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A. The Weighted Regression Method: Practical Implementation

In this section, we describe the practically implementable variation of the weighted regression
method that is demonstrated in the numerical results of Section In this two-pass procedure, we
will first approximate L(w) with an unweighted regression and obtain #; from #, we will construct
an approximation to the weight function hgpe(-) of to be used subsequently in a weighted
regression.

Following Remark @ let m =1and n = k. As k — oo, Lemma (1| and imply that, for a

fixed scenario w,
(A.1) \/E(<I> ()P + M (w) — L(w)) 4 N(0,? (w) (Zy + X))@ (w)T ).

Equation (A.1)) suggests that when k is large, it is reasonable to approximate the distribution of
the portfolio loss L (w) given @ and ¢ by a normal distribution with mean ® (w)# + M (w) and
variance ® (w) (a7 4+ 5y) ® (w) " /k. Given this approximation, we can approximate hopt (+) with

its posterior mean:

L= \/%(<I>(w)f+M(w)—c))
(A.2) E|hopt (W)W, (| =N .
| 4 (wb (@) (Sar +50) @ ()T

(Notice that # depends on @ and C.) If the basis functions are well-chosen, the model error M (w) is
small in magnitude relative to the unweighted regression approximation ®(w)#. Further, in practice,
we observe that the denominator of the argument in the right-hand side of does not vary by
more than one order of magnitude. These observations suggest an overall approximation for the

globally optimal weight function hop(-):

(A.3) hw) = N ( -
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for some constant I' > 0. Using the weight function (A.3), we have a two-pass weighted regression

procedure:

o the first pass is an unweighted regression and provides ® (w)#, an approximation of L (w)

used to determine weights;

o based on ¢ (w) 7, the second pass is a weighted regression with weights defined by (A.3)).

Notice that this two-pass weighted regression procedure assigns weights with a weight function
inspired by hopt(-), and it does not depend on information of L (w) or any quantities that are
unknown in practice. The two-pass weighted regression method is compared with the unweighted

regression method in Section [6.3]

B. Proofs for Section [

This section presents the proofs of the results in Section [4] where the asymptotic analysis of the
regression estimator has been established. First, we show the following lemma, which establishes

the existence and uniqueness of the optimal solutions to and .

Lemma 3. Given Assumptions and the function g (-) is strictly conver over R%, and the

function (1/n) %, G(-,w®, D) is strictly convex over R almost surely.
Proof. As a function of r, the Hessian matrix of (1/n) Y1 G(-,w®,¢®) is
1 ) ) 1™ . ) ) ) 2
2 (= @ D)) =2 (= () @)y _ (i)
(n;G(r,w ,C )) =V (n;(L(w ) — D (w )r) >

— 25 ) T,

1=

:\I\D

—_

which is positive semidefinite almost surely under Assumption Therefore, % v G, w@ ¢ (i))
is strictly convex almost surely.

The Hessian matrix of g (r,w) is

V(g (r,w)) = V? (E {(L (w,) — @ (w) rﬂ) =V? (rE [cb ()" ® (w)} r) =21,

Therefore, g (r) is strictly convex.
|

Given Assumptions and -, A2| according to Lemma [3 l, the optimal solutions to ) and .
exist and are unique almost surely.

We use the following notation: & denotes the n outer stage scenarios,

o E (w(l), . 7w(”))—r,



5 denotes the inner stage uncertainty,

® () is an n-by-d matrix,

and L (LU, 5 ) is an n-by-1 column vector,

£(3,8) 2 (B®,¢M),... L, ™).

From regression theory, the unique optimal solution to takes the form

-1

=\

(B.1) P=(e@e@) ®@'L(a,)

Then we estimate the risk measure by
aReGmm 2 E[f(@ (@) )@,

From Assumption , the disturbance term ¢ (w, ¢) of satisfies

(B2) E [« (w,0)] ] = 0,
and

(B.3) Var (= (w, )| w) = )
We define

e(@.0) 2 (5((‘,(1)7((1))7“_,E(M(nm(n)))f

From the definition of the model error M (-) in Section [4| and the projection theorem, the basis
functions ¢1 (+),..., ¢4 () are orthogonal to M (-), i.e.,

(B4) E ¢ (w) M ()] = 0,

for £ =1,...,d. We define N
M (@) 2 (MwD),..., M) .



