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Convergence of Min-Sum Message Passing

for Quadratic Optimization
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Abstract—We establish the convergence of the min-sum mes-
sage passing algorithm for minimization of a quadratic objective
function given a convex decomposition. Our results also apply
to the equivalent problem of the convergence of Gaussian belief
propagation.

Index Terms—message-passing algorithms, decentralized opti-
mization

I. INTRODUCTION

C
ONSIDER an optimization problem that is characterized

by a set X and a hypergraph (V, C). There are |V |
decision variables; each is associated with a vertex i ∈ V
and takes values in a set X . The set C is a collection of

subsets (or, “hyperedges”) of the vertex set V ; each hyperedge

C ∈ C is associated with a real-valued “component function”

(or, “factor”) fC : XC → R. The optimization problem takes

the form

min
x∈X |V |

f(x),

where

f(x) =
∑
C∈C

fC(xC).

Here, xC ∈ X |C| is the vector of variables associated with

vertices in the subset C. We refer to an optimization program

of this form as a graphical model. While this formulation may

seem overly broad—indeed, almost any optimization problem

can be cast in this framework—we are implicitly assuming

that the graph is sparse and that the hyperedges are small.

Over the past few years, there has been significant interest

in a heuristic optimization algorithm for graphical models. We

will call this algorithm the min-sum message passing algo-

rithm, or the min-sum algorithm, for short. This is equivalent

to the so-called max-product algorithm, also known as belief

revision, and is closely related to the sum-product algorithm,

also known as belief propagation. Interest in such algorithms

has to a large extent been triggered by the success of

message passing algorithms for decoding low-density parity-

check codes and turbo codes [1], [2], [3]. Message passing

algorithms are now used routinely to solve NP-hard decoding

problems in communication systems. It was a surprise that this

simple and efficient approach offers sufficing solutions.
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The majority of literature has been focused on the case

where the set X is discrete and the resulting optimization

problem is combinatorial in nature. We, however, are interested

in the the case where X = R and the optimization problem is

continuous. In particular, many continuous optimization prob-

lems that are traditionally approached using methods of linear

programming, convex programming, etc. also possess graph-

ical structure, with objectives defined by sums of component

functions. We believe the min-sum algorithm leverages this

graphical structure in a way that can complement traditional

optimization algorithms, and that combining strengths will

lead to algorithms that are able to scale to larger instances

of linear and convex programs.

One continuous case that has been considered in the litera-

ture is that of pairwise quadratic graphical models. Here, the

objective function is a positive definite quadratic function

f(x) =
1
2
x>Γx− h>x, Γ � 0. (1)

This function is decomposed in a pairwise fashion according

to an undirected graph (V,E), so that

f(x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E

fij(xi, xj),

where the functions {fi(·), fij(·, ·)} are quadratic. It has been

shown that, if the min-sum algorithm converges, it computes

the global minimum of the quadratic [4], [5], [6]. The question

of convergence, however, has proved difficult. Sufficient condi-

tions for convergence have been established [4], [5], but these

conditions are abstract and difficult to verify. Convergence has

also been established for classes of quadratic programs arising

in certain applications [7], [8].

In recent work, Johnson, et al. [9], [10] have introduced the

notion of walk-summability for pairwise quadratic graphical

models. They establish convergence of the min-sum algorithm

for walk-summable pairwise quadratic graphical models when

the particular set of component functions

fij(xi, xj) = Γijxixj , ∀ (i, j) ∈ E, (2)

is employed by the algorithm and the algorithm is initial-

ized with zero-valued messages. Further, they give examples

outside this class for which the min-sum algorithm does not

converge.

Note that there may be many ways to decompose a given

objective function into component functions. The min-sum

algorithm takes the specification of component functions as

an input and exhibits different behavior for different decom-

positions of the same objective function. Alternatively, the
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choice of a decomposition can be seen to be equivalent to

the choice of initial conditions for the min-sum algorithm [6],

[11]. A limitation of the convergence result of Johnson, et al.

[9], [10] is that it requires use of a particular decomposition

of the objective function of the form (2) and with zero-

valued initial messages. The analysis presented does not hold

in other situation. For example, the result does not establish

convergence of the min-sum algorithm in the applied context

considered in [7].

We will study the convergence of the min-sum algorithm

given a convex decomposition:

Definition 1. (Convex Decomposition)

A convex decomposition of a quadratic function f(·) is a set

of quadratic functions {fi(·), fij(·)} such that

f(x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E

fij(xi, xj),

each function fi(·) is strictly convex, and each function fij(·, ·)
is convex (although not necessarily strictly so).

We will say that a quadratic objective function is convex

decomposable if there exists a convex decomposition. This

condition implies strict convexity of the quadratic objective

function, however, not all strictly convex, quadratic functions

are convex decomposable.

The primary contribution of this paper is in establishing

that the min-sum algorithm converges given any convex de-

composition or even decompositions that are in some sense

“dominated” by convex decompositions. This result can be

equivalently restated as a sufficient condition on the initial

messages used in the min-sum algorithm. Convergence is

established under both synchronous and asynchronous models

of computation. We believe that this is the most general

convergence result available for the min-sum algorithm with

a quadratic objective function.

The walk-summability condition of Johnson, et al. is equiv-

alent to the existence of a convex decomposition [10]. In this

way, our work can be viewed as a generalization of their con-

vergence results to a broad class of decompositions or initial

conditions. This generalization is of more than purely theoret-

ical interest. The decentralized and asynchronous settings in

which such optimization algorithms are deployed are typically

dynamic. Consider, for example, a sensor network which seeks

to estimate some environmental phenomena by solving an

optimization problem of the form (1). As sensors are added

or removed from the network, the objective function in (1)

will change slightly. Reinitializing the optimization algorithm

after each such change would require synchronization across

the entire network and a large delay to allow the algorithm to

converge. If the change in the objective function is small, it

is likely that the change in the optimum of the optimization

problem is small also. Hence, using the current state of the

algorithm (the set of messages) as an initial condition may

result in much quicker convergence. In this way, understanding

the robustness of the min-sum algorithm over different initial

conditions is important to assessing it’s practical value.

