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1 Markov Decision Processes

Consider a Markov chaifw(k), a(k)) defined fork = 0,1, ... and withw(k) €

W, a(k) in A, whereW andA are finite sets representing the system state space
and the action space, respectively. The transition probabilities are defined by the
function

Py(w',d \w,a) =Pr{w(k+1) =w,a(k+ 1) = a|w(k) =w',a(k) =d'} .

Here,d € RY is a vector of policy parameters.
We will make the following assumption regarding the dynamics.

Assumption 1.1. For all ¢, the Markov chainw(k)) is ergodic (aperiodic, irre-
ducible).

While the system is in state € W and actiona € A is applied, a reward
r(w, a) is accrued. We will use the shorthantk) = r(w(k),a(k)). Given As-
sumption 1.1, we can define the long term average reward by

1 K—-1
AO) = lim KE[ r(k)]

K—oo

= Z ne(w, a)r(w,a),

weW,acA



wherengy(w, a) is the steady-state distribution corresponding to the transition func-
tion Py(w',d’',w, a).
Define the differential reward function
K-1

go(w,a) = lim E | > (r(w(k),a(k)) — A(0))
k=0

w(0) = w, a(0) = a] .

The following result provides a crucial expression for the gradient(6§. It is
important in that it does not rely on terms of the foRjny(w, a), which would

be difficult to estimate over finite sample paths. It is a standard result in Markov
decision process theory, see [3], for example, for a proof.

Theorem 1.1. Assume thaby(w’, a’, w, a) is continuously differentiable with re-
spect tod. Then,

(L) VoAO) = ) > mp(w',d)VoPy(w',d' w, a)ge(w, a).

weW,acA w' eW,a’€A

2 Network Structure

Assume the network hascomponents. Corresponding to each compoighere
is a subseW, € W. At the kth epoch, there are a set of control actianék) €
Aq, ... an(k) € Ay, where each\,... A, is a finite set. We will denote the
entire action vectofa; (k), . .., an(k)) asa(k) € A = Ay x --- x A,,. Actions are
governed by a set of policie@l, ...,y , Where the policwgi at component is
parameterized by a vecty ¢ R":. Eachith action process transitions only if the
statew(k) is an element ofV;. At the time of transition, the probability thaf(k)
becomes any; € A; is given bngi (ailw(k)). Hence, the corresponding action
sequence evolves according to

. a; with probability ), (aj|w(k)), if w(k) € W;,

ailk) = a;i(k—1) otherwise

The state transitions depend on the prior state and action vector. In particular,
there is a transition kernét that defines the state dynamics:

Pr{w(k) =wlw(k —1) =w' a(k —1) =d'} = P(v',d',w).

Hence, ifd = (6,,...,0,), we have

(2.1) Py(w',d' ,w,a) = P(w',d',w) H Tréi(ai|w) H Lar=a}-
weW; wgW;



Finally, we will assume that the reward is an average of rewards occurring at each
component, that is

r(w,a) = %Zri(w,a).
i=1

We will use the shorthand (k) = r;(w(k), a(k)).

We will make the following assumption regarding the policies.
Assumption 2.1. For all i and everyw € W;, a; € A;, wg (a;|w) is a continuously
differentiable function of);. Further, for everyi, there exists a bounded function
L;(w,a;,0) such that for allw € W;, a; € A;,

The latter part of the assumption is satisfied, for example, if there exists a
constant > 0 such that for eachw € W;,a; € A;,

eitherV@i,wgi (ailw) = 0 orVé;, ﬂéi(aﬂw) > €.
Without loss of generality, we will assume thﬂgti(aﬂw) > 0, and hence define a

boundL by

sup < L.

z’,@i,wGWi,aieAi
In this framework, the gradient expression of Theorem 1.1 becomes signifi-
cantly simpler.