B.1. Differentiable Case

Lemma [1} Suppose Assumptions [A3, and[A3 hold. As the number of scenarios n — oo,

>
\/ﬁ(f—r*)i>N(0,zM+”>,
m

where
Su2EM2 )0 W) @W)], D2E[pwew) W),
Therefore, as n — oo,
I =y = 228
VD

Proof. From Theorem 5.3 in |White| (2001), we have

_1
pa 2

(B.5) (Cov (n207 (@) (M(@) + (@, 0))) vl — 1) 5 N (0,1a).

Note that using (B.2)) and (B.4)),

= [ (2T@M(@) +£@,0) (+T@M@) +<(@,))
! + €[0T @)E [«(3,0e7(3,0] 4.0] 2(@)]

n
2 - - I~
+-E[2T @M@ [¢'(@,0)| @] o))
From ,
v(w(l)) 0 0
v(w(2))
- S 0
E 2@, 0T @,0)|@,¢] = B
0
0 0 ue™)



Further,

%E 2T @M @M (@)0()]
E |3 (w9 0) £ [$ 6160 w0)
1 =1 =1
E |35 a1 021200 E |3 G320
E [67(w) M) E 61 (w)6a(w) M)
E [9a(e0)61 () M) E [¢3() M%)

= E[M*(w)®(w) 0(w)].

Therefore,

—

(B.6)  Cov(n 20" (&)(M(@) + (@, ) = E[M(w)®(w) (w)] +1E [0(@)D(w) e wW)].

m

From (B.5)) and , we have that

1 _
m

where ;s and ¥, are defined by . Based on the result above, we have that

ol

V(=) 5 N(0,1,),

nllf =2 = (Vo — )" (Va @ —r*) = Op (1),

as n — oo, and the result follows.
|

Theorem [T Suppose that Assumptions [F'1], [A3, and[A3 hold. Then there exists a sequence of
random variables { By}, forn=1,2,..., satisfying

Ban = Bip 2 E [f (®(w)r)] - a,
so that
Vvn (@REG(m,n) —a - BM,n)
b))

4N (0EL (L@@ (Su+ 22 ) ELF ) @)T).
where Xy and X, are defined by . Further, the asymptotic bias B}, satisfies
[Biy— E L7 (L) M (@)]] < P57 (01 (w))?].
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Proof. By Taylor’s theorem,

F@W)7) = f(Lw) = f(Lw)(@w)i—Lw)
+%f” (L (@) +8-(2(w)?—L(w)(®w)7F—Lw),

where 6 € (0,1) is a random variable. Then

dREG(m,n) —a=

(B.7) -

For the first term in ,
E[f (L) (@ @)7— L@)] @] =E[f (L) ®w)] (7 ")~ E[f (L (@) M ()]
Further, from Lemma [T} we have that

Vi (E[f (L (w) @ W)]) (7 —17)

(B.8)
N (0E @) W] (Su+ 2 EFC@ew@)),
as n — oQ.
Combining and , and letting
(B.9)

Bagn 2 E[f (L (@) M (w)] — E Bf (L () + 0 (B (@) 7 — L) (@ w) - Lw)?

equation follows. From Lemma

and then by the continuous mapping theorem,

(B.10) aReGmm) = E[f(@w)7) | &, D E|[f (@w)r)].

Also notice that equation implies

(B.11) AREG(mn) — @ — Bt - 0.
Combining (B.10)) and (B.11)),
(B.12) Barn = Bip = E [ f (®(w)r)] - a,



Given and (B.9),

Butn ~EL/ L@IM @) < [E| 37" (L0)+0 (@)~ Lw) (@ @7~ Lw)|a.]
< I [(@ (W) - L)?] @]
(B.13) - @E [(@ ()7 = @ (w)r)|@,] + @E (M ()],
where we have used in equation . From Lemma (1, we have
U;iffE [(@ ()7 =@ (w)r)?]@,(] = Ugiﬁ (F=r)TE[@ W) W] (-1

(B.14) — U;iff = 7a*”g _ OPn(l).
From , , and , we have

By~ E [ (L () M (@)]| < "5 [ (@))?].

m

B.2. Lipschitz Continuous Case

Theorem [2, Suppose that Assumptions[F3, [A2, and[A3 hold. Then as the number of scenarios

n — 0o,
(@REG(m,n) - O‘)2 < Uf,E [(M (W))Q] + Op (711) :

Proof. Note that
GRreG(mm — @ = E [ f(® (@) M) @, —E[f (L@)] = E[£(® @) 7) = f (L @) &,] .
From the Lipschitz continuity condition and Jensen’s inequality,
(drecimm — o) = (E[£(@@)#) — f(L@))&.]])°
<E[(f@W)A) - F (L))o,
< URE[(® ) (7 =) = M (w))?| 5, (]
= UZLE [(® () (7 = 1))?|@,C] + UBLE [(M (@),

where we have used (B.4]). Then, by the orthonormality of ®(-),

(ARecimm — ) < UZE [(@ (@) (¢ — )% @] + UZE [(M (@))7]
(B.15) = U2y, |17 =3 + UBE (M (@))°].



