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A. Proofs

The following elementary fact will be helpful in the proofs that follow:

Fact 1. If y, y� ∈ RN are two sequences of real numbers, then

maxs ys − maxs y�
s ≤ maxs |ys − y�

s|.

By symmetry, it holds that

|maxs ys − maxs y�
s| ≤ maxs |ys − y�

s|.

A.1. Proof of Lemma 1

Lemma 1 (Martingale Duality).

(i) (Weak Duality) For any J ∈ P and all x ∈ X and t ∈ T , J∗
t (x) ≤ FtJ(x).

(ii) (Strong Duality) For all x ∈ X and t ∈ T , J∗(x)t = FtJ
∗(x).

Proof. (i) Note that

J
∗
t (xt) = sup

τt

E

�
α

τt−t
g(xτt)

��� xt

�
(A.1)

= sup
τt

E



α
τt−t

g(xτt) −
τt�

p=t+1
α

p−t(∆J)(xp, xp−1)

������
xt



(A.2)

≤ E



 max
t≤s≤d

α
s−t

g(xs) −
s�

p=t+1
α

p−t(∆J)(xp, xp−1)

������
xt



 .(A.3)
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Here, in (A.1), τt is a stopping time that takes values in the set {t, t + 1, . . . , d}. (A.2) follows from
the optimal sampling theorem for martingales. (A.3) follows from the fact that stopping times
are non-anticipatory, and hence the objective value can only be increased by allowing policies with
access to the entire sample path.

(ii) From (i) we know that FtJ
∗(xt) ≥ J∗

t (xt). To see the opposite inequality,

FtJ
∗(xt) = E



 max
t≤s≤d

α
s−t

g(xs) −
s�

p=t+1
α

p−t (∆J
∗)(xp, xp−1)

������
xt





= E



 max
t≤s≤d

α
s−t

g(xs) −
s�

p=t+1
α

p−t
�
J

∗
p (xp) − E[J∗

p (xp)|xp−1]
�

������
xt





= E



 max
t≤s≤d

α
s−t

g(xs) − α
s−t

J
∗
s (xs) + J

∗
t (xt)

+
s�

p=t+1
α

p−t−1
�
αE[J∗

p (xp)|xp−1] − J
∗
p−1(xp−1)

�
������

xt





≤ J
∗
t (xt)

The last inequality follows from the Bellman equation (1). �

A.2. Proof of Theorem 1

Theorem 1. Let N ⊂ RK be a compact set. Fix an initial state x0 and � > 0. Then, almost surely,

if S is sufficiently large, for all I sufficiently large,

����min
r∈N

F0Φr(x0) − min
r∈N

F̂
S,I
0 Φr(x0)

���� ≤ �.

Proof. Given ��, δ� > 0, define a finite set R ⊂ N such that for all r ∈ N , there exists r� ∈ R with
�r − r��∞ < ��. The existence of R is guaranteed by the compactness of N .

For any element r ∈ N and let r� ∈ R be such that �r − r��∞ < ��. By triangle inequality, we
have

���F0Φr(x0) − F̂
S,I
0 Φr(x0)

��� ≤
��F0Φr(x0) − F0Φr

�(x0)
�� +

���F0Φr
�(x0) − F̂

S,I
0 Φr

�(x0)
���

+
���F̂ S,I

0 Φr
�(x0) − F̂

S,I
0 Φr(x0)

��� .

(A.4)

We bound each of the quantities on the right by using Lemma 8, which is established below, to
guarantee the choice of (S, I) so that

���F0Φr(x0) − F̂
S,I
0 Φr(x0)

��� ≤L�
� + �

� + (L + δ
�)��

.

Since ��, δ� > 0 are arbitrary, the result follows. �
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Lemma 8. Fix an initial state x0 ∈ X .

(i) F0Φr(x0) is a Lipschitz function of r ∈ RK , i.e.,

��F0Φr(x0) − F0Φr
�(x0)

�� ≤ L�r − r
��∞, ∀ r, r

� ∈ RK
,

where we denote the associated Lipschitz constant by L.