Theorem 2.1. For all 4,

74, (ai|w)

Vgiﬂ‘i (a;|w)
Vo 0) = > mp(w,a)— 0" gp(w, a)
weW;,ach 7o, (a;fw)

Proof. Examining (2.1), it is clear that

Vo, Py(w',a' ,w,a) = Pyp(w',d',w, a) — {weW,}
7y (ailw) ’
Combining with Theorem 1.1, we have
Vo, w5 (a;|w)
v91>‘(9) = Z 779(w,7 (L,)Pg(w/, a’lv w, a)iglil{wewi}(w(wa a)
w,a Ty, (al|w)
w’,a’
V.5, (ailw)
= Z ”7zl{wewi}qg(w, (Z) Z 770(w/, a’)Pg(w/’ a/7 w, (1)
w,a Tr@i (az|w) w’,a’
= Z no(w,a) ——————qg(w, a).
weW;,acA 7o, (asfw)
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3 Centralized Gradient Estimation
For g € (0, 1], define the eligibility vector

. |
R SV AL ACIGIIC)

BN 20 = R ) e

Vo, i) (@i (k) lw(k))

i(k
] ° 1 | '
T,y (ai(k)[w(k)) ST

(3.2) = B(k—1)+

We can define a centralized estimate of the gradigni(0) by

Xi(k) = r(k)z] (k),

where we are using the shorthard) = r(w(k), a(k)).
DefineV;(k) as shorthand for

Vo,mh, (i(k)w(k) |
Wéi(ai(k?)]w(k)) {w(k)eW,}-

The following lemma will be useful in subsequent analysis.
Lemma3.1. If ¢ < k, E[V,(k)|F,] = 0.

Proof. Note that for¢ < k,

E[Vi(k)|F) = > Y Pr{w(k) =w|Fe}m (a;|w)

wGWi aiGAi ﬂ-él (a’i |w)
= Y Priw) =ulF} Y Vo, (ailw)
weWw; a; €EA;
= > Priw(k)=w|F} Vo, | Y mj,(aiw)
weW; a; €EA;
= Y Pr{w(k) =w| F} Vo, (1)
weW;
= 0.



We will now establish convergence of long term averages of the discounted gra-
dient estimator. Note that a stronger result is proved in [1], however the following
is sufficient for our purposes.

Theorem 3.1. For anyi and0 < 3 < 1,

K—1 ]
lim —E [ Xz(k)] = E ng(w,a)qu(w,a),
k=0 weW;,acA 0\

Wherqu(w, a) is the discounted differential reward function

K-1
gy (w,a) = lim E [Z 8" (r(w(k), a(k)) = A(©))
k=0

w(0) = w,a(0) = a] .

Further,
1 K-—1
lim lim = E LZZO Xi(k)| = Vg, A(0)
Proof. Note that
1 K—1 L= K—1
k=0 L ¢=0 k=
1 [K—1 K-1
= —E|[>_ Vi0)>_ B (r(k) - A(H))]
L ¢=0 k=
1 K-l
L ¢=0

where we use the fact thg'¥;(¢)] = 0, from Lemma 3.1, and where

K-1
gy (w,a, K) = E [Z B* (r(w(k), a(k)) — A(6))
k=0

w(0) = w,a(0) = a] .

It is clear thqu(w,a, K)—>qg(w,a) as K —oo, then, sincev;(¢) is bounded, it

follows that

1 K-1 1 K-1
i v — lim — (D
Jim - E [Z xl<k>] = Jlim —E | Vi(0)g (ww),a(z))]
k=0 £=0
Vo, mp, (ailw)
= Z ne(wja)qu(’w,a),
weW ;acA 0;\"
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where the last step follows since(¢), a(¢)) is ergodic (Assumption 1.1). The
balance of the result follows from the fact thah; qg(w, a) = qp(w,a). O

4 Distributed Gradient Estimation

Consider the following gradient estimator:
1 n k
(4.1) xi(k) = 27 (k) SO ds (e, kyri(e),

Here, the random variabldg; (¢, k) }, with parametet € (0, 1), represent an ar-
rival process describing the communication of rewards across the network. Indeed,
di; (¢, k) is the fraction of the reward; (¢) at componeny that is learned by com-
ponent; at timek > ¢. We will assume the arrival process satisfies the following

conditions.

