
2

3d
2 C ′

(
C ′′
)d (Λ2)d λ2n

(1−δ)d
2 −1 exp

(
− nδ

C ′λ2

)
+ 2dC ′ (C ′′)d (Λ2)d λ2

n
exp

(
− n

C ′λ2

))
+ U2

Lip

(
E
[
(M (ω))2

]
+ n−1+δ

)
= U2

LipE
[
(M (ω))2

]
+O

(
n−1+δ

)
.

Proof. From (B.15) and Theorem 3, we have that

E
[(
α̂REG(m,n) − α

)2
]

≤ U2
LipE

[
(M (ω))2

]
+ U2

LipE
[
‖r̂ − r∗‖22

]
≤ U2

Lip

(
E
[
(M (ω))2

]
+ 1
n1−δ + 2

3d
2 C ′

(
C ′′
)d (Λ2)d λ2n

(1−δ)d
2 −1 exp

(
− nδ

C ′λ2

)
+ 2dC ′ (C ′′)d (Λ2)d λ2

n
exp

(
− n

C ′λ2

))
.

�
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C. Proofs for Section 6

This section presents the proof of Theorem 4 in Section 6.2. In addition to the notation defined in
Section B, we define the following: L (~ω) is an n× 1 column vector,

L(~ω) ,
(
L(ω(1)), . . . , L(ω(n))

)>
,

and ~H is an n× n diagonal matrix,

~H ,


h
(
ω(1)) 0 · · · 0

0 . . . . . . ...
... . . . . . . 0
0 · · · 0 h

(
ω(n))

 .

We need the following lemma to prove Theorem 4.

Lemma 8. Given a weight function h(·), if Assumptions F2, A6, A7, A8, and A9 hold, then as
n→∞,

E
[(

Φ(ω)(r̂(~h)− r∗(h))
)2] = O

(
n−1+δ

)
,

where δ > 0 is an arbitrary positive constant.

Proof. Following the proof of Theorem 3 for unweighted regression, under appropriate technical
assumptions, as n→∞,

(C.1) E
[
‖r̂ − r∗‖22

]
= O

(
n−1+δ

)
,

where δ > 0 is an arbitrary positive constant.
Substituting L (ω) with

√
h (ω)L (ω), L̂ (ω, ζ) with

√
h (ω)L̂ (ω, ζ), and Φ (ω) with

√
h (ω)Φ (ω),

the assumptions in Theorem 3 become Assumptions F2, A6, A7, A8, and A9 here, and the regression
coefficients r∗ and r̂ become r∗ (h) and r̂(~h). Then we can directly apply (C.1) and derive that, as
n→∞,

E
[∥∥r̂(~h)− r∗(h)

∥∥2
2

]
= O

(
n−1+δ

)
.

Moreover,

E
[(

Φ(ω)(r̂(~h)− r∗(h))
)2] = E

[
E
[(

Φ(ω)(r̂(~h)− r∗(h))
)2∣∣∣ ~ω, ~ζ]]

= E
[
(r̂(~h)− r∗ (h))>E

[
Φ (ω)>Φ (ω)

]
(r̂(~h)− r∗ (h))

]
= E

[∥∥r̂(~h)− r∗ (h)
∥∥2

2

]
= O

(
n−1+δ

)
,

where E
[
Φ (ω)>Φ (ω)

]
= 1 is from the orthonormality assumed in Assumption A7.
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�

Lemma 8 establishes that the mean squared error between our approximation and the best
approximation decays at the rate n−1+δ for any δ > 0. With this lemma, we can establish the
following theorem:

Theorem 4. Given a weight function h(·), if Assumptions F2, A6, A7, A8, and A9 hold, then

lim
n→∞

E
[
(α̂REG(m,n,h) − α)2

]
=
(
E
[
f
(
Φ(ω)r∗(h)

)]
− E

[
f
(
L(ω)

)])2
.

Proof. Decomposing the MSE of α̂REG(m,n,h), we have

E
[(
α̂REG(m,n,h) − α

)2
]

= E
[(

E
[
f
(
Φ(ω)r̂(~h)

)∣∣∣ ~ω, ~ζ]− E [f (Φ (ω) r∗ (h))] + E [f (Φ (ω) r∗ (h))]− E [f (L (ω))]
)2
]

= E
[(

E
[
f
(
Φ(ω)r̂(~h)

)∣∣∣ ~ω, ~ζ]− E [f (Φ (ω) r∗ (h))]
)2
]

(C.2)

+ (E [f (Φ (ω) r∗ (h))]− E [f (L (ω))])2

+2E
[
E
[
f (Φ(ω)r̂ (h))− f (Φ (ω) r∗ (h))

∣∣∣ ~ω, ~ζ]] (E [f (Φ (ω) r∗ (h))]− E [f (L (ω))]
)
.

We analyze the three terms in (C.2) separately. The first term in (C.2) satisfies

E
[(

E
[
f
(
Φ(ω)r̂(~h))

∣∣∣ ~ω, ~ζ]− E [f (Φ (ω) r∗ (h))]
)2
]
≤ U2

LipE
[(

E
[
Φ(ω)

(
r̂(~h)− r∗ (h)

)∣∣∣ ~ω, ~ζ])2
]

≤ U2
LipE

[(
Φ(ω)(r̂(~h)− r∗(h))

)2]
.

The third term in (C.2) satisfies

2E
[
E
[
f(Φ(ω)r̂(~h))− f (Φ (ω) r∗ (h))

∣∣∣ ~ω, ~ζ]] (E [f (Φ (ω) r∗ (h))]− E [f (L (ω))]
)

≤ 2ULipE
[
E
[∣∣Φ(ω)(r̂(~h)− r∗(h))

∣∣∣∣∣ ~ω, ~ζ]] ∣∣∣E [f (Φ (ω) r∗ (h))]− E [f (L (ω))]
∣∣∣

≤ 2ULip

√
E
[(

Φ(ω)(r̂(~h)− r∗(h))
)2]∣∣∣E [f (Φ (ω) r∗ (h))]− E [f (L (ω))]

∣∣∣.
Combining these inequalities with Lemma 8, the result follows. �
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