(ii) Fix �, δ > 0 and suppose that R ⊂ RK is a finite set. Then, almost surely, if S is sufficiently

large, for all I sufficiently large, we have:

(a) For all r ∈ R,
��F̂ S,I

0 Φr(x0) − F0Φr(x0)
�� ≤ �.

(b) F̂
S,I
0 Φr(x0) is a Lipschitz function of r ∈ RK with Lipschitz constant L + δ.

Proof. (i) Using Fact 1, the triangle inequality, and Jensen’s inequality, we have that, for r, r� ∈ RK ,

��F0Φr(x0) − F0Φr
�(x0)

��

≤ E



 max
0≤s≤d

������

s�

p=1
α

p

�

(Φr)p(xp) − (Φr
�)p(xp) + E

�
(Φr)p(xp)|xp−1

�
− E

�
(Φr

�)p(xp)|xp−1
�
�������

������
x0





≤ E




d�

p=1
α

p

�
��(Φr)p(xp) − (Φr

�)p(xp)
�� +

��E
�
(Φr)p(xp)|xp−1

�
− E

�
(Φr

�)p(xp)|xp−1
���

� ������
x0





≤ 2E




d�

p=1

��(Φr)p(xp) − (Φr
�)p(xp)

��

������
x0



 ≤ L�r − r
��∞,

where

L � 2
d�

p=1

K�

�=1
E

� ��φ�(xp, p)
�� �� x0

�
< ∞.

(ii-a) Fix r ∈ R. By the triangle inequality,

���F̂ S,I
0 Φr(x0) − F0Φr(x0)

��� ≤
���F̂ S,I

0 Φr(x0) − F̂
S
0 Φr(x0)

��� +
���F̂ S

0 Φr(x0) − F0Φr(x0)
��� .(A.5)

By the strong law of large numbers, almost surely, for all S sufficiently large, we have that
���F̂ S

0 Φr(x0) − F0Φr(x0)
��� ≤ �

2 ,(A.6)
������
1
S

S�

i=1

d�

p=1

K�

�=1

��φ�
�
x

(i)
p , p

��� − L

2

������
≤ δ

2 .(A.7)

Now, using Fact 1 and the triangle inequality,

���F̂ S,I
0 Φr(x0) − F̂

S
0 Φr(x0)

��� ≤ 1
S

S�

i=1

d�

p=1

������
E

�
(Φr)p(xp)| x

(i)
p−1

�
− 1

I

I�

j=1
(Φr)p

�
x

(i,j)
p

�
������
.(A.8)

3



Suppose that S is sufficiently large so that (A.6)–(A.7) hold. Using the strong law of large numbers,
almost surely, for all I sufficiently large, we have that

������
1
I

I�

j=1
(Φr)p

�
x

(i,j)
p

�
− E

�
(Φr)p(xp)| x

(i)
p−1

�
������

≤ �

2d
, ∀ 1 ≤ i ≤ S,(A.9)

������
1
I

I�

j=1

d�

p=1

K�

�=1

���φ�
�
x

(i,j)
p , p

���� − L

2

������
≤ δ

2 , ∀ 1 ≤ i ≤ S.(A.10)

Equations (A.8) and (A.9) together imply that

(A.11)
���F̂ S,I

0 Φr(x0) − F̂
S
0 Φr(x0)

��� ≤ �

2 .

Using (A.5), (A.6) and (A.11), we obtain the result for a fixed r. Since R is a finite set, S and I

can be chosen sufficiently large so that the result holds for all r ∈ R.

(ii-b) The result holds using the same argument as in part (i), along with the choice of (S, I)
from part (ii-a) that guarantees (A.7) and (A.10). �

A.3. Proofs of Section 5

Lemma 5. Suppose that the state space X is finite. Then,

λ(P ) =
�

ρ(I − P ∗P ),

where ρ(·) is the spectral radius. Further, if P is time-reversible (i.e., if P = P ∗), then

λ(P ) =
�

ρ(I − P 2) ≤
�

2ρ(I − P ).

Proof. Note that, from (16),

Eπ
�
Var

�
J(x1) | x0

��
= Varπ(J) − Varπ(PJ)

= �J, J�π − (Eπ[J(x0)])2 − �PJ, PJ�π + (Eπ[PJ(x0)])2

= �J, J�π − �PJ, PJ�π = �J, J�π − �J, P
∗
PJ�π = �J, (I − P

∗
P )J�π.