Assumption 4.1. For eachi, j, ¢, anda € (0, 1), the proces$dy; (¢, k)[k = ¢, +
1,0+ 2,...} satisfies:

1. dj;(¢, k) is F-measurable.

2. There exists a scalay € (0,1) and a random variable;, such that for all
k>4,
di; (4, k)
(1—a)ak=t
with probability 1. Further, we require that the distribution af given 7,
depend only ortw(¥), a(¢)), and that there exist a constansuch that

1| < Cg’)/kie,

Elc|w(l) =w,a(f) =a] < ¢ < oo,
with probability 1 for all initial conditionsw € W anda € A.

3. The distribution offdf; (¢, k)|[k = ¢,£ + 1,...} givenF, depends only on
w(¢) anda(?).

Note that from Assumption 4.1(2), it is clear that;-, d%(ﬁ, k) converges
absolutely with probability 1. Further, we have

Z (df‘j(ﬁ, k)—(1- a)ak_€> < ZCg(l — a)aktykt
k=t k=¢
ol -a)
 l-ay



Hence, with probability 1,

[e.o]

e : o k—¢ _
(4.2) hmZd 0, k) _gglw(l o) 1.

5 Relation to Centralized Gradient Estimation
For convenience, definB = max; 4. |ri(w, a)|. The following lemma will be
useful throughout this analysis.
Lemma 5.1. There exists constants andn < (0, 1) such that, for allk, {, and
any functionsy and f,
[Elg(w(£),a(0)) f(w(k), a(k))] — E[g(w(€), a())] E[f(w(k), a(k))]]
< max|f(w, ) max|[g(w, a)|Cyl* .

) )

In particular, for an arbitrary functionf,

[E[f(w(£), a(O)Vi(k)]| < %%le(w’a)lLCn'k_“,

Proof. The first statement follows immediately from Assumption 1.1. The second
statement follows from the first once we observe (from Lemma 3.1) that

E[Vi(k)] = 0.
O
Lemma 5.2. For eachi, j, k > ¢, € (0,1) and € (0, 1),
o (1—a)(1+ ¢)Lak*
E[ Bk)ag, Ekm}}} — .
Proof. From Assumption 4.1(2),
|dS5(0, k)| < (1= a)(1+ cp)a".
Then,
AW r)| < (0-a)1+a)Lat fzﬂk u
(1—a)(1 + Lokt
1-0 ’
The result follows after taking a conditional expectation. O
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Let
K-1

2P0, K)=E [Z 2 (k)dS (¢, k)

k=¢

ﬂ] |

By Lemma 5.2, forx € (0,1) andg € (0,1), {£ (£, K)|K = ,(+1,0+2,...}
is a Cauchy sequence, and therefore,

200 = lim £0(, K),

v K—o0
is well-defined and finite. The following lemma follows immediately.
Lemma 5.3. For anyi andj, a € (0,1), andg € (0,1),

1 . K—1 af Aa,@
= erw)( (6, K) — —0.