Beyond this, however, our work suggests path towards

understanding the convergence of the min-sum algorithm in

the context of general convex (i.e., not necessarily quadratic)

objective functions. The notion of a convex decomposition is

easily generalized, while it is not clear how to interpret the

walk-summability condition or a decomposition of the form

(2) in the general convex case. In follow-on work [12], we

have been able to establish such a generalization and develop

conditions for the convergence of the min-sum algorithm in a

broad range of general convex optimization problems. When

specialized to the quadratic case, however, those results are

not as general as the results presented herein.

The optimization of quadratic graphical models can be

stated as a problem of inference in Gaussian graphical mod-

els. In this case, the min-sum algorithm is mathematically

equivalent to sum-product algorithm (belief propagation), or

the max-product algorithm. Our results therefore also apply to

Gaussian belief propagation. However, since Gaussian belief

propagation, in general, computes marginal distributions that

have correct means but incorrect variances, we believe that the

optimization perspective is more appropriate than the inference

perspective. As such, we state our results in the language of

optimization.

Finally, note that solution of quadratic programs of the form

(1) is equivalent to the solution of the sparse, symmetric,

positive definite linear system Γx = h. This is a well-studied

problem with an extensive literature. The important feature of

the min-sum algorithm in this context is that it is decentralized

and totally asynchronous. The comparable algorithms from

the literature fall into the class of classical iterative methods,

such as the Jacobi method or the Gauss-Seidel method [13]. In

an optimization context, these methods can be interpreted as

local search algorithms, such as gradient descent or coordinate

descent. While these methods are quite robust, they suffer

from a notoriously slow rate of convergence. Our hope is that

message-passing algorithms will provide faster decentralized

solutions to such problems than methods based on local search.

In application contexts where a comparison can be made [7],

preliminary results show that this may indeed be the case.

II. THE MIN-SUM ALGORITHM

Consider a connected undirected graph with vertices V =
{1, . . . , n} and edges E. Let N(i) denote the set of neighbors

of a vertex i. Consider an objective function f : Rn → R that

decomposes according to pairwise cliques of (V,E); that is

f(x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E

fij(xi, xj). (3)

The min-sum algorithm attempts to minimize f(·) by an

iterative, message passing procedure. In particular, at time t,
each vertex i keeps track of a “message” from each neighbor

u ∈ N(i). This message takes the form of a function J
(t)
u→i :

R → R. These incoming messages are combined to compute

new outgoing messages for each neighbor. In particular, the

message J
(t+1)
i→j (·) from vertex i to vertex j ∈ N(i) evolves
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according to

J
(t+1)
i→j (xj) =

κ+ min
yi

fi(yi) + fij(yi, xj) +
∑

u∈N(i)\j

J
(t)
u→i(yi)

 .
(4)

Here, κ represents an arbitrary offset term that varies from

message to message. Only the relative values of the function

J
(t+1)
i→j (·) matter, so κ does not influence relevant information.

Its purpose is to keep messages finite. One approach is to

select κ so that J
(t+1)
i→j (0) = 0. The functions {J (0)

i→j(·)} are

initialized arbitrarily; a common choice is to set J
(0)
i→j(·) = 0

for all messages.

At time t, each vertex j forms a local objective function

f
(t)
j (·) by combining incoming messages according to

f
(t)
j (xj) = κ+ fj(xj) +

∑
i∈N(j)

J
(t)
i→j(xj).

The vertex then generates a running estimate of the jth
component of an optimal solution to the original problem

according to

x
(t)
j = argmin

yj

f
(t)
j (yj).

By dynamic programming arguments, it is easy to see that this

procedure converges and is exact given a convex decomposi-

tion when the graph (V,E) is a tree. We are interested in the

case where the graph has arbitrary topology.

A. Reparameterizations

An alternative way to view iterates of the min-sum algo-

rithm is as a series of “reparameterizations” of the objective

function f(·) [6], [11]. Each reparameterization corresponds

to a different decomposition of the objective function. In

particular, at each time t, we define a function f
(t)
j : R→ R,

for each vertex j ∈ V , and a function f
(t)
ij : R2 → R, for each

edge (i, j) ∈ E, so that

f(x) =
∑
i∈V

f
(t)
i (xi) +

∑
(i,j)∈E

f
(t)
ij (xi, xj).

The functions evolve jointly according to

f
(t+1)
i (xi) = κ+ f

(t)
i (xi)+∑

j∈N(i)

min
xj

(
f

(t)
j (xj) + f

(t)
ij (xi, xj)

)
,

f
(t+1)
ij (xi, xj) = κ+ f

(t)
ij (xi, xj)

−min
yi

(
f

(t)
i (yi) + f

(t)
ij (yi, xj)

)
−min

yj

(
f

(t)
j (yj) + f

(t)
ij (xi, yj)

)
.

(5)

They are initialized at time t = 0 according to

f
(0)
i (xi) = κ+ fi(xi) +

∑
j∈N(i)

J
(0)
j→i(xi),

f
(0)
ij (xi, xj) = κ+ fij(xi, xj)

− J (0)
j→i(xi)− J

(0)
i→j(xj).

In the common case, where the functions {J (0)
i→j(·)} are all

set to zero, the initial component functions {f (0)
i (·), f (0)

ij (·, ·)}
are identical to {fi(·), fij(·, ·)}, modulo constant offsets. A

running estimate of the jth component of an optimal solution

to the original problem is generated according to

x
(t)
j = argmin

yj

f
(t)
j (yj). (6)

The message passing interpretation and the reparameteriza-

tion interpretation can be related by

f
(t)
j (xj) = κ+ fj(xj) +

∑
i∈N(j)

J
(t)
i→j(xj),

f
(t)
ij (xi, xj) = κ+ fij(xi, xj)− J (t)

j→i(xi)− J
(t)
i→j(xj),

J
(t+1)
i→j (xj) = κ+ J

(0)
i→j(xj)

+
t∑

s=0

min
yi

(
f

(s)
i (yi) + f

(s)
ij (yi, xj)

)
.

These relations are easily established by induction on t.
As they indicate, the message passing interpretation and the

reparameterization interpretation are completely equivalent in

the sense that convergence of one implies convergence of the

other, and that they compute the same estimates of an optimal

solution to the original optimization problem.