From Lemma [T} as n — oo,

by

Vn(i—r) S N (0,2M+”> .

m
From the continuous mapping theorem, as n — oo, nUEip |7 — r*|3 converges to a generalized chi-
square distribution. Therefore, for any e > 0, there exist A, > 0 and N, > 0, such that for any
n > N,

P (nUgip |7 — |5 > AE> < €,

which implies that

1
~ * 12
Utip 1P =[5 = Op <n> :

With (B.15)), the result follows.

|
In order to prove Lemma [2] Theorem (3| and Corollary [2| we need the following lemmas.
Lemma 4. For any r € R?,
g(r) =g (r) = lr—r*3-
Therefore, for any r € R and R, defined by , we have
R, = {7“ eR? : g(r) Sg(r*)+p}.
Proof. By the projection theorem and the fact that ® is orthonormal,
[/ a 2
90)=E|(L@.0)-2w)r)]
r. 2
—E|(L(w.Q) = ® (@)1 +® ()1 — @ (w)r) }
: *\\2 2 * 2
=E[(@w) (r— )| +E|(L(@,O) - ®(w)r*)
— 26 [(® W) (r =) (L (w,¢) = @ (w) )]
=lr=r 3 +90") =20 =) E[@ @) (L(w ()~ w)r)]
= [lr = r*[5 +g (") -
|

Given R, define

(B.16) 7, € argmin 1 En:G (r,w(i), g‘(i)) ,

TERp n i=1

which is the sample optimal solution of r over R,. Under Assumptions and according to

Lemma |§|, the optimal solution 7, exists and is unique almost surely.



Lemma 5. For p > 0, 75, € R, if and only if ¥ € R,.

Proof. Notice that 7 € R, implies 75, = 7, and thus 7 € R, implies 72, € R,,.

On the other hand, if 7o, € R, and 7 ¢ R,, we must have #* ¢ Ro,. Therefore, we can have

% ;G (7,0®,¢0) < % ;G (Fapri®,C9).

Then for any ¢ € (0,1), by the convexity of (1/n) 3", G(-,w®,¢®),

% Xn:G (@fgp +(1— ) 7,w, C(l’)) < (p% zn: e (T2P’w(i)’ ¢ )) +(1—¢) % S G (f,w(’), C(z))
=1 i=1 i=1
< :LG:(; (apst®, ),
=1

and thus ¢, + (1 — ) 7 € Ro,, i.e.,

g (pra, + (1 —)7) > g (r*) + 2p.

However, we know that g (-) is convex and thus continuous, and then
ptg(r7) 2 g(Fap) = lim g (oo + (1 — ) 7) 2 g (") + 2p,

which is a contradiction.

Lemma 6. Suppose that Assumptions [F3, [A3, [A], and[A3 hold. Let p > 0 be an arbitrary

constant. Then consider any 6 € (0,00) and suppose that

C'\? 2v/2C" Ay, 1
(B.17) n > P (dlﬂ (ﬁ) +1n<0)> ’

where X is defined in Assumptz'on C’ and C" are universal constants, i.e., they do not depend

on the problem, and

Ap2 (2y/p+1)d+2E [(M (w))*] +2E [( (,0))?].
Then,
P(F¢R,) <0.

Proof. When 6 > 1, the result is trivial. When 6 € (0, 1), the result follows from Corollary 5.20 in
Shapiro et al.[(2009) and Lemmaabove. In the setting here, we let r = 2p, ¢ = p, § = 0, and then
a = 2p. Also notice that in our problem, v =2, ¢ =1, and D = D3, = 2,/2p. Further, compared



to the notation of Shapiro et al. (2009), we use G () as F'(-), g (-) as f(-), Yy () as My 5 (-), n
as N, d as n, and Ay, as L.