=0

lim
K—oo

Lemma 5.4. For anyi, ¢, anda € (0,1), limg_.o z“l(ﬁ K) is well-defined.
Further, if we define! (¢) = limg o 23 (¢, K), then for anyj,

lim sup lim sup
all K—oo

1e rfrw) (220(0) — z.l(g))] H ~0.
K J 17 7

=0

Proof. Note that

2 (0, K)

K-1 k

= E [Z > Vils)dgi(4, k) .7'-@]
k=¢ s=0
L K-1 K—1 K-1

= E Vi(s) Y A% R) | Fe| +E| D Vi(s) Y dii(t,k) ;fg]
5=0 k=t s=0+1 k=s

= G5(0,K)+ H(L, K).

where, using Assumption 4.1(3), we define

fo(w,a,K) = [Zda()k

8



Note that forJ < K, from Assumption 4.1(2),

K-1
}f(waK) f(waJ)‘ < (1—a) oF
=J

ol

< (1+0)a’

Hence, fora € (0,1), {f(w,a, K)|K = 1,2,...} is a Cauchy sequence, and we
can define the limit

G(w,a) = hm (w,a, K).

Further, the following limit exists,

hm E[GO‘ CE)F] = 20 f3(w(0),al)).

1

For the termf (¢, K), note that forJ < K,

B[ (¢, 1) — H (6. )| Fi|
K-1 K-1 J—1 K-1
= |E sz(s) A0 k) + Y Vi(s) Y dsi(6,k) fg] ‘
s=J k= s=0+1 k=J

AN
h
—
+
\(‘_}/\
N
M7
Q
V)
~
+
M1
Q
<
&
N———

IA
h
_
+
o
/N

Hence {H (¢, K)|K = (+1,¢+2,...} is a Cauchy sequence. Then, we can
define
el = lim 224, K).

t K—oo Zj



To establish the balance of the result, note that

[K—1

1 e
K E Z r; () (Zijl(f) - Zzl(g))] “

L £=0

= ' X X
= ‘ K E LZ: r5(£) N}linoo (Go;(¢, M) + H(¢, M) — Zzl(g))] H

IN

—_

;o [Ea
+ = ri(¢) lim Hf(E,M)]H
K~ | &7 s Y
= (A) +(B).

For term(A), note that

/=0 u=0
K-1 ¢
RLC —
< kot e, - fwa)l
=0 u=0
RLC
max |1 — fi(w,a)].
l—nwEW,aeA

Note that this bound is independent &f, and, by the Dominated Convergence
Theorem and (4.2)ima11 f{;(w, a) = 1, hence th¢A) term vanishes.
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For term(B), note that fors > ¢, E[V,(s)| F¢] = 0 from Lemma 3.1. Hence,

[K—1

]' «
=E kzorj(ﬁ)]\/}linooH (¢, K)
1 K—-1 M-1 -1
= KE[Z r(¢ ]\/}ILDOOE[ > Vi Z (¢, k) fg]”‘
k=0 s=0+1 k=s
K-1 K-1 T
_ E[ 3 Vils Z(dg(e,k) (1 - a)ak f) 7 H
s={+1 k=s i
K-1 K-1
< LZE[Cg 1—a) k_z'yk_g‘f]
s=0+1 =s
K-1 asfé,ysfé
S -l } o
s={+1
_ ary
< 1—a)L
= Amalg Ty
Note that this bound is independentféfand tends t® asa T 1. Hence, tern{B)
vanishes and the result is established. O

Because the limit is well-defined, we extend our definitiorﬁgﬁ(ﬁ) to the case
of 6 =1:
210 = lim 224(¢, K).

v Koo Y

Lemma 5.5. For anyi andj,

[K—1

. . 1 1 ﬁ

hrrﬂlTslup hll(njctlop 17 E E i (0) (zi () — z; (E))] H =0.
L (=0

Proof. We have

=0 i

K-1 7 K—-1 l
E[Zma (0 -=w)| = E[ r]-@)Z(l—ﬁf—’f)vi(k)]

From Lemma 5.1,
IE[r;(0)Vi(k)]| < RLCR*.