Reparameterizations are more convenient for our purposes

for the following reason: Note that the decomposition (3)

of the objective f(·) is not unique. Indeed, many alternate

factorizations can be obtained by moving mass between the

single vertex functions {fi(·)} and the pairwise functions

{fij(·, ·)}. Since the message passing update (4) depends on

the factorization, this would seem to suggest that the each

choice of factorization results in a different algorithm. How-

ever, in the reparameterization interpretation, the choice of

factorization only enters via the initial conditions. Moreover,

it is clear that the choice of factorization is equivalent to the

initial choice of messages {J (0)
i→j(·)}. Our results will identify

sufficient conditions on these choices so that the min-sum

algorithm converges.

III. THE QUADRATIC CASE

We are concerned with the case where the objective function

f is quadratic, i.e.

f(x) =
1
2
x>Γx− h>x.

Here, Γ ∈ Rn×n is a symmetric, positive definite matrix and

h ∈ Rn is a vector. Since f must decompose relative to the

graph (V,E) according to (3), we must have the non-diagonal

entries satisfy Γij = 0 if (i, j) /∈ E. Without loss of generality,

we will assume that Γij 6= 0 for all (i, j) ∈ E (otherwise,

each such edge (i, j) can be deleted from the graph) and that

Γii = 1 for all i ∈ V (otherwise, the variables can be rescaled

so that this is true).

Let ~E ⊂ V × V be the set of directed edges. That is,

(i, j) ∈ E iff {i, j} ∈ ~E and (i, j) ∈ E iff {j, i} ∈ ~E. (We

use braces and parentheses to distinguish directed and undi-

rected edges, respectively.) Quadratic component functions
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{fi(·), fij(·)} that sum to f(·) can be parameterized by two

vectors of parameters, γ = (γij) ∈ R|~E| and z = (zij) ∈ R|~E|,
according to

fij(xi, xj) =
1
2
(
γjiΓ2

ijx
2
i + 2Γijxixj + γijΓ2

ijx
2
j

)
− zjixi − zijxj ,

fj(xj) =
1
2

1−
∑

i∈N(j)

Γ2
ijγij

x2
j −

hj − ∑
i∈N(j)

zij

xj .

Given such a representation, we will refer to the components

of γ as the quadratic parameters and the components of z as

the linear parameters.

Iterates {f (t)
i (·), f (t)

ij (·, ·)} of the min-sum algorithm can be

represented by quadratic parameters γ(t) and linear parameters

z(t). By explicit computation of the minimizations involved in

the reparameterization update (5), we can rewrite the update

equations in terms of the parameters γ(t) and z(t). In particular,

if
∑
u∈N(i)\j Γ2

uiγ
(t)
ui < 1, then

γ
(t+1)
ij =

1

1−
∑
u∈N(i)\j Γ2

uiγ
(t)
ui

, (7)

z
(t+1)
ij =

Γij
1−

∑
u∈N(i)\j Γ2

uiγ
(t)
ui

hi − ∑
u∈N(i)\j

z
(t)
ui

 . (8)

If, on the other hand,
∑
u∈N(i)\j Γ2

uiγ
(t)
ui ≥ 1, then the

minimization

min
yi

f
(t)
i (yi) + f

(t)
ij (yi, xj)

is unbounded and the update equation is ill-posed. Further, the

estimate of the jth component of the optimal solution, defined

by (6), becomes

x
(t)
j =

1

1−
∑
i∈N(j) Γ2

ijγ
(t)
ij

hj − ∑
i∈N(j)

z
(t)
ij

 , (9)

when
∑
i∈N(j) Γ2

ijγ
(t)
ij < 1, and is ill-posed otherwise.

We define a generalization to the notion of a convex

decomposition.

Definition 2. (Convex-Dominated Decomposition)

A convex-dominated decomposition of a quadratic function

f(·) is a set of quadratic functions {fi(·), fij(·, ·)} that form

a decomposition of f(·), such that for some convex decompo-

sition {gi(·), gij(·, ·)},

gij(xi, xj)− fij(xi, xj)

is convex, for all edges (i, j) ∈ E.

Note that any convex decomposition is also convex-dominated.

The following theorem is the main result of this paper.

Theorem 1. (Quadratic Min-Sum Convergence)

If f(·) is convex decomposable and {f (0)
i (·), f (0)

ij (·, ·)} is a

convex-dominated decomposition, then the quadratic parame-

ters γ(t), the linear parameters z(t), and the running estimates

x(t) converge. Moreover,

lim
t→∞

f(x(t)) = min
x
f(x).

This result is more general than required to capture the

“typical” situation. In particular, consider a situation where

a problem formulation gives rise to component functions

{fi(·), fij(·)} that form a convex decomposition of an ob-

jective function f . Then, initialize the min-sum algorithm

with {f (0)
i (·), f (0)

ij (·, ·)} = {fi(·), fij(·, ·)}. Since the initial

iterate is a convex decomposition, it certifies that f(·) is

convex decomposable, and it is also a convex-dominated

decomposition.

We will prove Theorem 1 in Section VI. Before doing so, we

will study the parameter sequences γ(t) and z(t) independently.

IV. CONVERGENCE OF QUADRATIC PARAMETERS

The update (7) for the the quadratic parameters γ(t) does

not depend on the linear parameters z(t). Hence, it is natural

to study their evolution independently, as in [5], [7]. In this

section, we establish existence and uniqueness of a fixed point

of the update (7). Further, we characterize initial conditions

under which γ(t) converges to this fixed point.

Whether or not a decomposition is convex depends on

quadratic parameters but not the linear ones. Let V be the set

of quadratic parameters γ ∈ R|~E| that correspond to convex

decompositions.

We have the following theorem establishing convergence

for the quadratic parameters. The proof relies on certain

monotonicity properties of the update (7), and extends the

method developed in [5], [7].

Theorem 2. (Quadratic Parameter Convergence)

Assume that f(·) is convex decomposable. The system of

equations

γij =
1

1−
∑
u∈N(i)\j Γ2

uiγui
, ∀ {i, j} ∈ ~E,

has a solution γ∗ such that

0 < γ∗ < v, ∀ v ∈ V.

Moreover, γ∗ is the unique such solution.

If we initialize the min-sum algorithm so that γ(0) ≤ v, for

some v ∈ V , then 0 < γ(t) < v, for all t > 0, and

lim
t→∞

γ(t) = γ∗.

Proof: See Appendix A.

The key condition for the convergence is that the initial

quadratic parameters γ(0) must be dominated by those of a

convex decomposition. Such initial conditions are easy to find,

for example γ(0) = 0 or γ(0) ∈ V satisfy this requirement.