Assumption (M5) in [Shapiro et al. (2009) is from our Assumption i.e., the moment gener-
ating functions of [|® (w)||3, (M (w))?, and (& (w,())? are finite-valued in a neighborhood of zero.
In particular,

G (,w,0) = G (", 0,0)

:‘(ﬁ(w7<)_‘b(w)r/)2—([A/(w,o_q)(w)r//)Q‘
= (@) + @ ()" — 2L (@) @ (@) (' — ")
’(I) ) (' =) + @ (W) (" — ) + 20 (w)r* — 2L (w ‘”(I) )l I = |,

< ) 1o @)y [ =],

( o v20 + [|® (w)]l5 V20 + 2| M (w) +g(w7<)\> 19 @)1y [l — "]l

= (2v20 1@ @)I13 +21M (@) + ¢ (@, 1@ @)l) [Ir' = 7",

< (@v2p+ 1) |® @)I3 + M @)+ (@, OF) | ="l

< (V20 + 1) [® @) 13+ 2 (M (@))° +2 (2 (@,0))%) I = 1"l

1© @)lly 17 = 7l + 1@ @)l 7 = [l + 2|2 (@, ¢) = ® ()

)
(w)

Since in a neighborhood of zero, the finiteness of the moment generating functions of ||® (w)][3,

(M (w))?, and (e (w,¢))? implies the finiteness of the moment generating function of

(2v2p +1) @ @)[13 +2 (M (@))* +2 (e (@, 0)),

Assumption (M5) in [Shapiro et al.| (2009) is satisfied.

Assumption (M6) in [Shapiro et al| (2009) is from the Assumption [A5] Notice that Assump-
tion is weaker than Assumption (M6) in Shapiro et al| (2009), but according to the discussion
after Assumption (M6) in |Shapiro et al.| (2009), Assumption here is sufficient.

[ ]

Lemma [2} Suppose that Assumptions [F3, [A3, [A], and[A3 hold. Let p > 0 be an arbitrary

constant. Then for any positive integer n,

. 220" A, d pn
P(r¢ R, < (W’) exp <_C")\2) ,

where X\ is defined in Assumptions C’ and C" are universal constants (i.e., constants that do

not depend on the problem), and

o2 (20 +1)d+2E (M (@))*] + 2E [( (,Q))*] -
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Proof. Define

s [2V2C" Ay, ¢ pn
0= T exp |~z |-

1y 2 iz
= OX (g1 (220" A —|—ln<1) ,
p VP 0

which satisfies (B.17)), and thus, by Lemma |§|,

d
R 2v2C" A pn
P (T'Qp §é Rp) < (\/Z)2p> exp (— C’)\z) .

Then,

From Lemma
P(F ¢ Ry) =P(f2p € Rp).

m
Lemma 7. For any p > 2,
A, < gAQ.
Proof. Notice that for any p > 2,
Ay = (2y/p+1)d+2E [(M )] +2E [(e (@, )]
1 2E[(Mw)*]  2E[(ew, Q)]
'””(@+¢Jd+ N
E|(M (w))? E w, ¢ 2
(e o L] e on)
= g ((2v2+1) d+2E [(M @))*] + 2E (e (w,0))’])
_ VP
= EAQ
m

Theorem [3| Suppose that Assumptions[FZ, [43, [A]), and[A3 hold, and let § > 0 be an arbitrary
positive constant. Then for any positive integer n,

E[(® (w) (7 —r))°] = E[[IF = r*[3]

1 3d d a-8)d _ nd 24C" (0" (Ag)? N2 n
< 5 220 (CN) (M) W 1exp<—m2>+ : )n( s exp(‘mz)

=0 (n71*).

11



Proof. Notice that

E[(®(w) (7 —r)’] =E[E[(a( r—r)ﬂw,

c/\l
[E—
—

—E[(F-r)E[® W) W) (7 )]
:E[nr—r H 2]
:/0 P(Hr—r*\|2>p) dp.

(B.18) —/ ») dp,

where we have used Lemma [l

Without loss of generality, we consider an arbitrary positive constant ¢ € (0, 1),

(B.19) AR HE /011‘5 P(fF¢R,) dp+ /11

o0

PG ¢ R)dp+ [ P ¢ Ry)dp

In order to bound (B.19)), we bound each term separately. For the first term in (B.19)),

1

oy . 1
/0 P(T¢Rp)dpgm-

For the second term in (B.19), from Lemma [2{and Lemma

1 1 21/2C" Ay a pn
P(F ¢ R,)dp < 2v2C7he Y
[, PEER) p—/15< N > exp( C/A2> ’

=) o

_ ax ¢ [ —d pn
= (2\@0 Ag) /llép 2 exp <_C")\2> dp.

