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A. Proofs of Existence Theorems

In the following, a function f: & — R with domain & C R" is said to be Lipschitz with

constant L if

lf(x) = fly)| < L||lzr —vy|, Vz,yes.

Theorem 1. Assume that the utility functions are Lipschitz continuous. Then, a message-

passing equilibrium exists.

Proof. Let L be a Lipschitz constant that applies to all utility functions. Suppose each
message in the set V' is Lipschitz continuous with Lipschitz constant L. Consider the message
from an activity a to a resource r € R(a). Define X*\" £ [l;er@an\, X to be the space of
consumption bundles for activity a, excluding resource r. Without loss of generality, assume
that (F'V ) (22,) > (FV)assr(Zar). Then, for some 2’ € X\,

(FV)asr () = (FV )amsr (Tar) = (25, 2") + Y Virsa(24)

r'eR(a)\r
— max | ug(Tar, )+ Y, Mn/%a(zar,))
ZEX N r'eR(a)\r
S ua(l‘;m Z,) - ua(xam Z/) S L|ZE:1T - xar|-

Hence, the message (F'V'),_.(+) is Lipschitz continuous with Lipschitz constant L. A similar
proof applies to (F'V),—a(-).

Let S be the collection of message sets V' for which each message equals zero at zero and is
Lipschitz continuous with Lipschitz constant L. Note that S is convex, closed, and bounded
(under the supremum norm). S is subset of the set of continuous functions from a compact,

finite dimensional metric space to itself. Hence, S is compact under the supremum norm by
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the Arzela-Ascoli theorem. The operator H maps S to S continuously with respect to the
supremum norm. It follows from the Schauder fixed point theorem that a message-passing

equilibrium exists. O

Theorem 3. There exists a message-passing equilibrium with concave and Lipschitz contin-

Uous messages.

Proof. The proof follows by a modification of the proof of Theorem [} define the set S’ to be
the collection of message sets V' € & which are also concave. Since the operator H involves
maximization of a concave function over a convex set, if V € &', then HV is also concave
hence HV € §’. The existence of a fixed-point in &’ follows from the Schauder fixed point

theorem. O

B. Proofs of Optimality Theorems

We start with two preliminary lemmas.

Lemma 1. Given a message-passing equilibrium V and an allocation decision x*, the fol-

lowing three conditions are equivalent:

(i) For every activity a, the allocation TR Uniquely mazimizes the activity manager’s
problem

(B.1) maximize U, (Tr(q)) = Ua(TR(a) + Xrer(a) Viosa(Tar)
' subject to Tar € Xy, vV reR(a).

(ii) For every resource r, the allocation LA () uniquely mazximizes the optimization problem

maximize Up(2a() = Cacaw) Vaosr(Tar)
(B.2) subject to S weAw) Tarr < by,
Tarr € Xy, Va e A(r).

(iii) For every activity a and every resource v € R(a), the quantity =, uniquely mazimizes
the optimization problem

maximize Ugr(Zar) = Vaosr(Zar) + Visa(Tar)

(B.3) subject to Tor € X



Proof. Given an activity a and a resource r € R(a), define
Cosyr = {xR(a)\T Xy € X, VI € R(a) \r}

This is the set of consumption decisions of activity a for all resources except r. Given
a resource © and an activity a € A(r), define Cp_,q(74r) = {Tapna © ZweapnaTar <
by — Tap, Tar € X,y Ya' € A(r) \ a}. This is the set of set of feasible allocations of resource
r for all activities except a, given the allocation x,, to activity a. Finally, for each resource
r, define C,(7,,) 2 {Taena © ZaeapnaTar < bp — Tap, Torp € Xy, Va' € A(r) \ a}.

Then, from the equilibrium equation HV =V, we have for every .,

max Ua(mR(a)) = Uar(xaT) + (Fv)(l*ﬁ“(o%

TR(a)\rECa—sr

max UT(JJA(T)) = Uar(xm«) + (FV)THG(O).

T A(rN\aECr—a(Tar)

(B.4)

Assume that (iii) holds. Then, each U,.(-) is maximized uniquely by z . Consider an
alternative feasible allocation 2’ with z/ . # x¥ , for some activity a and resource r € R(a).
By (B.4), 2%z (,) cannot maximize U,(-) and 2y, cannot maximize U, (-), respectively. Hence,

(iii) implies (i) and (ii). The rest of the implications are shown similarly. O

Lemma 2. Consider a message-passing equilibrium HV =V, where each activity manager’s
problem (B.1)) has a unique solution, and denote the resulting allocation by x*. Then, for
each activity a and resource v € R(a), this allocation mazximizes the optimization problems

maximize TT—)a(xA(r)) = Za’eA('r)\a ‘/;L/—M’ (:Ea”/‘) - V;—m(xar)
(B.5a) subject to S weAr) Tar < by,

Tor € X, YV d € A(r),

maximize Ta—W(xR(a)) Ugq (xR(a)> + ZT’ER((I)\T‘ ‘/7‘,—)0,(:6(17“’> - Va—w(xar)
subject to To € Xy V1" € R(a).

lI>

(B.5b)

Proof. Note that T, _,o(xawr)) = Ur(®a@)) — Uar(Tar) and Ty (2r(0)) = Ua(TR(a)) — Uar(Tar)-
The result then follows from (B.4) and Lemma [1} O

Consider a message-passing equilibrium V', assume that each activity manager’s problem
has a unique solution, and define z* to be the resulting allocation. Consider an
alternative feasible allocation x € X'. These allocations differ according to the set of transfers
A(z,z*). We can define sets A and R of, respectively, activities and resources affected by
the transfers by A = {a € A : 37 € Rwitha, # 2.} and R ={r e R : Ja €
A with z,, # x%.}. Note that we have suppressed the dependence of the sets A and R on
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x and z* for notational simplicity. We have the following theorem, from which Theorem 2

follows as an immediate corollary.

