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We propose a message-passing paradigm for resource allocation problems. This serves to
connect ideas from the message passing literature, which has primarily grown out of the
communications, statistical physics, and artificial intelligence communities, with a problem
central to operations research. This also provides a new framework for decentralized man-
agement that generalizes price-based systems by allowing incentives to vary across activities
and consumption levels. We demonstrate that message-based incentives, which are charac-
terized by a new equilibrium concept, lead to system-optimal behavior for convex resource
allocation problems, yet yield allocations superior to those from price-based incentives for
non-convex problems. We describe a distributed and asynchronous message-passing algo-
rithm for computing equilibrium messages and allocations, and demonstrate its merits in
the context of a network resource allocation problem.
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1. Introduction

Message-passing has emerged as an active research topic in a number of fields, including
communications, statistical physics, artificial intelligence, probability theory, statistics, and
signal processing. Interest was to a large extent triggered by the success of “turbo decoding”
(Berrou et al., 1993; Benedetto et al., 1996; Frey, 1998; Richardson and Urbanke, 2001b),
a message-passing algorithm now used routinely in communication systems. The decoding
problem it aims to solve is NP-hard, and it was a surprise that this simple and efficient
algorithm for all practical purposes solved the problem. Separately, inspired by ideas from
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statistical physics, message-passing algorithms have been proposed for solving certain diffi-
cult combinatorial optimization problems such as satisfiability and graph coloring (Mézard
et al., 2002; Braunstein et al., 2005; Aurell et al., 2005; Braunstein and Zecchina, 2004;
Maneva et al., 2005). There has been much work dedicated to understanding whether mes-
sage passing can be useful in other contexts. For example, a body of empirical work in various
problem domains demonstrates promise in areas such as data-mining (e.g., McCallum, 2003;
Pinto et al., 2003)), computer vision (e.g., Freeman et al., 2000; Coughlan and Ferreira, 2002;
Sun et al., 2002), and bioinformatics (e.g., Leone and Pagnani, 2005; Letovsky and Kasif,
2003; Sutton et al., 2004).

Message-passing algorithms can be applied to a wide variety of NP-hard optimization
and inference problems. Further, their structure makes them amenable to distributed com-
putation. One may be tempted to dismiss message passing as yet another ad hoc, heuristic
method. However, for some significant problems such as decoding and satisfiability, message-
passing algorithms represent the state-of-the-art method of solution. Moreover, message
passing bears mathematical structure that has made it useful as an analytical tool. For
example, analytical methods based on message passing have shed light on the asymptotic
performance of certain classes of codes (Richardson and Urbanke, 2001a; Montanari et al.,
2005; Montanari and Tse, 2006) and led to solutions and structural insights for certain large-
scale combinatorial optimization problems (Aldous, 1992, 2001; Aldous and Steele, 2003;
Talagrand, 2003; Gamarnik et al., 2006).

Despite their impressive successes, message-passing algorithms are poorly understood
theoretically. Though a body of work is emerging, existing results are somewhat disparate
and often customized to particular contexts. It is also surprising that such methods are
largely unknown to the operations research community. In this paper, to advance under-
standing of message passing and to foster a connection with operations research, we will
develop and interpret such an approach in the context of a classical resource allocation prob-
lem. Here, we will demonstrate that message passing can be viewed as a generalization of a
classical decentralized solution technique, that of price-based decomposition. This will allow
us to both elucidate the behavior of message passing and to demonstrate how it can offer
offer significant benefits.

To begin, consider a system consisting of a set of activities and a set of resources. Each
activity contributes utility to an overall system objective, as a function of the resources
allocated to it, and each resource is of limited supply. The system manager’s decision problem
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is to allocate resources between the activities, so as to maximize overall utility. This resulting
optimization program, whose objective and constraints are additively separable, is one of the
oldest and most well-studied problems in operations research, economics, and engineering.

We will consider decentralized decision making methods for resource allocation. Such
methods decompose the problem across the collection of agents that participate in the sys-
tem. The spirit here is to allow activity managers, each responsible for a particular activity,
to make their own resource consumption decisions. These decisions cannot be made in iso-
lation, however. Since resources may be profitably used by other activities, consumption
decisions by a single activity manager have an impact across the entire system. Decentral-
ized methods address these decision externalities via coordination signals, or incentives, that
influence resource consumption decisions. These incentives serve to align the objective of
each individual activity manager to that of the system. Note that, in this paper, we are not
considering “incentives” in a game theoretic or strategic sense, but rather as a coordination
mechanism. We are assuming that activity managers are myopic with respect to the incen-
tives they are provided, and do not seek to manipulate these incentives through strategic
behavior. This would be the case, for example, if the agents are cooperative and jointly wish
to maximize the global utility. It would also be the case in in a price-taking or competitive
equilibrium setting, where, even if agents are strategic, no single agent has sufficient market
power to manipulate incentives, and myopic behavior is optimal.

One benefit of decentralized methods is that they allow for greater flexibility in the
management of complex systems. This is illustrated in the following example:

Example 1. (Organizational Management) Consider a large and complex firm. Activ-
ities represent divisions of the firm, and resources represent inputs to the processes of the
firm, such as capital or raw materials, that are of limited supply. The firm’s resource al-
location problem is to optimize the distribution of the resources across the divisions. Each
division may, in turn, be faced with its own complicated internal decision making process.
Given an allocation of resources, the benefit generated by a division’s activity may entail opti-
mization of a large number of decisions that govern how the activity is conducted. Any model
of the division that is tractable from the perspective of a central planner will necessarily be
simplified or abstract. As such, the resource allocation decisions made by a central planner
can constrain activities in ways that prevent the beneficial reallocation of resources between
activities.
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An alternative to the centralized micromanagement of resources is to have resource con-
sumption decisions made by each individual division. The activity managers will have the
greatest expertise in and knowledge of their particular activities. Further, over time, the
activities may be changing, or the managers may be learning how to better conduct their
activities. Hence, activity managers are in the best position to accurately model and under-
stand their resource needs on an ongoing basis. By having individual divisions make their
own resource consumption decisions, decentralized methods allow for greater management
flexibility, and more robust and efficient decision making.

Decentralized methods provide further benefits by reducing communication costs and
distributing information processing tasks. This allows for their use in many settings, such as
the following, where centralized solutions have prohibitive communication and computational
requirements:

Example 2. (Network Rate Control) Consider a communications network consisting of
a set of links (resources), and a set of users (activities). Each user wishes to transmit data
across a particular path (subset of links) in the network, and generates utility as a function of
the transmission rate allocated to it. Each link in the network is capable of transmitting data
at some finite capacity. The network manager’s problem is to allocate the capacity along each
link among the users requiring service from the link, so as to maximize the overall utility.