11



It follows that

K—1 K-1 ¢
E [Z ri(0) (410) - z?w))] H < RLC Y3 (1-87%) 0"t
/=0 /=0 k=0
1 1
< KRLC|-— — ,
<1 -n 1= ﬁn)
The result follows. O

Lemma 5.6. For anyi, j, anda € (0,1),

1 K—1 " .
—E[Y 0 (20 -z o) | =o.

£=0

lim sup lim sup
A1 K—oo

Proof. Note that

1e ri () (3270 - 25'0)
K J 1] 17

61:0 K-1 M-1
- —E [er(e)]\}iinooE[Z (zf(k) s (k)) de.(0, k) fg]]
s A
= %E [Z rj(€) lim E [ (ﬁk_ng(f) (5)) di; (4, k) fz”
1 [:2._1 k={
+E [ > i)
(=0

— (A +B).

Consider ternfA). From Assumption 4.1(3), we can define

ggﬂ(waM Zﬂkdaij ):w,a(O):a].

12



By Assumption 4.1(2), forv € (0,1) andg € [0, 1], and forJ < K

ggﬁ(w,a,K) ggﬂ(w,a, J)‘

K-1

< E[(l—a)(lJrCo)Z el ()—w,a(O):a]
k=J

< (1—04)(14—5)04‘]&].

- 1—af

Hence,{gfjﬁ(w, a, M)|M = 1,2,...} is a Cauchy sequence, and we can define
the limit

af I af
gz] (w’ a’) - ]\}li}noogzj (w7 Q,M).

Then, term(A) becomes

K—1 M-—1
E[Z ri(0) Jim E[ (g’f P (e)) d3; (£, k)

£=0 u=0
Note that
18795 w(0), a0)) ~ g5 (w(6), a(0))]
M—-1
< ]\4113100 E [(1 —a)(1+ cp) (1 — 0¥ w(0) = w, a(0) = a]
k=0

< 1-a)(1+0) <1 i o 1ﬁj:5>

From Lemma 5. 1
€[ (55 (wlt),a(t)) — g5 w0 a(0)) Ti(w)]|

N 1 ﬁffu
< RLC(1-a)(1+2c)n <1—a_1—aﬁ>'

13



Applying this to term(A),

K-1 ¢

E| YD) (8705 (@), a(0) - g5 (w(D),a(0))) Vilw)

/=0 u=0

RLC(L—0)(1+ ) Nmx~ a1 87"
S _
K %1;77 (1—& 1—aﬁ>
RLC(1 — a)(1+¢) "= 1 _ !
< K yrt <(1—a)(1—77) (1—Oéﬁ)(1_77ﬂ)>
1
= RLC(1-a)(1+¢) ( 1~ 4 (1_77) - (1_04/8)(1—776)>7

which is a constant ovelk’ and vanishes as 7 1.
We are left with tern(B). Note that

M-1
E [rj(e) lim E [ S (220 = 81200 = 2L k) + 21(0)) gy (4 R)

—00
k=t

d

- RLE:A}ETIOOE[A:Z;O_Q 1+ c)a “uze; — 8| F ”
< RLE A}linooz (1—a)( 4(’“_6_11_?;_[)]

< RLE:(l—Oé)(1+5)((1_aa)2_1i5<1ia_1_1aﬂ>>]
= RL(1—a)(1+0) <(1 féa)z T —a)?l aﬁ)) ’

which, is a constant independent/afnd goes td as 1 1. The result follows. [

Lemma 5.7. For all 4, anda € (0,1), 8 € (0,1),

éﬁquM r

exists.
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Proof. We have

1 K—1
K E [Z Xz(k)]
k=0

=

= -

==

+

= (A+(B).