Observe that I−P ∗P is self-adjoint, and hence must have real eigenvalues. Let σmin and σmax be the
smallest and largest eigenvalues, respectively. By the Courant-Fischer variational characterization
of eigenvalues,

σmax = sup
J∈P, �J�2,π=1

�J, (I − P
∗
P )J�π = sup

J∈P, �J�2,π=1
�J, J�π − �J, P

∗
PJ�π

= 1 − inf
J∈P, �J�2,π=1

�PJ, PJ�π = 1 − inf
J∈P, �J�2,π=1

�PJ�2
2,π ≤ 1.

(A.12)
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Similarly,

(A.13) σmin = inf
J∈P, �J�2,π=1

�J, (I − P
∗
P )J�π = 1 − sup

J∈P, �J�2,π=1
�PJ�2,π.

Now, by Jensen’s inequality and the fact that π is the stationary distribution of P ,

�PJ�2
2,π = Eπ

�
(E [J(x1)|x0])2

�
≤ Eπ

�
J(x1)2

�
= �J�2

2,π.

That is, P is a non-expansive under the � · �2,π norm. Combining this fact with (A.12)–(A.13),
we have that 0 ≤ σmin ≤ σmax ≤ 1. Then, ρ(I − P ∗P ) = max

�
|σmin|, |σmax|

�
= σmax. However,

observe that from (A.12), λ(P )2 = σmax. The result follows.
For the second part, suppose that ζ1 ≤ ζ2 ≤ · · · ≤ ζ|X | are the eigenvalues of the self-adjoint

matrix P . By the same arguments as in before, 0 ≤ ζi ≤ 1 for each i. Then,

ρ(I − P
2) = max

i
1 − ζ

2
i = max

i
(1 − ζi)(1 + ζi) ≤ max

i
2(1 − ζi) = 2ρ(I − P ).

�

Lemma 6. For any pair of functions J, J � ∈ P,

�FJ − FJ
��2,π ≤ R(α)α√

1 − α
λ(P )

�
Varπ(J − J �),

where R : [0, 1) →
�
1,

�
5/2

�
is a bounded function given by

R(α) � min
� 1√

1 − α
,

2√
1 + α

�
.

Proof. We can apply Fact 1 and the monotone convergence theorem to the pathwise maximization
in the F operator to obtain that, for all x0 ∈ X ,

FJ(x0) − FJ
�(x0) ≤ E

�

sup
s≥0

�����

s�

t=1
α

t �
∆J(xt, xt−1) − ∆J

�(xt, xt−1)
�
�����

����� x0

�

.

By symmetry,

|FJ(x0) − FJ
�(x0)| ≤ E

�

sup
s≥0

�����

s�

t=1
α

t �
∆J(xt, xt−1) − ∆J

�(xt, xt−1)
�
�����

����� x0

�

.
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Using Jensen’s inequality,

��FJ(x0) − FJ
�(x0)

��2 ≤ E



sup
s≥0

�����

s�

t=1
α

t �
∆J(xt, xt−1) − ∆J

�(xt, xt−1)
�
�����

2
������

x0





≤ E




� ∞�

t=1
α

t ��∆J(xt, xt−1) − ∆J
�(xt, xt−1)

��
�2

������
x0



 .

(A.14)

Taking an expectation over x0 and again applying Jensen’s inequality,

��FJ − FJ
���2

2,π ≤
�

α

1 − α

�2
Eπ




�

1 − α

α

∞�

t=1
α

t ��∆J(xt, xt−1) − ∆J
�(xt, xt−1)

��
�2



≤
�

α

1 − α

�2
Eπ

�
1 − α

α

∞�

t=1
α

t ��∆J(xt, xt−1) − ∆J
�(xt, xt−1)

��2
�

=
�

α

1 − α

�2 ��∆J − ∆J
���2

2,π .

(A.15)

Here, the norm in the final equality is defined in Lemma 4, and we have used the fact that π is the
stationary distribution.