In such a network, the users and links are geographically distributed and physically dis-
parate. A central planner would require a global view of the network. This would entail
significant additional communication that may degrade the performance of the network. Fur-
ther, a central planner would require computational resources commensurate with the size
of the network. Decentralized methods, on the other hand, allow users and links to coor-
dinate their respective consumption and allocation decisions by purely local communication
that occurs alongside the regular flow of network traffic. Neither the agents nor the network
manager require knowledge of the entire network. Further, since the computational burden
is shifted to the agents that comprise the network, the network manager does not require
additional computational resources.

In the case where the utility functions are concave (often called the convex resource
allocation problem), the classical theory of convex optimization establishes shadow prices
(Lagrange multipliers) as proxies for decentralization. Given a proper set of prices for re-
sources, each activity manager can optimize resource consumption so as to maximize the
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utility generated by the activity minus the cost (as reflected through prices) of the con-
sumed resources, so that the resulting decision will be optimal for the system manager’s
problem. Price-based methods for decentralized resource allocation have been developed as
far back as the 1950’s, dating to the pioneering work of Arrow, Hurwicz, and others (e.g.
Arrow and Hurwicz, 1977). Such methods have the following benefits:

1. A tractable representation of externalities that leads to system-optimal behavior.
Prices provide a linear representation of externalities, and concisely summarize the
impact of decisions across the system. They enable each activity manager to align
their objective with that of the system manager.

2. Distributed asynchronous algorithms for computing prices and allocations.
Optimal prices and allocations can be computed iteratively via gradient methods.
These methods require only communication between activity managers, which make
resource consumption decisions, and resource managers, which determine prices. Fur-
ther, each activity manager needs only to communicate with the resource managers for
resources it requires. Neither communication with nor even knowledge of other activi-
ties and resources is necessary, nor is any other global coordination or synchronization
required.

In convex resource allocation problems, fixed prices can provide appropriate incentives to
induce system-optimal decisions within activities. This is not generally true for non-convex
problems, where there may be no set of prices which supports a globally optimal allocation.
Non-convexities appear in many practical problem instances for a host of reasons. The
underlying resources may be discrete and indivisible. The activities may have increasing
returns to scale, or inelastic demand for resources. In such cases, price-based decentralized
algorithms may converge to local optima, or may fail to converge at all.

In this paper, we consider prices that vary across activities and consumption levels. We
refer to such nonlinear price functions as messages, as they can be viewed as incentives com-
municated between resource managers and activity managers. Message-based incentives al-
low for a richer description of externalities than prices, while still maintaining computational
tractability. We argue that messages extend many of the benefits of prices to non-convex
resource allocation problems. The contributions of this paper are as follows:

1. We propose a new equilibrium concept for message-based incentives.
We define a set of equilibrium message-based incentives as the fixed points of a message-
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passing operator. We establish that, under broad technical conditions, these equilibria
exist, and that they can support optimal allocations even when prices can not.

2. We demonstrate that messages lead to system-optimal behavior for convex problems.
We demonstrate that in the convex case, message-passing equilibria lead to system-
optimal behavior. Indeed, in this case, messages are locally equivalent to prices: the
marginal incentives provided by a set of equilibrium messages at the optimal allocation
are precisely optimal shadow prices.

3. We argue that messages yield allocations superior to prices for non-convex problems.
For non-convex problems, in general, message-based incentives will not guarantee
system-optimal allocations. This is not surprising, because this class of problems in-
cludes many which are provably intractable. Any method which guarantees global
optimality is not likely to be of practical use in large scale problems. Allocations re-
sulting from message-based incentives will, however, satisfy a property which precludes
the improvement of the system objective under certain types of transfers of resources
between activities. This property is stronger than the local optimality guarantees
which can be made for price-based incentives. Further, we present a computational
case study involving inelastic network rate control in which message-based incentives
yield far superior solutions to alternative heuristics that utilize price-based incentives
or greedy search.

4. We propose a distributed asynchronous algorithm for computing messages and alloca-
tions.
Equilibrium messages can be computed via a successive approximations procedure. We
show how this procedure decomposes into purely local communication between activity
and resource managers. In the inelastic rate control example, this takes a particularly
simple form where the algorithm operates alongside the normal flow of network traffic,
and appends a single real number to each data packet.

The balance of the paper is organized as follows: in Section 2, we describe the resource
allocation problem. In Section 3, we describe the decision externalities that occur because of
decentralization. In Section 4, we define the concept of a message-passing equilibrium, and
compare the optimality properties of the message-based incentives with those of price-based
incentives. In Section 5, we describe a distributed asynchronous algorithm for computing
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message-passing equilibria. Finally, in Section 6, we discuss the application of message
passing to a network resource allocation problem. Proofs are provided in the appendices.

2. Problem Formulation

Consider the following prototypical resource allocation problem: a set of resources R, each
of finite capacity, is to be allocated among a set of activities A. Each activity a ∈ A depends
on some subset R(a) ⊆ R of the resources. For each a and each r ∈ R(a), denote by xar ≥ 0
the decision variable representing the quantity of resource r to be allocated to activity a.
Denote the allocation decisions by x , {xar : a ∈ A, r ∈ R(a)}. Denote by xR(a) , {xar :
r ∈ R(a)} the consumption bundle for activity a. A utility function ua(·) specifies the
contribution ua(xR(a)) ∈ R of activity a to the overall system objective, as a function of the
allocation xR(a) it receives. For each resource r, denote by A(r) , {a ∈ A : r ∈ R(a)} ⊆ A
the set of activities which depend on resource r. Denote by xA(r) , {xar : a ∈ A(r)}
the allocations of resource r. There is a finite quantity br > 0 of each resource r available,
hence we require that xar ∈ Xr , [0, br], for all a ∈ A(r), and that ∑a∈A(r) xar ≤ br. The
relationships between activities and resources can be conveniently encoded using a graphical
representation:

Definition 1. (Dependency Graph) Define the dependency graph D to be an undirected
bipartite graph consisting of vertices corresponding to the activities A and the resources R.
An edge (a, r) is present if and only if activity a depends on resource r, that is, if a ∈ A(r).

Figure 1: A dependency graph. Vertices in the graph correspond to activities and resources,
edges in the graph correspond to decision variables.
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An optimal allocation is determined by solving the following program:

(2.1)
maximize U(x) , ∑

a∈A ua(xR(a))
subject to ∑

a∈A(r) xar ≤ br, ∀ r ∈ R,
xar ∈ Xr, ∀ a ∈ A, r ∈ R(a).

The function U(·) is called the system objective function, and the problem (2.1) is called
the system manager’s problem. Note that the system objective function is separable across
activities but not across resources. If the utility functions are concave, this optimization
problem can be addressed by methods of convex optimization, as we discuss in Section 3.
Our primary motivation, however, is to consider cases where utility functions are not concave,
as in the following example, which we revisit in Section 6.