Note that we should not expect the algorithm to converge

for arbitrary γ(0). For the update (7) to even be well-defined

at time t, we require that∑
u∈N(i)\j

Γ2
uiγ

(t)
ui < 1, ∀ {i, j} ∈ ~E.
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The condition on γ(0) in Theorem 2 guarantees this at time

t = 0, and the theorem guarantees that it continue to hold for

all t > 0. Similarly, the computation (9) of the estimate x(t)

requires that ∑
i∈N(j)

Γ2
ijγ

(t)
ij < 1, ∀ j ∈ V.

The theorem guarantees that this is true for all t ≥ 0, given

suitable choice of γ(0).

V. CONVERGENCE OF LINEAR PARAMETERS

In this section, we will assume that the quadratic parameters

γ(t) are set to the fixed point γ∗, and study the evolution of

the linear parameters z(t). In this case, the update (8) for the

linear parameters takes the particularly simple form

z
(t+1)
ij = γ∗ijΓij

hi − ∑
u∈N(i)\j

z
(t)
ui

 .

This linear equation can be written in vector form as

z(t+1) = −Dy +Az(t),

where y ∈ R|~E| is a vector with

yij = hi, (10)

D ∈ R|~E×~E| is a diagonal matrix with

Dij,ij = −γ∗ijΓij , (11)

and A ∈ R|~E×~E| is a matrix such that

Aij,uk =

{
−γ∗ijΓij if (u, i), (i, j) ∈ E, k = i, j 6= u,

0 otherwise.

(12)

If the spectral radius of A is less than 1, then we have

convergence of z(t) independent of the initial condition z(0)

by

lim
t→∞

z(t) = −
∞∑
t=0

AtDy.

We will show that existence of a convex decomposition of

f(·) is a sufficient condition for this to be true. In order to

proceed, we first introduce the notion of walk-summability.

A. Walk-Summability

Note that the optimization problem we are considering,

min
x

1
2
x>Γx− h>x,

has the unique solution

x∗ = Γ−1h.

Define R = I − Γ, so Rii = 0 and Rij = −Γij , if i 6= j. If

we assume that the matrix R has spectral radius less than 1,

we can express the solution x∗ by the infinite series

x∗ =
∞∑
t=0

Rth. (13)

The idea of walk-sums, introduced by Johnson, et al. [9],

allows us to interpret this solution as a sum of weights of

walks on the graph.

To be precise, define a walk of length k to be a sequence

of vertices

w = {w0, . . . , wk},

such that (wi, wi+1) ∈ E, for all 0 ≤ i < k. Given a walk w,

we can define a weight by the product

ρ(w) = Rw0w1 · · ·Rw|w|−1w|w| .

(We adopt the convention that ρ(w) = 1 for walks of length

0, which consist of a single vertex.) Given a set of walks W ,

we define the weight of the set to be the sum of the weights

of the walks in the set, that is

ρ(W) =
∑
w∈W

ρ(w).

Define Wi→j to be the (infinite) set of all walks from vertex

i to vertex j. If the quantity ρ(Wi→j) was well-defined,

examining the structure of R and (13), we would have

x∗j =
∑
i∈V

ρ(Wi→j)hi. (14)

Definition 3. (Walk-Summability)

Given a matrix Γ � 0 with Γii = 1, define |R| by |R|ij =
|[I − Γ]ij |. We say Γ is walk-summable if the spectral radius

of |R| is less than 1.

Walk-summability of Γ guarantees the the function ρ(·) is

well-defined even for infinite sets of walks, since in this case,

the series
∑∞
t=0R

t is absolutely convergent. It is not difficult

to see that existence of a convex decomposition of f(·) implies

walk-summability [9]. More recent work [10] shows that these

two conditions are in fact equivalent.

We introduce a different weight function ν(·) defined by

ν(w) = γ∗w0w1
Rw0w1 · · · γ∗w|w|−1w|w|

Rw|w|−1w|w| .

ν(·) can be extends to sets of walks as before. However,

we interpret this function only over non-backtracking walks,

where a walk w is non-backtracking if wi−1 6= wi+1, for

1 ≤ i < |w|. Denote by Wnb the set of non-backtracking

walks. The following combinatorial lemma establishes a cor-

respondence between ν(·) on non-backtracking walks and ρ(·).

Lemma 1. Assume that f(·) is convex decomposable. For each

w ∈ Wnb, there exists a set of walks Ww, all terminating at

the same vertex as w, such that

ν(w) = ρ(Ww).

Further, if w′ ∈ Wnb and w′ 6= w, then Ww and Ww′ are

disjoint.

Proof: See Appendix B.

The above lemma reveals that ν(·) is well-defined on infinite

sets of non-backtracking walks. Indeed, if W ⊂Wnb,∑
w∈W

|ν(w)| =
∑
w∈W

|ρ(Ww)| ≤
∑
w∈W

∑
u∈Ww

|ρ(u)|, (15)

and the latter sum is finite since Γ is walk-summable.
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We can make the correspondence between ν(·) and ρ(·)
stronger with the following lemma.

Lemma 2. Assume that f(·) is convex decomposable. If we

define Wnb
i→r to be the set of all non-backtracking walks from

vertex i to vertex r, we have

ρ(Wi→r) =
ν(Wnb

i→r)
1−

∑
u∈N(r)R

2
urγ
∗
ur

.

Proof: See Appendix B.

B. Spectral Radius of A

Examining the structure of the matrix A from (12), it is

clear that if Wnb,t
uk→ij is defined to be the set of all length

t non-backtracking walks w with {w0, w1} = {u, k} and

{w|w|−1, w|w|} = {i, j}, then

[AtD]ij,uk = ν(Wnb,t+1
uk→ij ).

Thus, if Wnb,1+
uk→ij is the set of all non-backtracking walks

w of length at least 1 satisfying {w0, w1} = {u, k} and

{w|w|−1, w|w|} = {i, j},
∞∑
t=0

[AtD]ij,uk =
∞∑
t=0

ν(Wnb,t+1
uk→ij ) = ν(Wnb,1+

uk→ij)

=
∑

w∈Wnb,1+
uk→ij

ν(w).

Lemma 1 and (15) assure us that the later sum must be

absolutely convergent. Then, we have established the following

lemma.