On the other hand, following Chen and Glasserman (2007), Doob’s maximal quadratic inequality
and the orthogonality of martingale differences imply that, for every time T ≥ 1,

Eπ



 sup
0≤s≤T

�����

s�

t=1
α

t �
∆J(xt, xt−1) − ∆J

�(xt, xt−1)
�
�����

2 



≤ 4Eπ




�����

T�

t=1
α

t �
∆J(xt, xt−1) − ∆J

�(xt, xt−1)
�
�����

2 



≤ 4Eπ

�
T�

t=1
α

2t ��∆J(xt, xt−1) − ∆J
�(xt, xt−1)

��2
�

= 4α
2 1 − α2T −1

1 − α2
��∆J − ∆J

���2
2,π .

Using the monotone convergence theorem to take the limit as T → ∞ and comparing with (A.14),
we have that

(A.16)
��FJ − FJ

���2
2,π ≤ 4α2

1 − α2
��∆J − ∆J

���2
2,π .

Combining the upper bounds of (A.15) and (A.16), we have that

(A.17)
��FJ − FJ

���
2,π ≤ R(α)α√

1 − α

��∆J − ∆J
���

2,π .

Applying Lemma 4, the result follows. �
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B. The Non-stationary Case

In this section, we will outline a finite horizon and non-stationary version of the theoretical results
presented in Section 5. Our setting here follows that of Section 2: Assume a state space X ⊂ Rn.
Consider a discrete-time Markov chain with state xt ∈ X at each time t ∈ T � {0, 1, . . . , d}.
Without loss of generality, assume that the transition probabilities are time-invariant, and denote
by P the transition kernel of the chain. Let F � {Ft} be the natural filtration generated by the
process, i.e., for each time t, Ft � σ(x0, x1, . . . , xt).

For this section, we assume a fixed initial state x0 ∈ X , we are interested in the stopping
problem over the finite time horizon T with payoff function g : X → R. Further, without loss of
generality, we will assume that α = 1, i.e., that the problem is finite-horizon and undiscounted.

For each t ∈ T , define St to be the set of measurable functions Jt : X → R with E[Jt(xt)2 | x0] <

∞. Assume that g ∈ St, for all t. Define P to be the set of functions J : X × T → R such that,
for each t ∈ T , Jt � J(·, t) is contained in the set St. In other words, P is the set of Markovian
processes (i.e., time-dependent functionals of the state) that possess second moments.

Given J ∈ P, define

(∆J)t �




0 if t = 0,

Jt(xt) − E[Jt(xt)|xt−1] otherwise,

for all t ∈ T . Note that ∆J is a martingale difference process.
Define the predictability of the Markov chain by

(B.1) λ(P ) � max
1≤t≤d

sup
Jt∈St,Jt �=0

�
E

�
Var

�
Jt(xt) | xt−1

� �� x0
�

Var
�
Jt(xt) | x0

�
�1/2

.

Applying the law of total variance as in (16), it is easy to see that λ(P ) ∈ [0, 1]. Analogous to (15),
λ(P ) captures the worst case uncertainty in J(xt) conditioned on the previous state xt, relative
to the prior uncertainty (i.e., the uncertainty conditioned only on the initial state x0), over all
functionals Jt ∈ St and all times 1 ≤ t ≤ d. As before, when λ(P ) ≈ 0, the previous state reveals
significant information on the subsequent value of any functional, hence we interpret the Markov
chain as predictable.

The following lemma is analogous to Lemma 4, and provides a bound on the operator norm of
the martingale difference operator ∆:

Lemma 9. Given functions J, J � ∈ P, define a distance between the martingale differences ∆J , ∆J �

by

��∆J − ∆J
���

2,x0
�

����1
d

E

�
d�

t=1
|∆Jt − ∆J �

t|
2

����� x0

�

.

Then,
��∆J − ∆J

���
2,x0

≤ λ(P )
�

Varx0(J − J �),
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where

Varx0(J − J
�) � 1

d

d�

t=1
Var

�
Jt(xt) − J

�
t(xt) | x0

�

is the average variance between the processes J and J � over the time horizon d.