Example 3. (Inelastic Rate Control) Consider a communications network consisting of
a set of links (resources), and a set of users (activities). Each user a wishes to transmit data
across a particular path (subset of links) R(a) in the network. For each user a and each link
r ∈ R(a), the decision variable xra represents the data transmission rate on the link r that
is allocated to the user a. Each link in the network is capable of transmitting data at some
finite capacity.

The overall transmission rate for a user is constrained by the minimum transmission
rate it is allocated along all the links in its path. Each user a desires some minimum overall
transmission rate wa > 0. If the user is able to transmit at that rate, the user derives utility
za > 0. Otherwise, the user derives 0 utility. Hence, the utility function for user a takes the
form

ua(xR(a)) =

za if, for each r ∈ R(a), xar ≥ wa,
0 otherwise,

which is not concave. As we shall see in Section 6, in this case, the resource allocation
problem is equivalent to a multi-dimensional knapsack problem.

3. Decentralization and Externalities

Under a decentralized decision making scheme, individual activity managers make their
own resource consumption decisions. These individual decisions impact the entire system
since, as a resource is consumed by one activity, the quantity of the resource available for
other activities is reduced. A coordination mechanism is required to address these decision
externalities.
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One very general way that this can be accomplished is as follows: for each activity a,
consider the optimization problem

(3.1) maximize ua(xR(a)) + Ea(xR(a))
subject to xar ∈ Xr, ∀ r ∈ R(a).

Here, the function Ea(·) is defined by

(3.2)
Ea(xR(a)) , maximize ∑

a′∈A\a ua′(xR(a)′)
subject to ∑

a′∈A(r) xa′r ≤ br, ∀ r ∈ R,
xa′r ∈ Xr, ∀ a′ ∈ A \ a, r ∈ R(a)′.

In (3.2), the decision variables are the consumption decisions {xa′r : a′ ∈ A\ a, r ∈ R(a)′}
for all activities except a. Given a consumption decision xR(a) for activity a, the quantity
Ea(xR(a)) is the optimized value of utility across the rest of the system. Relative values of
Ea(·) exactly capture the impact of consumption decisions for the activity a to the rest of
the system. In other words, the function Ea(·) captures the externalities of decision-making
for activity a. This function can be used as an incentive to the activity manager, aligning
the objective (3.1) of the activity manager and the objective (2.1) of the system manager.

In general, however, such a mechanism is not practical. The function Ea(·) can be an
arbitrary multidimensional nonlinear function. It is not clear how to tractably represent or
compute such an object, much less in a decentralized manner. We discuss here two exceptions
that provide tractable special cases. The first involves concave utility functions.

Example 4. (Concave Utility Functions) It is well-known that if utility functions are
strictly concave, then the optimal allocation is unique and supported by a set of prices. In
particular, there exists an allocation x∗ and a price vector p∗ ∈ RR+ , such that x∗ is the
unique optimal solution to the system manager’s problem (2.1), and each x∗R(a) is the unique
maximizer of the optimization problem

(3.3) maximize ua(xR(a))−
∑

r∈R(a) p
∗
rxar

subject to xar ∈ Xr, ∀ r ∈ R(a).

This program opens the door to decentralized management based on an incentive system.
Instead of overseeing each activity’s consumption, the manager of a resource can set a unit
price and leave consumption decisions in the hands of activity managers. If the manager for
activity a maximizes the utility his activity generates minus the cost of resources consumed,
objectives are aligned and he chooses to consume exactly x∗R(a).

One way to interpret a price-based incentive system is as a linear and separable approxi-
mation to the true externalities. If the utility functions are concave, the solution of (3.1) is
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determined by first-order conditions. Hence, we need only to characterize the first-order be-
havior of Ea(·) around the optimal allocation x∗R(a). This behavior is captured by the shadow
price vector p∗, and the price-based incentives in the optimization program (3.3).

Unfortunately, the preceding story does not generally apply when utility functions are
non-concave. Even if there is a unique optimal solution, there may be no price vector that
leads activity managers to make optimal decisions. The solution concept presented in the
next section generalizes price-based incentives in a way that addresses this.

Before moving on to our solution concept, let us discuss a second special case that allows
for general utility functions but imposes a requirement on the structure of the dependency
graph.

Example 5. (A Chain of Activities) Consider a case with resources R = {r1, . . . , rN+1}
and activities A = {a1, . . . , aN}, where each activity ai can only consume the resources ri

and ri+1. Here, the dependency graph forms a chain. The externalities imposed by the ith
activity’s consumption bundle xR(ai) = (xai,ri

, xai,ri+1) decompose according to Eai
(xR(ai)) =

Vri→ai
(xai,ri

) + Vri+1→ai
(xai,ri+1). Hence, the externalities can be represented as a sum of two

one-dimensional functions. One of the two functions encodes the impact of activity ai on
activities a1, . . . , ai−1, while the other encodes impact on activities ai+1, . . . , aN . The chain
structure allows for this decomposition since these two sets of activities are only coupled
through decisions of activity ai.

The functions Vri→ai
(·) and Vri+1→ai

(·) can be computed recursively via dynamic program-
ming. Given these functions, optimal allocations for each activity ai solve

(3.4) maximize uai
(xR(ai)) + Vri→ai

(xai,ri
) + Vri+1→ai

(xai,ri+1)
subject to xai,r ∈ Xr, ∀ r ∈ {ri, ri+1}.

So long as the solutions to such optimization problem are unique, activity managers can make
optimal consumption decisions in a decentralized fashion.

For general dependency graphs, externalities do not decompose as they do in a chain.
However, as we will see in the next section, our new solution concept approximates exter-
nalities using similarly separable decompositions.

4. Solution Concept

Our solution concept involves a general class of incentives, which we refer to as messages.
These messages are exchanged between managers for each activity and each resource. For
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each activity a, the activity manager receives a message from the resource manager for each
resource r ∈ R(a). This message is a function Vr→a : Xr → R. The quantity Vr→a(xar) can
be thought of as a penalty imposed on activity a for consuming xar units from the finite
supply of resource r that is available.

Similarly, for each resource r, the resource manager receives a message from each activity
manager corresponding to an activity a ∈ A(r). This message is a function Va→r : Xr → R.
The quantity Va→r(xar) can be thought of as a benefit generated to the resource manager by
allocating xar units from its finite supply to activity a.

The spirit here is to allow decisions to be made in a decentralized manner: for each
activity a, the activity manager makes a consumption decision that optimizes

(4.1) maximize ua(xR(a)) +∑
r∈R(a) Vr→a(xar)

subject to xar ∈ Xr, ∀ r ∈ R(a).

Comparing with (3.1), the messages received by the manager of an activity a can be
viewed as an additively separable approximation to the true externalities,

(4.2) Ea(xR(a)) ≈
∑

r∈R(a)
Vr→a(xar).