Lemma 3. Assume that f(·) is convex decomposable. The

spectral radius of |A| is less than 1.

C. Exactness

From Lemma 3, we have

z(∞) = lim
t→∞

z(t) = −
∞∑
t=0

AtDy.

For each vertex j, define the quantity

Γ̄j =
1

1−
∑
i∈N(j) Γ2

ijγ
∗
ij

.

In this case, the estimate x
(t)
j for each vertex j, defined by

(6), converges to

x
(∞)
j = Γ̄j

(
hj − z(∞)

)
= Γ̄j

hj +
∑

i∈N(j)

∞∑
t=0

[AtDy]ij


= Γ̄j

hj +
∑

i∈N(j)

∑
{u,k}∈~E

ν(Wnb,1+
uk→ij)hu


= Γ̄j

(
hj +

∑
u∈V

ν(Wnb,1+
u→j )hu

)
.

Here, we define Wnb,1+
u→j is the set of non-backtracking walks

of length at least 1 starting at u and ending at j. Note that if

u 6= j, then a non-backtracking walk from u to j must have

length at least 1. Thus,

ν(Wnb
u→j) = ν(Wnb,1+

u→j ).

If u = j, there is a single non-backtracking walk of length 0

from j to j, namely w = {j}, and ν(w) = 1. Thus,

ν(Wnb
u→j) = 1 + ν(Wnb,1+

u→j ).

Hence,

x
(∞)
j =

1
1−

∑
i∈N(j) Γ2

ijγ
∗
ij

∑
u∈V

ν(Wnb
u→j)hu.

Comparing with Lemma 2, and (14), we have

x
(∞)
j =

∑
u∈V

ρ(Wu→j)hu = x∗j .

Thus, x(∞) = x∗.
Putting together the results in this section, we have the

following theorem.

Theorem 3. (Linear Parameter Convergence)

Assume that f(·) is convex decomposable and that γ(0) = γ∗.
Then, for arbitrary initial conditions z(0), the linear param-

eters z(t) converge. Further, the corresponding estimates x(t)

converge to the global optimum x∗.

VI. OVERALL CONVERGENCE

In Section IV, we established the convergence of the

quadratic parameters γ(t). In Section V, we established

the convergence of the linear parameters z(t) assuming the

quadratic parameters were set to their fixed point. Here, we

will combine these results in order to prove Theorem 1,

which establishes convergence of the full min-sum algorithm,

where the linear parameters evolve jointly with the quadratic

parameters.

It suffices to establish convergence of the linear parameters

z(t). Define the matrix A(t) ∈ R|~E×~E| by

A
(t)
ij,uk =

{
−γ(t+1)

ij Γij if (u, i), (i, j) ∈ E, k = i, j 6= u,

0 otherwise.

Define the diagonal matrix D(t) ∈ R|~E×~E| by D
(t)
ij,ij =

−γ(t+1)
ij Γij . Then, the min-sum update (8) becomes

z(t+1) = −D(t)y +A(t)z(t),

where y is defined by (10). From Theorem 2, it is clear that

A(t) → A and D(t) → D (where A and D are defined by

(12) and (11), respectively).

From Lemma 3, the spectral radius of |A| is less than 1.

Hence, there is a vector norm ‖·‖ on R|~E| and a corresponding

induced operator norm such that ‖A‖ < α, for some α < 1
[14]. Pick K1 sufficiently large so that ‖A(t)‖ < α for all

t ≥ K1. Then, the series

∞∑
s=0

(
A(t)

)s
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converges for t ≥ K1. Set

w(t) = −
∞∑
s=0

(
A(t)

)s
D(t)y = −(I −A(t))−1D(t)y,

z(∞) = −
∞∑
s=0

AsDy = −(I −A)−1Dy.

Then, for t ≥ K1,

‖z(t+1) − z(∞)‖ ≤ ‖A(t)(z(t) − w(t))‖+ ‖z(∞) − w(t)‖
≤ α‖z(t) − w(t)‖+ ‖z(∞) − w(t)‖
≤ α‖z(t) − z(∞)‖+ (1 + α)‖z(∞) − w(t)‖.

Since w(t) → z(∞), for any ε > 0 we can pick K2 ≥ K1 so

that if t > K2, ‖w(t) − z(∞)‖ < ε. Then, for t > K2,

‖z(t+1) − z(∞)‖ < α‖z(t) − z(∞)‖+ (1 + α)ε.

Repeating over t,

‖z(t) − z(∞)‖ < αt−K2‖z(K2) − z(∞)‖+
1 + α

1− α
ε.

Thus,

lim sup
t→∞

‖z(t) − z(∞)‖ ≤ 1 + α

1− α
ε.

Since ε is arbitrary, it is clear that z(t) converges to z(∞).

The fact that x(t) converges to x∗ follows from the same

argument as in Theorem 3.

A. Asynchronous Convergence

The work we have presented thus far considers the conver-

gence of a synchronous variation of the min-sum algorithm. In

that case, every component of each of the parameter vectors

γ(t) and z(t) is update at every time step. However, the

min-sum algorithm has a naturally parallel nature and can

be applied in distributed contexts. In such implementations,

different processors may be responsible for updating different

components of the parameter vector. Further, these processors

may not be able to communicate at every time step, and thus

may have insufficient information to update the corresponding

components of the parameter vectors. There may not even be

a notion of a shared clock. As such, it is useful to consider

the convergence properties of the min-sum algorithm under an

asynchronous model of computation.

In such a model, we assume that a processor associated

with vertex i is responsible for updating the parameters γ
(t)
ij

and z
(t)
ij for each neighbor j ∈ N(i). We define the T i to be

the set of times at which these parameters are updated. We

define 0 ≤ τji(t) ≤ t to be the last time the processor at

vertex j communicated to the processor at vertex i. Then, the

parameters evolve according to

γ
(t+1)
ij =


1

1−
∑

u∈N(i)\j
Γ2
ui
γ
(τui(t))
ui

if t ∈ T i,

γ
(t)
ij otherwise,

z
(t+1)
ij =


Γij

(
hi−
∑

u∈N(i)\j
z
(τui(t))
ui

)
1−
∑

u∈N(i)\j
Γ2
ui
γ
(τui(t))
ui

if t ∈ T i,

z
(t)
ij otherwise,

Note that the processor at vertex i is not computing its updates

with the most recent values of the other components of the

parameter vector. It uses the values of components from the

last time it communicated with a particular processor.