1=, e, p=p/ (nké). Then,

Define p' £ n

12



For the third term in (B.19), with Lemmas [2 and [7}

d
00 0o (93207 A, om
P(? < S op -
/1 (7"¢Rp)dp_/1 ( 7 ) eXp( C,V)dp

o0 n

< /1 (QCl/AQ)deXp <_C€)\2> dp
o0 n

= (20"A2)d/1 exp <_Cp’)\2> dp

a2 O'\? n
= (20//A2) " exp <_C'/)\2) .

Therefore, (B.19) becomes

E [[17 - r13]
1 s \4 1 C'\?2 nd by vd O'A2 n
< ) + (2\/50 Ag) (n1_5)1—% 5 XD | ~Fng + (20" Ag) —— XD (_C’/)\Q)

1 3d d dg (=0d 4 nd QdC,(C”)d(Ag)d)\Q n
= 5 +220(C) (M) N exp | - + p exp |~z ) -

Corollary 2l Suppose that Assumptions[F2, [A2, [A4, and[A3 hold, and let § > 0 be an arbitrary
positive constant. Then, for any positive integer n,

E [(dREG(m,n) — a) 2}

3d a-8)d _ nd 2d " (O (A)E N2 n
< Ugip (232 c’ (C”)d (A2)d Npozo ! exp <— C’)\2> + ( )n (A2) exp (_C’)\?>

+ Uiy (E[(M (@))?] +n71%)
= U,E[(M @))*] + 0 (n71+7).

Proof. From and Theorem [3| we have that
2
E {(aREG(m,n) - Oé) :|
< UZLE [(M ()] + U2, E [I17 = r7I13]
< Uty (E[(M (@))’]

1 ¥ dpydy2 U524 n’ 210" (C") (Ag)* N2 n
+n1—6 +22C" (C")" (A2)* Mn™ 2 exp |~ + exp _

13



C. Proofs for Section

This section presents the proof of Theorem [ in Section In addition to the notation defined in

Section Bl we define the following: L (&J) is an n x 1 column vector,
L@) £ (L@®),.. L™)

and H is an n x n diagonal matrix,

h(w®) 0 0
ge| °
: S 0
0 ) h(w("))

We need the following lemma to prove Theorem [4]

Lemma 8. Given a weight function h(-), if Assumptions and hold, then as

n — oo,
N # 2 _
E[(@@) () ~ ()] = 0 (n7+7),
where § > 0 is an arbitrary positive constant.

Proof. Following the proof of Theorem [3| for unweighted regression, under appropriate technical

assumptions, as n — oo,
(C.1) E [l = 3] =0 (n "),

where 6 > 0 is an arbitrary positive constant

Substituting L (w) with /h (w)L (w (w, ) with \/h L (w, (), and ¢ (w) with /h (w)® (w

the assumptions in Theorem|3| become Assumptlons@, @, [A7 [Ag] and@here, and the regression
coefficients r* and 7 become 7* (h) and #(k). Then we can directly apply (C.1)) and derive that, as

E[lF(R) = (B3] = O (n=1+).

n — 00,

Moreover,

[E[ (®(w —r*(h)))z\(z,m

|(P(R) =" () TE |@ ()" @ ()] (7(R) = 7" (R))]
7)== () [13)

).

where E [CD ()" @ (w)} = 1 is from the orthonormality assumed in Assumption

E[(@(w)(#(h) — r(h))°] =

E
E
E
(0]

14



Lemma [§] establishes that the mean squared error between our approximation and the best
approximation decays at the rate n=11% for any ¢ > 0. With this lemma, we can establish the

following theorem:

Theorem [4l Given a weight function h(-), if Assumptions and [A9 hold, then
. . « 2
Tim E | (@Reciman — @)F] = (E [f(@(w)r* ()] — E[f(L@))])*.

Proof. Decomposing the MSE of &reg(m,n,n), We have

E [(dREG(m,n,h) — 06)2}

+2E [E [ £ (@(w)7 () = £ (@ (@) ()| @, ]| (ELF (@ () r* ()] = Ef (L (@))])-
We analyze the three terms in separately. The first term in satisfies
e |(E[s@@r@)|a.d] - B @@ )| < URE | (E[ow) (1) - ()] 2.])°]
< UZLE[(@w)((R) — (k)]

The third term in (C.2)) satisfies

< 2UpE [E [|2(w)(#(R) — ()] @, ]} [ELf (2 (@)™ ()]~ Ef (L ()]
< 2y [E (@) () — r(h) ] [ELF (@ ) ()] ~ ELF (£ ()] |

Combining these inequalities with Lemma |8 the result follows. |
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