Proof. Set W � J − J �, and observe that

�∆W�2
2,x0 = 1

d
E

�
d�

t=1

��Wt(xt) − E[Wt(xt) | xt−1]
��2

����� x0

�

= 1
d

E

�
d�

t=1
Var

�
Wt(xt) | xt−1

�
����� x0

�

≤ λ(P )2

d

d�

t=1
Var

�
Wt(xt) | x0

�
= λ(P )2Varx0(W ).

The result follows. �

Now, given a function J ∈ P, define the martingale upper bound F0J(x0) by

(F0J)(x0) � E

�

max
0≤s≤d

g(xs) −
s�

t=1
∆Jt

����� x0

�

.

Consider the following analog of Lemma 6:

Lemma 10. For any pair of functions J, J � ∈ P,

��F0J(x0) − F0J
�(x0)

�� ≤ 2
√

dλ(P )
�

Varx0(J − J �).

Proof. Following (A.14) in the proof of Lemma 6, observe that, using Fact 1 and Jensen’s inequality,

��F0J(x0) − F0J
�(x0)

��2 ≤ E



 max
0≤s≤d

�����

s�

t=1

�
∆Jt − ∆J

�
t

�
�����

2
������

x0



 .

Using Doob’s maximal quadratic inequality and the orthogonality of martingale differences,

��F0J(x0) − F0J
�(x0)

��2 ≤ 4E




�����

d�

t=1

�
∆Jt − ∆J

�
t

�
�����

2 ������
x0



 = 4E

�
d�

t=1

��∆Jt − ∆J
�
t

��2
����� x0

�

= 4d �∆J − ∆J
��2

2,x0 .

The result follows by applying Lemma 9. �

Taking J � = J∗ to be the optimal value function in Lemma 10, we immediately obtain the
following analog of Theorem 2:

Theorem 6. For any function J ∈ P,

(B.2)
��F0J(x0) − J

∗(x0)
�� ≤ 2

√
dλ(P )

�
Varx0(J − J∗).
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Theorem 6 provides approximation guarantee for martingale duality upper bounds in the finite
horizon, non-stationary case. Comparing with the bound of Theorem 2 in the infinite horizon,
stationary case, we see that the bounds have qualitatively similar dependence on the structural
features of the optimal stopping problem:

• Value Function Approximation Quality. The bounds in both (17) and (B.2) depend on the
quality of the function J as an approximation to J∗, measured in a root mean squared sense.

• Time Horizon. The bounds in both (17) and (B.2) have a square root dependence on the
time horizon. In the case of (B.2) this is explicit, in the case of (17) the dependence is on
the square root of the effective time horizon (19).

• Predictability. The bounds in both (17) and (B.2) depend linearly on the predictability of
the underlying Markov chain.

Finally, the following theorem, an analog of Theorem 3, provides an approximation guarantee
for the upper bound produced by the pathwise method in the finite horizon, non-stationary case:

Theorem 7. Suppose that rPO is an optimal solution to pathwise optimization problem

inf
r

F0Φr(x0).

Then,
��F0ΦrPO(x0) − J

∗(x0)
�� ≤ 2

√
dλ(P ) min

r

�
Varx0(Φr − J∗).

Proof. Observe that, for any r ∈ RK , by the optimality of rPO and Lemma 1,

��F0ΦrPO(x0) − J
∗(x0)

�� = F0ΦrPO(x0) − J
∗(x0) ≤ F0Φr(x0) − J

∗(x0) =
��F0Φr(x0) − J

∗(x0)
��.

The result follows by applying Theorem 6, and minimizing over r. �

C. Additional Computational Results

In this section, we provide additional computational results for the optimal stopping problem of
Section 4. Tables 3 and 4 show the upper and lower bounds computed as, respectively, the number
of exercise opportunities d and the common asset price correlation ρjj� = ρ̄ is varied. We also
experiment with random correlation matrices. In Table 5, we report results of experiments where
the correlation matrix was chosen randomly. Our setup used a random correlation matrix obtained
by sampling a positive semidefinite matrix from the Wishart distribution and rescaling it so that
the diagonal is identity.
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(a) Upper and lower bounds, with standard errors.