We will make the assumption of total asynchronism [13]:

we assume that each set T i is infinite, and that if {tk} is a

sequence in T i tending to infinity, then limk→∞ τij(tk) =∞,

for each neighbor j ∈ N(i). This mild assumption guarantees

that each component is updated infinitely often, and that pro-

cessors eventually communicate with neighboring processors.

It allows for arbitrary delays in communication, and even the

out-of-order arrival of messages between processors.

We can extend the convergence result of Theorem 1 to

this setting. The proof is straightforward given the results we

have already established and standard results on asynchronous

algorithms (see [13], for example). We will provide an outline

here. For the convergence of the quadratic parameters, note

that the synchronous iteration (7) is a monotone mapping (see

Lemma 4 in Appendix A). For such monotone mappings,

synchronous convergence implies totally asynchronous con-

vergence by Proposition 6.2.1 in [13]. The linear parameter

update equation for the synchronous algorithm has the form

z(t+1) = −D(t)y +A(t)z(t).

For t sufficiently large, by the convergence of the quadratic

parameters, the matrix A(t) becomes arbitrarily close to A.

From Lemma 3, the matrix |A| has spectral radius less than

one. In this case, by Corollary 2.6.2 in [13], it must correspond

to a weighted maximum norm contraction. Then, one can

establish asynchronous convergence of the linear parameters

by appealing again to Proposition 6.2.1 in [13].

VII. DISCUSSION

The following corollary is a restatement of Theorem 1 in

terms of message passing updates of the form (4).

Corollary 1. (Convergence of Message Passing Updates)

Let {gi(·), gij(·, ·)} be a convex decomposition of f(·), and

let {fi(·), fij(·)} be a decomposition of f(·) into quadratic

functions such that

gij(xi, xj) + J
(0)
i→j(xj) + J

(0)
j→i(xi)− fij(xi, xj) (16)

is a convex function of (xi, xj), for all (i, j) ∈ E. Then,

using the decomposition {fi(·), fij(·, ·)} and quadratic initial

messages {J (0)
i→j(·)}, the running estimates x(t) generated by

the min-sum algorithm converge. Further,

lim
t→∞

f(x(t)) = min
x
f(x).

The work of Johnson, et al. [9] identifies existence of convex

decomposition of the objective as a important condition for

such convergence results and also introduces the notion of

walk-summability. However, the convergence analysis pre-

sented there only establishes a special case of the above

corollary, where

fij(xi, xj) = Γijxixj , ∀ (i, j) ∈ E,

J
(0)
i→j(xj) = 0, ∀ {i, j} ∈ ~E.
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In addition, they present a quadratic program that is not

convex decomposable, and where the min-sum algorithm fails

to converge.

The prior work of the current authors in [7] considers a

case that arises in distributed averaging applications. There,

convergence is established when

fij(xi, xj) =
1
2

Γij(xi − xj)2, Γij > 0, ∀ (i, j) ∈ E,

J
(0)
i→j(·) is convex, ∀ {i, j} ∈ ~E,

This is also a special case of Corollary 1. The work in [7]

further develops complexity bounds on the rate of convergence

in certain special cases. Study of the rate of convergence of

the min-sum algorithm in more general cases remains an open

issue.

Note that the main convexity condition (16) of Corollary 1

can also be interpreted in the context of general convex

objectives. While our analysis is very specific to the quadratic

case, the result may be illuminating in the broader context of

convex programs.

Finally, although every quadratic program can be decom-

posed over pairwise cliques, as we assume in this paper, there

may also be decompositions involving higher order cliques.

Our analysis does not apply to that case, and this is an

interesting question for future consideration.

APPENDIX A

PROOF OF THEOREM 2

Define the domain

D =

γ ∈ R|~E|
∣∣∣∣∣∣

∑
u∈N(i)\j

Γ2
uiγui < 1, ∀ {i, j} ∈ ~E

 ,

and the operator F : D → R|~E| by

Fij(γ) =
1

1−
∑
u∈N(i)\j Γ2

uiγui
, ∀ {i, j} ∈ ~E.

This operator corresponds to a single min-sum update (7)

of the quadratic parameters. We will first establish some

properties of this operator.

Lemma 4. The following hold:

(i) The operator F (·) is continuous.

(ii) The operator F (·) is monotonic. That is, if γ, γ′ ∈ D and

γ ≤ γ′, F (γ) ≤ F (γ′).

(iii) The operator F (·) is positive. That is, if γ ∈ D, F (γ) >
0.

(iv) If v ∈ V and γ ≤ v,

αF (γ) < (α− 1)v + F (v − α(v − γ)), ∀ α > 1.

(v) If v ∈ V , F (v) < v.

Proof: Parts (i)-(iii) follow from the corresponding prop-

erties of the function

x 7→ 1
1− x

,

for x ∈ (−∞, 1). Part (v) follows from setting γ = v in

Part (iv).

Part (iv) remains. For notational convenience, define

Rij(γ) = 1−
∑

u∈N(i)\j

Γ2
uiγui,

z = v − γ ≥ 0.

We have

(α− 1)vij + Fij(v − α(v − γ))− αFij(γ)

= (α− 1)vij +
1

Rij(v − αz)
− α

Rij(v − z)

=
1

Rij(v − αz)Rij(v − z)
×
{

(α− 1)vijRij(v − αz)Rij(v − z)
+Rij(v − z)− αRij(v − αz)

}
.

Denote the numerator of the last expression by ∆. Since the

denominator is positive, it suffices to show that ∆ > 0. Define

Vj = 1−
∑

i∈N(j)

Γ2
ijvij > 0,

Sij =
∑

u∈N(i)\j

Γ2
uizui ≥ 0.

Note that

Rij(v − αz) = Vi + Γ2
ijvji + αSij ,

Rij(v − z) = Vi + Γ2
ijvji + Sij .

Since v ∈ V , we have Γ2
ijvijvji ≥ 1, for each {i, j} ∈ ~E.