We will first examine term{A). Define

f{jﬁ( w,a [Z ﬁkda 0,k)| w(0) = w,a(0) = a] .
By Assumption 4.1(2), fov < K,
f;ﬁ(waK) faﬂ(waJ)‘
= [ZﬁkdaOk ):w,a(()):a]
K-1
< E[(1_a)(1+co)2ﬂk K ()—w,a(O):a]
k=J
< (1—a)(1—|—6)a‘]ﬁ‘].
- (1—ap)

Hence,{fi‘jﬁ(w, a, K)|K =1,2,...} is a Cauchy sequence, and we can define the
limit

[ (w,a) = lim 5P (w,a,K).
Hence, we can define a constant

ijﬁ = sup flo;ﬁ(w a, K)|.
weW acA K>0

15



Define

K-1
95 (w,a,K) =E [Z B (0) £ (w(0), a(0), K — )| w(0) = w,a(0) = a] :
£=0

Then, forJ < K,

K
9 (w,0,K) = g (w0, )| < 2057RD 6
=J

aB paJ
. 28R
= 1_/3 *

Hence,{gf‘jﬁ(w, a, K)|K =1,2,...} is a Cauchy sequence, and we can define the
limit
af T af
9ij (w,a) = Klgnoogij (w,a, K).
SinceW andA are finite, this convergence is uniform overnda.
Returning to tern{A), note that using Assumption 4.1(3),

1 n K-1 K-1
ZE[D2 D050 Y B (e k)
K j=1 = k=t
10 [E K-1
= R B2 D r 0 iu) 3T (L k>]
=1 Le=0u=0 k=t
L& rTK—1 K-1
= =D E| D Vilw) X (0B w0, a(0), K — ﬁ)]
j=1 L u=0 l=u
1 n [K—1
= =D B Vilu)g (w(w), a(u), K - é)]
j=1 Lu=0
SinceV;(u) is bounded, we have
K-1
e [ | 90 (5wt s 0t ) | 0

n K—-1
. 1 Z afB
Klgrcl)o E - E . vz(u)gz‘j (w(u)v a(“))] ’
1= U=




exists, hence the limit of teriff) exists ask —oo.
We are left with term(B). Note that

1 n K-1 K-1
ZE Ym0 Y () -8 0) age, k)]
j=1 ¢=0 k=¢
1 [K—1 K-1 k
= EZE S or@)> de k) Y 8 V(u)
j=1 Le¢=0 k=t u=~0+1
1 n rK—1
= O E[D 0 w(0).a (E),K—é)],
7j=1 L (=0

where

k
e (w,a, K) [Z d%(0,k) > " BFV(u)
u=1
Then, forJ < K,

|

w(0) = w,a(0) = a] .

af aﬂ
hi (w,a,K) — h; (w,a,J)”

K-1 k
< E[L (1 —a)( 1+00)Zak2ﬁk_“wO):w,a(O):a]
k=J =1
L(1—a)(1+e¢&)a’
S Ta-a-p

Hence,{h?jﬁ(w, a, K)|K =1,2,...} is a Cauchy sequence, and we can define the
limit

af 1 af
fij (wsa) = lim Ry (w, a, K).

Then, we have

K—1
z [Z 1y (0) (2 (w(6),a(0) = B (w(0),al0), K - @)] H o

Yet, since(w(¢), a(?)) is ergodic, the limit

‘ 1 n K-1 of
Klgnoo e Z E [Z Tj(@hij (w(é),a(ﬁ))] )

=0

exists, hence the limit of terfB) exists agdd —oc. O
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Theorem 5.1. Holding @ fixed, for alli, « € (0,1), and$ € (0,1), define

af _
Vg, A(0) = lgn KE[E Xi( ]
exists. Further,

lim sup lim sup va‘ﬂ/\(e) — Vgi)\(H)H =0.
all 811 ¢

Proof. From Theorem 3.1, it suffices to prove that

lim sup limsup lim El (K) =0,

afl g1l K—oo
where
Note that from Lemma 5.7 and Theorem 3ily ;. L ) exists whem €
(0,1) ands € (0,1).
We have

limsup lim Eiaﬁ (K)
pr1 Koo

1 n K-1
= ImETslup Klgnoo = E i (0) (2?].5(6,[( - z
J

=1 k=0
1 n K-1
< limsuplimsup ||— E Z ;(£) (zﬁ-ﬁ(@’ K) - Afﬁﬁ(@
BI1 K—oo ||T j=1 k=0
1 i n K-1
+ hHBlTslup h[I(Il S;lop 5 E Z 7;(¢) (235(5) - 2%1 (@)
- =1 k=0
1 i n K-1
+limsuplimsup ||— E ri(0) (281 (0) — 2}(0)
BTl Koo nK _j:1 kZ:O J ( 1] )
1 [ n K-1
4+ lim sup lim sup K ;i (€) (Zzl ) — Zf(f))
A1l K—oo | 7=1 k=0