This approximation is motivated by the case where the dependency graph D is a tree, that
is, a graph with no cycles. In this case, the impact on the rest of the system that occurs when
the activity consumes a particular quantity of a resource does not depend on the quantities
of other resources consumed by the activity. Hence, the approximation (4.2) is exact. This
is illustrated in Figure 2. There, the optimization problem (3.2) for the externalities of
activity a decomposes into three independent subproblems, so that Ea(xar1 , xar2 , xar3) =
Vr1→a(xar1) + Vr2→a(xar2) + Vr3→a(xar3).

Comparing the incentives provided by the messages in (4.1) to those provided by the price-
based incentives in (3.3), it is clear that messages generalize prices by allowing for nonlinear
incentives. Further, with prices, there is a single price associated with each resource. Hence,
the incentives corresponding to a single resource are identical to all the activities that require
the resource. Messages provide additional flexibility by allowing these incentives to vary
depending on the identity of the activity.

A related body of work in the economics literature also treats nonconvex resource alloca-
tion problems using as proxies for decentralization nonlinear incentives that can vary across
activities (e.g., Spence, 1977; Berliant and Dunz, 1990; Aliprantis, 2001; Mordukhovich,
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Figure 2: A dependency graph that is a tree. The externalities of consumption decisions for
activity a decompose into three independent sub-problems.

2005). Similarly with our message-passing paradigm, this work characterizes nonlinear in-
centives that induce consumption of resources in ways that satisfy various optimality criteria.
On the other hand, when there are multiple resources and activities, it is not clear how to
address the associated solution concepts without computing global optima of complex non-
convex functions. As we will see, our work on message passing differs in that the solution
concept is motivated by the existence of a tractable heuristic that efficiently approximates
solutions through a simple distributed protocol.

It is also worth mentioning a potential relation to augmented Lagrange multiplier func-
tions (e.g., Rockafeller, 1974; Bertsekas, 1982). Here, the consumption of a resource is penal-
ized by a function of the consumption level, which is a nonlinear function parameterized by
a small number of multipliers. One important difference from our message-passing paradigm
is that this function is not applied to the consumption of each agent but rather the total
consumption of a resource by all agents. Yet the substantial and sophisticated literature on
augmented Lagrange multiplier functions and algorithms motivates exploring whether some
of this technology can help in the design and analysis of message-passing algorithms.

4.1 Message-Passing Equilibrium

Our solution concept requires that messages obey a notion of equilibrium. We explain this
intuitively now and subsequently provide a precise definition. Think of Vr→a(xar) as a penalty
imposed on activity a for consuming xar units of resource r. The reason for penalizing the
activity is that the resource can be profitably used by others. Interpret Va′→r(xa′r) as the
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benefit generated by allocating xa′r units of the resource r to an alternative activity a′. One
part of our equilibrium condition states that the penalty Vr→a(xar) should be commensurate
with the sum of benefits Va′→r(xa′r) among the alternative activities a′ ∈ A(r) \ a, assuming
the remaining br − xar units of the resource are allocated optimally among them. This is
illustrated in Figure 3(a).

Note that, in addition to benefiting activity a, the choice of xar affects the activity’s other
consumption decisions xar′ , for r′ ∈ R(a)\r. The benefit Va→r(xar) should be commensurate
with sum of the utility ua(xR(a)) generated by activity a and the penalties Vr′→a(xar′) for
the activity’s consumption of other resources, assuming that the other resource consumption
decisions are made optimally. A second equilibrium condition appropriately accounts for
this cascading influence of the choice of xar. This is illustrated in Figure 3(b).

(a) A message from a resource to an ac-
tivity.

(b) A message from an activity to a re-
source.

Figure 3: The equilibrium condition for messages.

To define our equilibrium conditions more precisely, we introduce an operator. Denote
by V an entire set of messages, including the messages from activity managers to resource
managers, {Va→r(·) : ∀ a ∈ A, r ∈ R(a)}, and messages from resource managers to activity
managers, {Vr→a(·) : ∀ r ∈ R, a ∈ A(r)}. The operator F maps one set of messages to
another and is defined by

(FV )a→r(xar) , maximize ua(xR(a)) +∑
r′∈R(a)\r Vr′→a(xar′)

subject to xar′ ∈ Xr′ , ∀ r′ ∈ R(a) \ r,
(4.3a)

(FV )r→a(xar) , maximize ∑
a′∈A(r)\a Va′→r(xa′r)

subject to ∑
a′∈A(r)\a xa′r ≤ br − xar,

xa′r ∈ Xr, ∀ a′ ∈ A(r) \ a.

(4.3b)

The first part of the definition (4.3a) relates the benefit of allocating resource r to activity a
to the penalties associated with other resource constraints associated with the activity. The
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second part of the definition (4.3b) relates the penalty imposed on activity a for consuming
resource r to benefits that other activities could obtain.

In order to elucidate the structure of the operator F , consider the case where the depen-
dency graph D is a tree, and a set of messages V satisfies the fixed point equation V = FV .
In this case, the messages V correspond to a dynamic programming decomposition of the
decision externalities for all the activities, and the operator F is analogous to a Bellman
operator.

In the case where the dependency graph has cycles, the operator F may not have any fixed
points. This can be addressed with a minor modification: note that adding or subtracting
a constant from any message does not influence incentives. Only the relative values of a
message matter. As such, we restrict attention to messages that assign zero value to a null
allocation. In other words, for each activity a and r ∈ R(a), we consider only messages for
which Va→r(0) = 0 and Vr→a(0) = 0. We introduce a modified version H of the operator F
which subtracts an offset to accomplish this:

(HV )a→r(xar) , (FV )a→r(xar)−(FV )a→r(0), (HV )r→a(xar) , (FV )r→a(xar)−(FV )r→a(0).

The subtraction of an offset is analogous to the modification of the Bellman operator in
average cost dynamic programming necessary when moving from a finite horizon to an infinite
horizon setting.

We call a set of messages V a message-passing equilibrium if V = HV . The following
result, whose proof can be found in the online supplement, offers a general sufficient condition
for existence.

Theorem 1. Assume that the utility functions are Lipschitz continuous. Then, a message-
passing equilibrium exists.

This sufficient condition is broad and covers most models of practical interest. This is in
contrast to conditions for existence of prices that support optimal allocations, which fail to
hold in many contexts involving non-concave utility functions. The following example illus-
trates a simple situation where a message-passing equilibrium supports an optimal allocation
but prices do not.