n LS-LB S.E. PO-LB S.E. DP-UB S.E. PO-UB S.E. DVF-UB S.E.
d = 36 exercise opportunities

4 40.315 (0.004) 41.073 (0.008) 42.723 (0.016) 43.006 (0.021) 43.199 (0.009)
8 48.283 (0.004) 49.114 (0.006) 50.425 (0.019) 50.721 (0.027) 51.011 (0.008)

16 51.835 (0.003) 52.289 (0.004) 53.231 (0.009) 53.517 (0.020) 53.741 (0.006)
d = 54 exercise opportunities

4 40.797 (0.003) 41.541 (0.009) 43.587 (0.016) 43.853 (0.027) 44.017 (0.011)
8 49.090 (0.004) 50.252 (0.006) 51.814 (0.023) 52.053 (0.027) 52.406 (0.014)

16 52.879 (0.001) 53.638 (0.004) 54.883 (0.020) 55.094 (0.016) 55.450 (0.013)
d = 81 exercise opportunities

4 41.229 (0.004) 41.644 (0.017) 44.264 (0.023) 44.511 (0.030) 44.662 (0.006)
8 49.788 (0.003) 51.249 (0.004) 52.978 (0.018) 53.178 (0.027) 53.523 (0.013)

16 53.699 (0.003) 54.825 (0.005) 56.398 (0.024) 56.464 (0.007) 56.948 (0.008)

(b) Relative values of bounds.

n (PO-LB) − (LS-LB) (%) (PO-UB) − (DP-UB) (%) (DVF-UB) − (PO-UB) (%)
d = 36 exercise opportunities

4 0.759 1.88% 0.284 0.70% 0.192 0.48%
8 0.831 1.72% 0.297 0.61% 0.289 0.60%

16 0.454 0.88% 0.286 0.55% 0.224 0.43%
d = 54 exercise opportunities

4 0.744 1.82% 0.266 0.65% 0.164 0.40%
8 1.162 2.37% 0.239 0.49% 0.353 0.72%

16 0.759 1.43% 0.210 0.40% 0.356 0.67%
d = 81 exercise opportunities

4 0.415 1.01% 0.247 0.60% 0.151 0.37%
8 1.460 2.93% 0.201 0.40% 0.345 0.69%

16 1.126 2.10% 0.066 0.12% 0.484 0.90%

Table 3: A comparison of the lower and upper bound estimates of the PO and benchmarking methods,
as a function of the number of exercise opportunities d and the number of assets n. For each algorithm,
the mean and standard error (over 10 independent trials) is reported. The common initial asset price
was p

j
0 = p̄0 = 100 and the common correlation was ρjj� = ρ̄ = 0. Percentage relative values are

expressed relative to the LS-LB lower bound.
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(a) Upper and lower bounds, with standard errors.

n LS-LB S.E. PO-LB S.E. DP-UB S.E. PO-UB S.E. DVF-UB S.E.
ρ̄ = −0.05 correlation

4 41.649 (0.004) 42.443 (0.009) 44.402 (0.023) 44.644 (0.019) 44.846 (0.013)
8 50.077 (0.005) 51.136 (0.005) 52.581 (0.031) 52.799 (0.018) 53.163 (0.011)

16 53.478 (0.004) 54.076 (0.004) 55.146 (0.013) 55.360 (0.010) 55.708 (0.010)
ρ̄ = 0 correlation

4 40.797 (0.003) 41.541 (0.009) 43.587 (0.016) 43.853 (0.027) 44.017 (0.011)
8 49.090 (0.004) 50.252 (0.006) 51.814 (0.023) 52.053 (0.027) 52.406 (0.014)

16 52.879 (0.001) 53.638 (0.004) 54.883 (0.020) 55.094 (0.016) 55.450 (0.013)
ρ̄ = 0.1 correlation

4 39.180 (0.006) 39.859 (0.011) 42.001 (0.037) 42.187 (0.029) 42.425 (0.010)
8 47.117 (0.005) 48.371 (0.005) 50.139 (0.029) 50.362 (0.035) 50.700 (0.014)

16 51.414 (0.005) 52.498 (0.008) 54.141 (0.032) 54.217 (0.018) 54.654 (0.010)