= (A)+(B)+(C) + (D).



From Lemma 5.3, ternfA) equalsd. From Lemma 5.6, tern(B) equals). From
Lemma 5.5, tern{D) equals). Hence, taking a limitag 7 1,

0 <limlimsup lim ,C;Xﬁ(K)
all g1~ K—oo

< limsuplimsup lim E?’H(K)
all B11 K—o0

1 n K-1
< limsuplimsup ||— E e (0) (291 (0) — (7
all  K—oo ||NK = kzzo J( )( ij (4) i ( ))

= 0,

where we use Lemma 5.4.

6 Communication Protocol

In this section, we will describe a simple protocol that allows communication of
rewards in a fashion that satisfies the requirements of Assumption 4.1. This pro-
tocol communicates the rewards across the network over time using a distributed
averaging procedure.

In order to motivate our protocol, consider a different problem. Imagine each
component in the network is given a real valug;. Our goal is to design an
asynchronous distributed protocol through which each node will obtain the average

_ 1<
=1
To do this, define the vectdr(0) € R™ by Y;(0) = R; for all i. For each edge
(i, 7), define a matrbx@ ) € R"™*" by

Yi+Y; - ..

iy _ |t i Le i),
QY = .

Y, otherwise

At each timet, choose an edgé, ), and set’ (k+1) = Q) (Y (k)). If the graph
is connected and every edge is sampled infinitely often, thep_... Y (t) = Y,
whereY; = R. To see this, note that the operat@p§+) preserve the average
value of the vector, hence

1< —
n;mk):}z.
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Further, for anyk, eitherY (k +1) = Y(k)or [|[Y(k+1) = Y| < [|[Y (k) = Y]
Further,Y is the unique vector with average valéethat is a fixed point for all
operator€)(“J), Hence, as long as the graph is connected and each edge is sampled
infinitely often, Y;(k)—R as k—oo and the components agree to the common
averageR.

In the context of distributed optimization protocol, we will assume that each
component maintains a scalar valug (k) at timek representing an estimate of
the total global reward. We will define a structure by which nodes communicate.
In particular, for an ordered set of distinct edges- ((ii, j1), - - -, (i|g), Jjs|)), We
will define a setWg C W. Let o(E) be the set of all possible ordered sets of
disjoint edgesS, including the empty set. We will assume that the $ét&|S €
o(E)} are disjoint and together form a partition'f.

If w(k) € Wg, for some sef5, we will assume that the components along the
edges inS communicate in the order specified By Define

QS — Q(i\spj\sﬂ ... Q(i1,j1)’

where the terms in the product are taken over the order specifigdl Hyefine
R(k) = (r1(k),...,r(k)) as the vector of rewards occurring at tirhe The
update rule for the vectdr (k) is given by

Y(k+1)=R(k+1) + aQ* Dy (k),

whereS(k + 1) is the element of (E) that containsu(k + 1). We will make the
following assumption.

Assumption 6.1. Define the set of edgés by
The graph(V, E) is connected.

Since the procedsv(k), a(k)) is aperiodic and has a single recurrent class (As-
sumption 1.1), this assumption guarantees that every edge on a connected subgraph
is sampled infinitely often.