Example 6. (Equilibrium Messages When Prices Fail) Consider a system with two
activities A = {a1, a2} and a single resource R = {r}. There is a unit quantity of the
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resource available; i.e., br = 1. The utility functions are

ua1(xa1,r) =


3
2xa1,r if xa1,r ∈ [0, 1/4],
3
8 if xa1,r ∈ [1/4, 1],

and ua2(xa2,r) =

0 if xa2,r ∈ [0, 1/2],
2xa2,r − 1 if xa2,r ∈ [1/2, 1].

It is easy to see that in the unique optimal allocation, activity a2 consumes the entire pool of
the resource. However, no price supports this solution. In order to encourage activity a2 to
consume, the price must be no greater than 1. On the other hand, if the price is 3/2 or less,
activity a1 will want to consume a quarter of the resource pool.

Equilibrium messages, however, do support the optimal solution. Equilibrium messages
from the resource are given by

Vr→a1(xa1,r) =

−2xa1,r if xa1,r ∈ [0, 1/2],
−1 if xa1,r ∈ [1/2, 1],

and Vr→a2(xa2,r) =

0 if xa2,r ∈ [0, 3/4],
9
8 −

3
2xa2,r if xa2,r ∈ [3/4, 1].

Given these messages, each activity manager’s decentralized decision leads to the system
optimum.

This example illustrates how message-passing equilibria can be more effective than prices
as proxies for decentralization. It is a trivial example because there is only a single resource
and the dependency graph is a chain. However, it is not difficult to generalize the idea
to arrive at the same conclusion for examples involving greater numbers of activities and
resources and more complex dependency graphs.

4.2 Optimality

Given a message-passing equilibrium V , an allocation can be selected by optimizing, for
each activity a, the activity manager’s problem (4.1). In this section, we characterize the
optimality properties of this allocation.

Consider two feasible allocations x and x′. We can interpret the difference x − x′ as a
set of direct transfers of resources between various activity managers and resource managers.
These transfers involve pairs of activities and resources that are indexed by the set ∆(x, x′) ,
{(a, r) ∈ A×R : xar 6= x′ar}, which is the collection of decision variables that differ between
the two allocations.

Given an allocation x, we say that a set of direct transfers is feasible if the allocation
resulting from the combination of transfers is feasible. A cycle is a set of transfers for which
the activity-resource pairs involved can be written as

(a1, r1), (a2, r1), (a2, r2), (a3, r2), . . . , (ak, rk), (a1, rk),
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where each resource index and each activity index are distinct. The following theorem
characterizes a set of transfers that cannot improve a solution delivered by a message-passing
equilibrium:

Theorem 2. Given a message-passing equilibrium V , assume that each activity manager’s
problem (4.1) has a unique solution, and define x∗ to be the resulting allocation. The objective
value of this allocation cannot be increased by any set of transfers that involves at most one
cycle.

This theorem is a corollary of Theorem 6, which is stated and proved in the online
supplement. Key elements of the argument are borrowed from the analyses of Freeman and
Weiss (2001); Wainwright et al. (2004), but are translated to our resource allocation context.

Theorem 2 guarantees, for example, that the objective cannot be improved by transfers
involving redistribution of only a single resource, as such transfers contain no cycles. If the
original dependency graph D contains at most one cycle, then any set of transfers contains
at most one cycle. Hence, x∗ is a global optimum. We comment further on this optimality
property in Section 4.4.

Note that Theorem 2 requires that each activity manager’s problem (4.1) have a unique
solution. Non-uniqueness of these solutions indicates that there are activity managers are
indifferent between multiple consumption bundles. In such cases, it may be necessary to
break ties in a consistent way across activity managers. This is typically done in a problem-
specific way, as in the example in Section 6.3.

4.3 Concave Utility Functions

In this section, we analyze message-passing equilibria in a convex resource allocation setting:
we assume that the utility functions are Lipschitz continuous and strictly concave. Under this
assumption, the system manager’s problem (2.1) has a unique globally optimal allocation.
Further, by the classical theory of Lagrange multipliers, a supporting price vector exists. We
demonstrate that the message-passing approach yields equivalent results.

To begin, note that, without loss of generality, we can restrict ourselves to message sets
with concave messages, by the following analog of Theorem 1, whose proof can be found in
the online supplement.

Theorem 3. There exists a message-passing equilibrium with concave and Lipschitz contin-
uous messages.
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Given a message-passing equilibrium with concave messages, each activity manager’s
problem (4.1) has a strictly concave objective and a convex constraint set, and, hence,
a unique optimal solution. Further, in this case, Theorem 2 can be strengthened to the
following global optimality guarantee, whose proof can be found in the online supplement.

Theorem 4. Consider a message-passing equilibrium with concave and Lipschitz continuous
messages. The resulting allocation of resources is globally optimal for the system manager’s
problem (2.1).

Now, let x∗ be the globally optimal allocation, and assume that the system manager’s
objective U(·) is differentiable at x∗. Let p∗ ∈ RR+ be the unique supporting price vector.
For an activity a and resource r ∈ R(a), we can think of p∗r as a marginal incentive for the
manager of activity a, in the sense that ∂

∂xar
ua(x∗R(a)) = p∗r. We interpret this statement as

saying that the marginal change in utility of deviating from the allocation x∗ar is balanced by
the incremental resource cost due to the price. The following theorem, whose proof can be
found in the online supplement, shows that the derivatives of messages in message-passing
equilibrium can be interpreted the same way.

Theorem 5. Let x∗ be the globally optimal allocation for the system manager’s problem (2.1)
and let p∗ be a supporting price vector. Suppose that U(·) is differentiable at x∗. Consider a
message-passing equilibrium V with concave and Lipschitz continuous messages. Then, for
each activity a and resource r,

d

dxar

Va→r(x∗ar) = p∗r,
d

dxar

Vr→a(x∗ar) = −p∗r,

where the existence of the above derivatives is guaranteed. Thus,

∂

∂xar

ua(x∗R(a)) = d

dxar

Va→r(x∗ar) = − d

dxar

Vr→a(x∗ar) = p∗r.

Theorem 5 implies that, subject to differentiability considerations, concave message-
passing equilibria are unique in their first-order behavior at the optimal allocation, and
this behavior corresponds to that of the unique shadow price vector.

4.4 Messages Versus Prices

As we have discussed, shadow prices and message-passing equilibria provide two different
ways to decompose the system manager’s problem (2.1) into a series of smaller problems,

17



one for each activity manager, which are of the form (3.3) and (4.1), respectively. These
activity managers’ problems are no longer coupled by resource constraints and can be solved
independently. Both methods can be interpreted as providing incentives to each activity
manager which capture decision externalities.

In the convex resource allocation case, the discussion in Section 4.3 suggests that these
methods are equivalent. Both methods derive incentives that support the globally optimal
allocation, and these incentives have equivalent structure in a local neighborhood of the
globally optimal allocation.

For non-convex problems, however, prices may not support optimal allocations while
message-passing equilibria still exist and the allocations they suggest satisfy certain opti-
mality properties. In particular, allocations derived from message-passing equilibria satisfy
the optimality property of Theorem 2.