(b) Relative values of bounds.

n (PO-LB) − (LS-LB) (%) (PO-UB) − (DP-UB) (%) (DVF-UB) − (PO-UB) (%)
ρ̄ = −0.05 correlation

4 0.794 1.91% 0.242 0.58% 0.202 0.49%
8 1.059 2.11% 0.218 0.44% 0.364 0.73%

16 0.598 1.12% 0.214 0.40% 0.349 0.65%
ρ̄ = 0 correlation

4 0.744 1.82% 0.266 0.65% 0.164 0.40%
8 1.162 2.37% 0.239 0.49% 0.353 0.72%

16 0.759 1.43% 0.210 0.40% 0.356 0.67%
ρ̄ = 0.1 correlation

4 0.679 1.73% 0.187 0.48% 0.238 0.61%
8 1.255 2.66% 0.224 0.47% 0.338 0.72%

16 1.084 2.11% 0.076 0.15% 0.437 0.85%

Table 4: A comparison of the lower and upper bound estimates of the PO and benchmarking methods,
as a function of the common correlation ρjj� = ρ̄ and the number of assets n. For each algorithm,
the mean and standard error (over 10 independent trials) is reported. The common initial price was
p

j
0 = p̄0 = 100 and the number of exercise opportunities was d = 54. Percentage relative values are

expressed relative to the LS-LB lower bound.
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(a) Upper and lower bounds, with standard errors.

p̄0 LS-LB S.E. PO-LB S.E. DP-UB S.E. PO-UB S.E. DVF-UB S.E.
n = 4 assets

90 30.532 (0.554) 30.944 (0.574) 32.494 (0.570) 32.589 (0.575) 32.755 (0.570)
100 39.088 (0.624) 39.791 (0.648) 41.523 (0.618) 41.801 (0.631) 41.973 (0.613)
110 45.892 (0.575) 46.969 (0.572) 48.599 (0.519) 48.916 (0.546) 49.151 (0.534)

n = 8 assets
90 42.486 (0.287) 43.392 (0.290) 44.923 (0.277) 45.205 (0.266) 45.304 (0.275)

100 48.971 (0.212) 50.027 (0.194) 51.483 (0.178) 51.772 (0.169) 52.035 (0.178)
110 52.618 (0.124) 53.491 (0.097) 54.835 (0.081) 55.029 (0.076) 55.420 (0.072)

n = 16 assets
90 48.784 (0.146) 49.825 (0.135) 51.270 (0.130) 51.513 (0.123) 51.812 (0.123)

100 52.376 (0.085) 53.214 (0.069) 54.568 (0.058) 54.726 (0.053) 55.127 (0.054)
110 54.292 (0.048) 54.888 (0.035) 56.034 (0.021) 56.244 (0.029) 56.600 (0.017)

(b) Relative values of bounds.

p̄0 (PO-LB) − (LS-LB) (%) (PO-UB) − (DP-UB) (%) (DVF-UB) − (PO-UB) (%)
n = 4 assets

90 0.412 1.35% 0.095 0.31% 0.166 0.54%
100 0.703 1.80% 0.278 0.71% 0.172 0.44%
110 1.077 2.35% 0.317 0.69% 0.235 0.51%

n = 8 assets
90 0.906 2.13% 0.282 0.66% 0.099 0.23%

100 1.056 2.16% 0.289 0.59% 0.263 0.54%
110 0.873 1.66% 0.194 0.37% 0.391 0.74%

n = 16 assets
90 1.041 2.13% 0.243 0.50% 0.299 0.61%

100 0.838 1.60% 0.158 0.30% 0.401 0.77%
110 0.596 1.10% 0.210 0.39% 0.356 0.66%

Table 5: A comparison of the lower and upper bound estimates of the PO and benchmarking methods,
as a function of the common initial asset price p

j
0 = p̄0 and the number of assets n. For each algorithm,

the mean and standard error (over 10 independent trials) is reported. For each trial the correlation
matrix was sampled randomly and the number of exercise opportunities was d = 54. Percentage relative
values are expressed relative to the LS-LB lower bound.
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