Then, we can derive the chain of inequalities

∆ = (α− 1)vij(Vi + Γ2
ijvji + αSij)(Vi + Γ2

ijvji + Sij)

+ Vi + Γ2
ijvji + Sij − α(Vi + Γ2

ijvji + αSij)

≥ (α− 1)vij(Vi + αSij)(Vi + Γ2
ijvji + Sij)

+ (α− 1)(Vi + Γ2
ijvji + Sij) + Vi + Γ2

ijvji + Sij

− α(Vi + Γ2
ijvji + αSij)

= (α− 1)vij(Vi + αSij)(Vi + Γ2
ijvji + Sij)

− α(α− 1)Sij
≥ (α− 1)vij(Vi + αSij)(Vi + Sij)

+ (α− 1)(Vi + αSij)− α(α− 1)Sij
= (α− 1)vij(Vi + αSij)(Vi + Sij) + (α− 1)Vi
> 0.

We are now ready to prove Theorem 2.

Theorem 2. Assume that f(·) is convex decomposable. The

set of system of equations

γij =
1

1−
∑
u∈N(i)\j Γ2

uiγui
, ∀ {i, j} ∈ ~E,

has a solution γ∗ such that

0 < γ∗ < v, ∀ v ∈ V.

Moreover, γ∗ is the unique such solution.
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If we initialize the min-sum algorithm so that γ(0) ≤ v, for

some v ∈ V , then 0 < γ(t) < v, for all t > 0, and

lim
t→∞

γ(t) = γ∗.

Proof: Pick some v ∈ V . Then, F (v) < v from Part (v)

of Lemma 4. Thus, we have F t(v) ≤ F t−1(v), for all t > 0,

by monotonicity. (Here, F t(·) denotes t applications of the

operator F (·).) Then, the sequence {F t(v)} is a monotonically

decreasing sequence, which by the positivity of F (·), is

bounded below by zero. Hence, the limit F∞(v) exists. By

continuity, it must be a fixed point of F (·).

Now, note that, by positivity, 0 ≤ F∞(v). Thus, by mono-

tonicity, F t(0) ≤ F∞(v), for all t > 0. Since 0 < F (0) = 1,

we have F t−1(0) ≤ F t(0), for all t > 0, and this sequence

converges to a fixed point F∞(0) ≤ F∞(v).

We wish to show that F∞(0) = F∞(v). Assume otherwise.

Define

β = inf{α ≥ 1 | v − α(v − F∞(v)) ≤ F∞(0)}.

Since F∞(v) < v, the set in the above infimum is not empty.

Since F∞(0) ≤ F∞(v) and F∞(0) 6= F∞(v), we must have

β > 1. Then, we have

F∞(0) ≥ v − β(v − F∞(v)).

Applying F (·) and using Part (iv) of Lemma 4,

F∞(0) ≥ F (v − β(v − F∞(v)))
> βF∞(v)− (β − 1)v
= v − β(v − F∞(v)).

This contradicts the definition of β. Thus, we must have

F∞(0) = F∞(v).

Set γ∗ = F∞(0). From the above argument, we have

0 < γ∗ = F∞(v) < v, for all v ∈ V . Thus, γ∗ satisfies

the conditions of the lemma.

Assume there is some other fixed point γ′ satisfying the

conditions of the lemma. Positivity implies γ′ > 0. Then,

since 0 < γ′ < v for some v ∈ V , by repeatedly applying

F (·), we have

F t(0) ≤ γ′ ≤ F t(v),

for all t > 0. Taking a limit as t→∞, it is clear that γ′ = γ∗.
It remains to prove the final statement of the lemma.

Consider γ(0), with γ(0) ≤ v, for some v ∈ V . Note that

0 < F (γ) ≤ F (v) < v. Then,

0 < F t(0) ≤ γ(t+1) = F t+1(γ(0)) ≤ F t+1(v) < v.

for all t > 0. Taking limits,

lim
t→∞

γ(t) = γ∗.

APPENDIX B

PROOF OF LEMMAS 1 AND 2

For the balance of this section, we assume that f(·) admits

a convex decomposition.

In order to prove Lemma 1, we first fix an arbitrary vertex

r, and consider an infinite computation tree rooted at a vertex

r̃ corresponding to r. Such a tree is constructed in an iterative

process, first starting with a single vertex r̃. As each step,

vertices are added to leaves on the tree corresponding to the

neighbors of the leaf in the original graph other than its parent.

Hence, the tree’s vertices consist of replicas of vertices in the

original graph, and the local structure around each vertex is

the same as that in the original graph. We can extend both

functions ρ(·) and ν(·) to walks on the computation tree by

defining weights on edges in the computation tree according to

the weights of the corresponding edges in the original graph.

We will use the tilde symbol to distinguish vertices and subsets

of the computation tree from those in the underlying graph.

We begin with a lemma.

Lemma 5. Given connected vertices ĩ, j̃ in the computation

tree, with labels i,j, respectively, let W̃ĩ→ĩ\j̃ be the set of

walks starting at ĩ and returning to ĩ but never crossing the

edge (̃i, j̃). Then,

ρ(W̃ĩ→ĩ\j̃) = γ∗ij .

Proof: First, note that walks in W̃ĩ→ĩ\j̃ can be mapped

to disjoint walks on the original graph. Hence, by walk-

summability, the infinite sum∑
w̃∈W̃ĩ→ĩ\j̃

ρ(w̃)

converges absolutely.

Now, define the set W̃d
ĩ→ĩ\j̃ to be the set of walks in W̃ĩ→ĩ\j̃

that travel at most a distance d away from ĩ in the computation

tree. A walk w̃ ∈ W̃d
ĩ→ĩ\j̃ can be decomposed into a series

of traversals to neighbors ũ ∈ N (̃i) \ j̃, self-returning walks

from ũ to ũ that do not cross (ũ, ĩ) and travel at most distance

d − 1 from ũ, and then returns to ĩ. Letting t index the total

number of such traversals, we have the expression

ρ(W̃d
ĩ→ĩ\j̃) =

∞∑
t=0

 ∑
ũ∈N (̃i)\j̃

R2
ũĩ
ρ(W̃d−1

ũ→ũ\ĩ)

t

.

By walk-summability, this infinite sum must converge. Thus,

ρ(W̃d
ĩ→ĩ\j̃) =

1
1−

∑
ũ∈N (̃i)\j̃ R

2
ũĩ
ρ(W̃d−1

ũ→ũ\ĩ)
.