Finally, it should be noted that the optimality properties of message-passing equilibria
are not well understood from a theoretical perspective. Their performance on many difficult
optimization problems is far better than suggested by the guarantee provided by Theorem 2.
We shall see an example of this in Section 6.1.

5. Message-Passing Algorithms

Up to this point, we have described message-passing equilibrium as a solution concept and
analyzed its properties. In this section, we consider the issue of computing message-passing
equilibrium.

Since a message-passing equilibrium is a fixed point of the operator H, a natural ap-
proach to consider is the method of successive approximations. This is an iterative scheme
which starts with some initial message set V , for example V = 0, and generates subsequent
approximations to a message-passing equilibrium according to

(5.1) V := (1− γ)V + γHV.

Here, the scalar γ ∈ (0, 1] is a dampening factor. This procedure is repeated until it converges
and a fixed point is reached. We generically call a successive approximation scheme of the
form (5.1) a message-passing algorithm. As we will discuss in Section 5.3, this algorithm is
not guaranteed to converge, though it is often an effective heuristic.

18



5.1 Tractability

Each iteration of the successive approximations method requires the solution of optimization
problems of the following form

maximize ua(xR(a)) +∑
r′∈R(a)\r Vr′→a(xar′),

subject to xar′ ∈ Xr′ , ∀ r′ ∈ R(a) \ r,(5.2a)

maximize ∑
a′∈A(r)\a Va′→r(xa′r),

subject to ∑
a′∈A(r)\a xa′r ≤ br − xar,

xa′r ∈ Xr, ∀ a′ ∈ A(r) \ a.
(5.2b)

for each activity a, resource r, and xar ∈ Xr. Implicit in the application of this method is
the assumption that these optimization problems can be solved efficiently. One case where
in which this is true is if the dependency graph is sparse, that is, each resource is required by
few activities, and each activity depends on few resources. In this case, both the problems
(5.2a) and (5.2b) will be small and tractable.

More generally, there is special structure in the problems (5.2a) and (5.2b) that can be
exploited for efficient solution by dynamic programming. First, note that the problem (5.2b)
involves optimizing a separable objective function with an interval constraint on each variable
and a single linear constraint on the sum of variable values. Such a problem can be efficiently
solved as a series of one-dimensional optimization problems via dynamic programming.

Second, in many relevant cases, problem the (5.2a) can similarly be decomposed into
a series of one-dimensional optimization problems. This is true, for example, if the utility
function is additively separable or if utility depends only on the sum or minimum of allocated
resources. We shall see one such example of this in Section 6.1. Further, note that if (5.2a)
it not tractable, then each agent, individually and without regard to the rest of the system,
is unable to maximize his utility. In such cases, it seems truly hopeless solve the much
harder (global) resource allocation problem, which involves simultaneous optimization all of
the agents’ utilities coupled by the resource constraints, by any algorithm.

5.2 Distributed and Asynchronous Implementation

One important characteristic of the message-passing iteration (5.1) is that it naturally lends
itself to a distributed and asynchronous implementation. Imagine an implementation where
the activity and resource managers operate completely independently. Consider this from
the perspective of an activity manager. At each point in time, the activity manager keeps
track of the most recent message it has received from each neighboring resource manager in
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the dependency graph. Occasionally, the activity manager can decide to send a new message
to each neighboring resource manager, based on the most recent messages it has received
from other resource managers. Resource managers behave in an analogous fashion. So long
as each pair of activity and resource managers relay messages to one another an unbounded
number of times, a fixed point of this distributed and asynchronous procedure is a message-
passing equilibrium. Moreover, each manager only requires knowledge of and communication
with neighboring managers in the dependency graph.

In general, messages are functions over a continuous domain. As such, the algorithm, as
we have formulated it, cannot be implemented on digital computers. In some cases, such as
the example we consider in Section 6.1, the messages lie in a finite dimensional space that
is closed under the message-passing operator H. In such cases, messages can be transmitted
by sending a vector of finitely many real numbers. Indeed, in the example in Section 6.1,
each message can be encoded as a single real number.

In the more general case, it is necessary to approximate messages using representations
that are parameterized by finitely many real numbers. Approximate message-passing algo-
rithms are an interesting area for future research, and are more extensively considered by
Moallemi and Van Roy (2007). We briefly discuss some possibilities here:

• Since each message is a function over an interval of real numbers, one simple discretiza-
tion is to evaluate each message at a finite number of points in its domain. Values of
the message between each pair of consecutive points can be approximated by linear
interpolation. Such a scheme would thus approximate messages by piecewise linear
functions.

• Another option for each activity manager to maintain an estimate of its optimal con-
sumption decisions, by solving the problem (4.1) based on the most recent message re-
ceived from each resource manager. Messages can then be approximated by quadratic
functions based on a second-order Taylor expansion around the current estimate. The
resulting algorithm can be viewed as a hybrid between message-passing algorithms and
Newton’s method.

• The problem of approximating messages is analogous to the situation in approximate
dynamic programming (ADP), where low-dimensional approximations are made to
high-dimensional value functions. Similar ideas can be applied, and one might consider
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approximating messages as a linear combination of a finite collection of basis functions.
An approximate message-passing equilibrium could be defined using a variation of the
H operator that is projected onto the subspace spanned by the basis functions, and
variations of ADP algorithms could be used to compute such equilibria.

5.3 Convergence

An immediate question is whether our message-passing algorithm converges to a message-
passing equilibrium. In the context of Theorems 1 and 3, the operator H is continuous and
compact. Hence, any sequence of iterates generated by successive approximation has limit
points. However, these limit points may not, in general, be fixed points and thus equilibria—
they may be contained in some invariant collection of message sets and may be, for example,
periodically oscillating under the action of the operator H.

The question of convergence of the message-passing algorithm we have proposed for re-
source allocation remains open. If the dependency graph contains no cycles, message-passing
can be seen to converge in a finite number of iterations by simple dynamic programming
arguments. There is a body of work on convergence properties of various message-passing
algorithms that are similar to ours, but designed for different problem contexts. Abstract
conditions for convergence of a version of message passing across a range or problems have
been developed (Tatikonda and Jordan, 2002), but these are difficult to verify in specific
problem instances and do not apply in our context. Convergence has also been established
for certain message-passing algorithms for special classes of optimization problems, such
as maximum-weight matching (Bayati et al., 2005), and for certain random ensembles of
optimization problems (Gamarnik et al., 2005).

One case that is well-understood, however, is for a message-passing algorithm applied to
the optimization of unconstrained quadratic programs. Here, we and other authors (Weiss
and Freeman, 2001; Rusmevichientong and Van Roy, 2001; Moallemi and Van Roy, 2009;
Malioutov et al., 2006) have established convergence so long as the objective decomposes
a particular way. Moreover, this convergence continues to hold in a distributed and asyn-
chronous setting. In some cases, a rate of convergence analysis is also available (Moallemi
and Van Roy, 2006).