Theorem 6. Define an undirected bipartite graph with vertices A and R, and with edges
according to the set of transfers A(x,z*). Then:

(i) If the bipartite graph contains at most one cycle per connected component, then U(z*) >
U(z).

(ii) If, in addition, the graph contains a connected component that does not have a cycle,

U(z*) > Ula).

Proof. Recall the objective functions U,(:), U,(:), and U, (-) defined by the equilibrium
V' through the optimization problems , , and , respectively. The system
objective U(-) can be written as
=2 Uulor@) + 22 Ur(mam) = 2 D Uar(@ar)-
acA reR acAreR(a)
We have the decomposition

U@) = Ux) = Y [Ualtr) = Ualwpa)] + 3 [Un(@h) = Unlwa))]

acA reR

- Z [Um"(x:;r) - Uar<xar)] :

(a,r)EA(z,x*)
By the hypothesis of the theorem, we can associate each edge (a,r) € A(z, z*) in the bipartite
graph with either the vertex a € A or the vertex r € R, in a way such that each vertex is

associated with at most a single edge. Then,

Ua") = U@) = Y [Val@ie) = Vaota)(@hoa) = (Valr@) = Vaot) (Tao(@) ) |

a€A;

+ Z { jUA(T UT(T)7”<:17:(T)7’) - (Ur(xA(r)) — UT(T)r(xT(T)T))}
reR,

+ Z [Ua(x%(a — U }JF > [ (Toaem) Ur(@\(r))},
acA\AL reR\R1

where A; € A and R; C R are sets of vertices which have been associated with edges, and
the maps o: A, — R and 7: R; — A define the associations. Observe that, by the unique
optimality assumption and Lemmas [1| and , Ur(@%) > Ur(@aw), Ua(@Ris)) > Ua(Tra)),
Up(@}) = Uar(23,) = Up(25) = Uar(2ar), and Ua (2% o)) = Uar(73,) > Ua(@R(a)) = Uar(@ar). Thus
U(z*) > U(z). Under the additional assumption of Part (ii), the sets A\ A; and R\ Ry

cannot both be empty. Hence, U(z*) > U(z). O



Theorem 4. Consider a message-passing equilibrium with concave and Lipschitz continuous
messages. The resulting allocation of resources is globally optimal for the system manager’s

problem.

Proof. Consider a message-passing equilibrium V' with concave and Lipschitz continuous
messages, and let x* be the associated allocation. Assume that x* lies in the interior of the
domain of U(-). By (Rockafellar [1970, Theorem 27.4), for each resource r and activity a,
there must exist a supergradient d*" € 3%(117%((1)) so that we have the first order conditions

for the optimization problem (B.5b)),

(B.6a)
ar d* * ar d” *
dar - @‘/CLHT(LEM") < 07 dar - @Vaﬁrcljar) > 07
(B.6b)
d* d~
B Vi) <0, € R@)\ 7, di = —V(0,) 2 0, ' € R(a) \ v

Similarly, let A%, > 0 be a shadow price to the optimization problem (B.5a)). Then,

(B.7a)
—d+v (X)) — A <0 —div (z,) =M. >0
dear r—a >~ U, dl’ar r—a = Y,
(B.7b)
d+ * / d_ * /
o — Ve (2,) =X, <0, Vd € Alr)\ a WVQHT( ) — A >0, Va € Alr)\a
Then, by and (B.7a)),
d- dr d- dt
- < ar - * - * < _ * < o * .
dxar VGHT( ) d — dxar VZIHT(‘rar% dxar ‘/T%a(xar) — )\ar — dxar ‘/T%a(‘rar)
By concavity of V,_..(-) and V,_,(-),
d d
B. a—r daTa r—a ==, ’
( 8) dxarvﬁ ( ) ar dl’arv_) (‘T ) ar

where the derivatives must exist since the directional derivatives are equal. By , and
(B-§), we have X}, = d2, :, for all @’ € A(r) \ a. Then, must have \*. = pZ, for some vector
p* € R%, and, using (B.6D)), also d7, = p}, for all 7' € R(a) \ r.

Define the vector dU by (dU )., = p;, for each a € Aand r € R(a). Then, dU € oU (z*) is
a supergradient of U(+) at z*, the vector p* is a shadow price vector for the system manager’s
optimization problem, and the allocation x* is globally optimal. The case where x* is on the

boundary of the domain of U(-) is handled similarly. O
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Theorem 5. Let x* be the globally optimal allocation for the system manager’s problem and
let p* be a supporting price vector. Suppose that U(-) is differentiable at x*. Consider a
message-passing equilibrium V' with concave and Lipschitz continuous messages. Then, for

each activity a and resource r,

d d
V:l—”‘(‘r:;r) = p:7 7‘/—”1(1‘27") = _p;7

- T
AT g AT g

where the existence of the above derivatives is quaranteed. Thus,

0 d d

aTarua(ffz(a)) = Vo (74

ar) - _m‘[f—m(‘r:r) - p:

dx g

Proof. This follows by the same argument as in Theorem , and the fact that if U(-) is
differentiable at z*, OU (z*) = {VU(z*)}. O

References

Rockafellar, R. T. 1970. Convexr Analysis. Princeton University Press, Princeton, NJ.



	Proofs of Existence Theorems
	Proofs of Optimality Theorems