By the symmetry of the computation tree, the quantity

ρ(W̃d
ĩ→ĩ\j̃) depends only on the labels of ĩ and j̃ in the original

graph. Set γ
(0)
ij = ρ(W̃0

ĩ→ĩ\j̃) = 1 and γ
(d)
ij = ρ(W̃d

ĩ→ĩ\j̃), for

each {i, j} ∈ ~E and integer d > 0. Then, we have

γ
(d)
ij =

1

1−
∑
u∈N(i)\j R

2
uiγ

(d−1)
ui

.
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By Theorem 2, we have

lim
d→∞

γ
(d)
ij = γ∗ij .

Then, since W̃d
ĩ→ĩ\j̃ ⊂ W̃

d+1

ĩ→ĩ\j̃ , and

W̃ĩ→ĩ\j̃ =
∞⋃
d=0

W̃d
ĩ→ĩ\j̃ ,

we have

ρ(W̃ĩ→ĩ\j̃) = lim
d→∞

ρ(W̃d
ĩ→ĩ\j̃) = γ∗ij .

We call a walk on the computation tree a shortest-path walk

if it is the unique shortest path between its endpoints. Given

a shortest-path walk p̃ define W̃p̃ to be the set of all walks of

the form

{p̃0, w̃
0, p̃1, w̃

1, . . . , w̃|p̃|−1, p̃|p̃|},

where w̃i ∈ W̃p̃i→p̃i\p̃i+1 , for 0 ≤ i < |p̃|. Intuitively, these

walks proceed along the path p, but at each point p̃i, they may

also take a self-returning walk from vertex p̃i to vertex p̃i that

does not cross the edge (p̃i, p̃i+1).

Lemma 6. Given a shortest-path walk p̃,

ρ(W̃p̃) = ν(p̃).

Proof:

ρ(W̃p̃) =
∑

w̃0∈W̃p̃0→p̃0\p̃1

· · ·
∑

w̃|p̃|−1∈W̃p̃0→p̃|p̃|−1\p̃|p̃|

ρ({p̃0, w̃
0, p̃1, w̃

1, . . . , w̃|p̃|−1, p̃|p̃|})

= ρ(p̃)
|p̃|−1∏
i=0

ρ(W̃p̃i→p̃i\p̃i+1)

= ν(p̃).

We are now ready to prove Lemma 1.

Lemma 1. Assume that f(·) is convex decomposable. For each

w ∈ Wnb, there exists a set of walks Ww, all terminating at

the same vertex as w, such that

ν(w) = ρ(Ww).

Further, if w′ ∈ Wnb and w′ 6= w, then Ww and Ww′ are

disjoint.

Proof: Take a vertex i in the original graph. Given a

walk from i to r in the original graph, there is a unique

corresponding walk from a replica of i to r̃ in the computation

tree. Also notice that non-backtracking walks in the original

graph that terminate at r correspond uniquely to shortest-path

walks in the computation tree that terminate at r̃.

Now, assume that w ∈ Wnb terminates at r. Let p̃ be the

corresponding shortest-path walk in the computation tree, and

consider the set W̃p̃. We will defineWw to be the set of walks

in the original graph corresponding to W̃p̃. From Lemma 6,

ν(w) = ν(p̃) = ρ(W̃p̃) = ρ(Ww).

Now, consider another walk w′ ∈ Wnb, w′ 6= w, that also

terminates at r. We would like to show that Ww and Ww′ are

disjoint. Let p̃′ be the shortest-path walk corresponding to w′.
Equivalently, we can show W̃p̃ and W̃p̃′ are

disjoint. Assume there is some walk ũ ∈ W̃p̃ ∩ W̃p̃′ . Then,

both p̃ and p̃′ must be the shortest-path from the origin of ũ
to r̃. Since shortest-paths between a pair of vertices on the

computation tree are unique, we must have p̃ = p̃′ and this

w = w′, which is a contradiction.

Note that we only considered non-backtracking walks ter-

minating at a fixed vertex r. However, our choice or r was

arbitrary hence we can repeat the construction for each r ∈ V .

Moreover, if w and w′ terminate at different vertices r and r′,
respectively, the setsWw andWw′ will contain only walks that

terminate at r and r′, respectively, thus they will be disjoint.

Using similar arguments as above, we can prove Lemma 2.

Lemma 2. Assume that f(·) is convex decomposable. If we

define Wnb
i→r to be the set of all non-backtracking walks from

vertex i to vertex r, we have

ρ(Wi→r) =
ν(Wnb

i→r)
1−

∑
u∈N(r)R

2
urγ
∗
ur

.

Proof: Consider a walk w ∈ Wi→r, and let w̃ be the

unique corresponding walk in the computation tree terminating

at r̃. Let p̃ be the unique shortest-path walk corresponding to

w̃. Note that p̃ will originate at a replica of i, and end at

r̃. Thus, p̃ uniquely corresponds to a non-backtracking walk

w′ ∈ Wnb
i→r.

Now, w̃ can be uniquely decomposed according to

{p̃0, w̃
0, p̃1, w̃

1, . . . , w̃|p̃|−1, p̃|p̃|, ṽ},

where w̃i ∈ W̃p̃i→p̃i\p̃i+1 , for 0 ≤ i < |p̃|, and ṽ is a self-

returning walk from r̃ to r̃. Applying Lemma 6, we have

ρ(Wi→r) = ν(Wnb
i→r)ρ(W̃r̃→r̃),

where W̃r̃→r̃ is the set of self-returning walks from r̃ to r̃.

However, a walk ṽ ∈ W̃r̃→r̃ can be uniquely decomposed

into a series of traversals to neighbors ũ ∈ N(r̃), self-returning

walks from ũ to ũ that do not cross (ũ, r̃), and then returns

to ĩ. Letting t index the total number of such traversals, we

have the expression

ρ(W̃r̃→r̃) =
∞∑
t=0

 ∑
ũ∈N(r̃)

R2
ũr̃ρ(W̃ũ→ũ\r̃)

t

.

From Lemma 5,

ρ(W̃ũ→ũ\r̃) = γ∗ur.

Thus,

ρ(Wi→r) = ν(Wnb
i→r)

∞∑
t=0

 ∑
u∈N(r)

R2
urγ
∗
ur

t

=
ν(Wnb

i→r)
1−

∑
u∈N(r)R

2
urγ
∗
ur

.
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