We have recently extended these convergence results to a message-passing algorithm
for optimization of unconstrained convex programs (Moallemi and Van Roy, 2007). Unfor-
tunately, this analysis does not apply to the resource allocation context considered here.
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However, in the following section, we see that our message-passing algorithm can still offer
excellent solutions in the absence of convergence guarantees.

6. Network Rate Control

One feature of the message-passing algorithms described in the previous section is that
they can be implemented in a distributed manner. This can be crucial in systems where
information or computational resources are decentralized. In this section, we discuss an
example involving transmission rate control in a communication network.

We consider a model put forth by Kelly (Kelly, 1997). There is a set R of resources.
Each resource represents a single link or bottleneck in a communication network. Each link
r has a finite capacity br > 0. There is a set A of activities, each representing a user who
wishes to transmit data across the network. Each user a transmits data along a fixed route,
which consisting of the set of links R(a) ⊆ R. This is illustrated in Figure 4. If the user is
allocated capacity xR(a) along these links, it can transmit at the rate minr∈R(a) xar, and its
utility is a function of this rate, ua(xR(a)) = ũa

(
minr∈R(a) xar

)
. Here, we assume that the

single-variable utility function ũa : R+ → R+ is non-decreasing. The objective is to allocate
capacity in a way that maximizes the sum of utilities.

Figure 4: A network rate control example. Each edge in the graph is a constrained com-
munications link. Each user is associated with a route in the network. For example, user a
wishes to transmit data along the path consisting of the links R(a) = {r1, r2, r3}.

The numbers of users and links in modern communication networks are enormous. As
such, it is not possible for a central authority to gather all the utility functions and link
capacities as would be required to make centralized allocation decisions. Rather, the capacity
of each link must be allocated based on locally available information. This information should
be gathered from packets of data transmitted by users as they pass through the link. Further,
links might mark the packets as they pass through to inform users of how much capacity
they are allocated.
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For the case of increasing strictly concave utility functions, referred to in the networking
literature as the case of elastic traffic (Shenker, 1995), Kelly proposes an elegant distributed
algorithm (Kelly, 1997). Our interest here is in designing a distributed message-passing
scheme that effectively optimizes the allocation when utility functions are not concave, also
known as the case of inelastic traffic. Such utility functions are required to model user prefer-
ences, for example, in real-time video and audio applications (Shenker, 1995). Optimization
algorithms designed for elastic traffic, like that of Kelly, can lead to instabilities when applied
in the presence of inelastic traffic (Lee et al., 2005). Several heuristics have been proposed
to address inelastic traffic (Lee et al., 2005; Hande et al., 2005; Fazel and Chiang, 2005).

6.1 Inelastic Rate Control

Consider the extreme case of inelastic traffic described in Example 3. Here, each user a
has a utility function ũa(xa) = zaI{xa≥wa}. The quantity wa > 0 is the minimum overall
transmission rate desired by the user, and the za > 0 is the utility derived if allocated a rate
wa or larger.

In this setting, each user a is indifferent between transmitting at rate 0 or at any rate
in the interval (0, wa), and is similarly indifferent between transmitting at rate wa and at
any rate larger than wa. Hence, the system manager’s problem (2.1) is equivalent to the 0–1
integer program

(6.1)
maximize ∑

a∈A zaya

subject to ∑
a∈A(r) waya ≤ br, ∀ r ∈ R

ya ∈ {0, 1}, ∀ a ∈ A.

Here, for each user a, the binary decision variable ya determines the overall transmission rate
allocation to user a: if ya = 1, the user is allocated the desired transmission rate wa. Other-
wise, the user is allocated zero transmission rate. The program (6.1) is a multidimensional
0–1 knapsack problem, which is NP-hard (Fréville, 2004).

There are a number of heuristics available for solving the program (6.1) (see Kellerer
et al. 2004, for example, for a survey). We consider the class of “primal greedy” heuristics.
Such algorithms start with all users receiving a zero rate allocation. The users are then
considered sequentially according to some ordering. When a user a is considered, the user
receives the desired transmission rate wa if such an allocation would preserve feasibility,
given the allocations already made to previously considered users. Otherwise, the user is
allocated zero transmission rate.
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Critical to the success of such a greedy method is the ordering in which the users are
considered. Typically, a measure of efficiency, or “bang-per-buck”, is defined for each user.
This metric represents some estimate of the contribution of the user to the overall utility
relative to the cost of the resource consumption of the user. We consider a prototypical
efficiency metric, ea = za/

(∑
r∈R(a) wa/br

)
, for each user a. The users are then considered

in order of decreasing efficiency, and are greedily allocated their desired capacity so long as
feasibility is maintained. We call this method the greedy heuristic.

Alternatively, one may consider the linear programming relaxation of (6.1),

(6.2)
maximize ∑

a∈A zaya

subject to ∑
a∈A(r) waya ≤ br, ∀ r ∈ R

0 ≤ ya ≤ 1, ∀ a ∈ A.

This is equivalent to approximating the utility function of each user a by the concave piece-
wise linear function ũa(xa) ≈ za min (1, xa/wa). Note that this relaxation is very weak,
and naive application of such an approximation leads to poor solutions. There may be many
users who are allocated non-zero transmission rates that are less than their minimum desired
transmission rates. These users consume capacity on the network, yet generate zero utility.
Equivalently, these users correspond to decision variables with fractional values in the relax-
ation (6.2). Much better solutions can be generated from this approximation by examining
the resulting vector p of shadow prices for the link constraints in (6.2) (Kellerer et al., 2004).
These prices can be used as proxies for the cost of capacity on a link. Then, an efficiency
metric can be defined according to ea = za/

(∑
r∈R(a) wapr

)
, for each user a. An allocation

decision can then be made as in the case of the greedy heuristic, by sequentially considering
users in order of decreasing efficiency. We call this method concave approximation.

In Section 6.3, we compare the performance of message passing to the greedy heuristic
and concave approximation methods described above. One motivation for choosing these
particular methods is that they naturally lend themselves to distributed implementation.
While our description of them has been sequential in nature, one can easily imagine decen-
tralized implementations. A second motivation is that both the greedy heuristic and the
concave approximation methods will yield locally optimal allocations. That is, the objective
value cannot be improved through small deviations from the prescribed allocation. We can
compare the quality of these allocations to those resulting from message passing. Finally, our
consideration of the concave approximation method will highlight the fact that inelastic rate
control provides a class of fundamentally non-convex resource allocation problems, that is,
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problems that cannot be reasonably approximated using concave utility functions. We will
see that the message-passing approach is able to cope with this fundamental non-convexity.

6.2 Distributed Message-Passing

Consider a distributed message-passing algorithm for a network with inelastic traffic. Since
the messages Vr→a(xar) and Va→r(xar) represent incentives, only their values at xar ∈ {0, wa}
matter. Hence, we can parameterize these messages by Va→r(xar) , va→rI{xar≥wa} and
Vr→a(xar) , vr→aI{xar≥wa}, given parameters va→r ≥ 0 and vr→a ≤ 0. Denote by v the set
of all parameters {va→r, vr→a}. This parametrization is closed under the operator H, and H
can be expressed directly in terms of the parameter set v by

(Hv)a→r = za +
∑

r′∈R(a)\r
vr′→a,(6.3a)

(Hv)r→a = maximize ∑
a′∈A(r)\a va′→rya′r

subject to ∑
a′∈A(r)\a wa′ya′r ≤ br − wa,

ya′r ∈ {0, 1}, ∀ a′ ∈ A(r) \ a.

(6.3b)

Given a a set of parameters v, each activity a needs to solve the activity manager’s
problem (4.1). This is equivalent to selecting to consume quantities xar, for all r ∈ R(a), by
xar = waI{

za+
∑

r∈R(a) vr→a>0
}.

Since the application setting here is naturally decentralized, it is important to be able to
compute the message-passing update equations (6.3a)–(6.3b) and the resulting allocation in
a distributed and possibly asynchronous fashion. We describe one particularly parsimonious
implementation now. Consider a setting where, at each time t, each link r maintains a set
of incoming and outgoing message parameters {v(t)

r→a, v
(t)
a→r} for each user a ∈ A(r). Assume

that a user a transmits a data packet at time t, along the route R(a). A single real number
m+

a is appended to this data packet, and the user initially sets m+
a , za. When the packet

passes through a link r ∈ R(a), the value of m+
a is observed. This value is then updated

by setting m+
a , m+

a + v(t)
r→a, before it is forwarded to the next link. When the packet

arrives at the destination, an acknowledgment message is sent back the source, containing a
single real number m−a . This number is initialized to m−a , 0. As it passes through a link
r ∈ R(a), it is observed, and then updated according to m−a , m−a + v(t)

r→a, until it reaches
the source. Now, at any link r ∈ R(a) along the route, the observed values m+

a and m−a

can be combined to compute m+
a +m−a = za +∑

r′∈R(a)\r v
(t)
r′→a = (Hv(t))a→r. Thus, the link

can update its stored incoming message from user a by setting v(t+1)
r→a , m+

a + m−a . New
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outgoing messages v(t+1)
r→a′ , for each activity a′ ∈ A(r) \ a, can then be computed according to

the update equation (6.3b). Similarly, when the user a receives the acknowledgment packet,
it can compute the value za + m−a = za + ∑

r∈R(a) v
(t)
r→a. Then, it can make a consumption

decision via by examining if za +∑
r∈R(a) v

(t)
r→a > 0.

The spirit of this implementation is that the computation of a message-passing equilib-
rium and the associated allocation decisions can be accomplished with very little overhead.
All communication occurs along the normal flow of network traffic, and only a single real
number is appended to every data packet.

6.3 Numerical Results

In this section, we compare the performance of message passing to the heuristics described in
Section 6.1 as well as the optimal solution across as a set of random problem instances. These
problem instances are described by a problem size parameter n. Each problem instance of
size n consists of n users and n links. The assignment of users to links is made by uniformly
sampling a bipartite graph of degree 10, so that each user is assigned a route along 10 links,
each link is in the route of 10 users. Each link r is assigned a fixed capacity br = 5. The
utility function of each user a is generated randomly, by setting za to an IID exponential
random variable of mean 1, and setting wa , za. This type of utility function corresponds to
a “strongly correlated” regime for the multidimensional 0–1 knapsack problem (6.1) (Fréville,
2004). Here, the combinatorial nature of the underlying packing problem is most apparent
and the problem is thought to be most difficult.

In these simulations, message passing is run for 1000 iterations, independent of the prob-
lem size. During each iteration t, a set of message-passing parameters v(t) is updated ac-
cording to v(t) = (1− γ)v(t−1) + γHv(t−1), where a dampening factor of γ = 0.5 is used. An
allocation decision x(t) is made by solving each activity manager’s problem, with one impor-
tant modification: to ensure feasibility of the resulting allocation, the users are considered in
order of decreasing values of za +∑

r∈R(a) v
(t)
r→a. Each user is then greedily allocated capacity

wa if this is feasible, and is otherwise allocated capacity 0. This procedure is analogous to
the greedy rounding procedures described in Section 6.1, and can similarly be implemented
in a distributed fashion. The objective value of the best allocation seen in the 1000 iterations
is reported.

Table 1 provides data on the performance of message passing versus the greedy and
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Problem Size (n) Message-Passing Concave Approximation Greedy
25 1.35% ± 2.14 15.69% ± 9.18 18.25% ± 14.57
50 0.81% ± 1.18 17.94% ± 7.79 20.62% ± 11.45
75 1.10% ± 0.98 17.99% ± 5.64 20.19% ± 8.29
100 1.38% ± 0.93 19.34% ± 5.88 20.49% ± 6.27
125 1.65% ± 0.78 19.18% ± 4.83 22.29% ± 6.51

Table 1: A comparison of algorithms for Inelastic Rate Control, where the algorithms are
compared for a collection of random problem instances of varying size. In each case, the
average optimality gap (optimal = 0%) and the standard deviation of the optimality gap
across problem instances is reported.

concave approximation heuristics. The algorithms are compared across a set of problem
instances of various sizes. For each problem size, we sampled fifty instances and report
the average percentage optimality gap relative to the globally optimal allocation, which
is determined using a mixed integer solver. With each average we provide the standard
deviation across instances to capture variation among samples.

Message-passing performs significantly better than either heuristic. Moreover, the opti-
mality gap for message passing is very consistent, and typically is within 3% of the optimal
objective value. The heuristics, on the other hand, have highly variable performance across
problem instances.

For this class of problems, the efficiency metric employed by the greedy algorithm is
constant: ea = 0.5 for each user a. Hence, the greedy heuristic is particularly trivial: consider
the users in an arbitrary order, and greedily assign capacity while maintaining feasibility.
The concave approximation heuristic, which requires solution of a linear program, does not
perform noticeably better.

Finally, note that our experiments involve networks with at most 125 users. These are
the largest problems for which our mixed integer solver (ILOG CPLEX 9.1) could compute
a global optimum. Message-passing can comfortably scale to much larger problem instances,
up to 100,000’s of users on a desktop workstation. Indeed, message passing could handle
much larger problem instances than even our commercial LP solver (ILOG CPLEX 9.1),
which was used in computing concave approximation solutions.
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