Policy parameters are updated at each component according to the rule:

0;(k +1) = 0;(k) + €2 (k) (1 — a)Yi(k).
Note that, for this scheme, in relation to (4.1), we have

(6.1) a0 k) = n(1 = a)at~* Q. k)]
ij
where

Q(g, k) = QS(k—l) .. .Qs(f)’
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Lemma 6.1. The variables!5; (¢, k) defined by(6.1) satisfy Assumption 4.1.

Proof. By definition, Assumption 4.1(1) is satisfied. Assumption 4.1(3) is also
clearly satisfied.

Define the matrixt by &; = 1/n for all 4, j. Then, Assumption 4.1(2) is
equivalent to

(6.2) HQ(@, k) — gH < it

for a constanty € (0,1) and a random variabley, such that the distribution of
¢ given Fy depends only orfw(¢), a(¢)), and with Be/|F;] < ¢ for a constant
¢ < 0.
From Assumption 1.1 and Assumption 6.1, there must be some set of states
wo, - . ., wm—1 and corresponding edge sefs, ..., S,,—1, such that for each,
w; € ng,
m—1
U 8= £,
i=0
and for some > 0,

Pr{w(l) = wo,...,wl+m —1) = wy_1} > 0.

Since this event occurs once with positive probability, it must occur infinitely often
with probability 1. DefineV (k) to be the number of non-overlapping occurrences
at or before time, that is
k
N(k) = ; Liw()eWs, ,w(t+m—1)eWs _ }-
=0

Define matrix@Q and the sef (i, jo), - - -, (iar, 701)} DY

M
@ _ Qs'm L QS'O — H Q(ibje)_
/=0

and let B

7=lle-el.
We wish to show thaty < 1. Assume otherwise, and Iétbe a vector such that
|Z]| = 1 and||(Q — £)Z|| > 1. Note that for everyi, j), Q1) = QUIE = €,
and&? = £. Hence,



Further, for any(i, j) and any vector, eitherQ("/)z = z or [|(Q) — &£)z|| <
(I —&)z||. Since

(1 = &)al|* = 2" (I = &)z = 2™ (I = £%a = ||z|* — [|€2]|* < [l2]]?,

we have

1< (@ -&)z| <

(ﬁ (Q(ime) _ 5)> &

£=0

M
< H HQ(ie,je) — g” < 1.
=0

Then, it follows that for evenyi,j) € E, Q)i = &. Since the set of edges
E connects every node in the graph, if, for some pair of componeiaisd g,
Z, # &4, we could construct a path of edgeshnbetweerp andg, and for some
edge(i, j) along this path@()# #£ . Hence, the vectof must be constant.
Then,||(Q — £)%|| = 0. We have a contradiction, henge< 1.
Set
te = min{k > 0|N (k) = ¢}.

Define A = E[tyy1 — t¢] (for £ > 1) to be the expected time between non-
overlapping observations of the communication pattern associatedQyitnd
pick arbitrarye € (0,1) andé € (0,1/A). Definey = 5% € (0,1), and note
thaty < v2 < 1. Returning to (6.2), we have, fér< k,

P
< ,YA(N(k*m)*N(f))l{kk,m} + Lisp—m)
_ <7_(1_e)m,7£(N(k—m)—N(f))—(l—e)(k_m_z)l{g<k_m}
ﬂ_(l—e)ml{w_m})7(l—e)<k—é>
< epy Ok,
where

¢ = 4~(1=0m <1 +sup 7A(N(lzm—w»—(1—e)7> ,
T>

We wish to consider [£,|F,]. Note that the distribution of, given 7, depends
only on(w(¥),a(¥)). It suffices consider the case whére- 0 over varying initial
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conditions(w(0), a(0)). Then, we have
J—“O]
= /100 Pr {sup AANM=(1=97 5 4
= (tog) [ Pr{supy AV e

= (—log~) /OOOPI“{Slip(l — €)1 —AN(1) > u

E [sup ,YAN(T)f(l*E)T

.7-"0} dx

fo} v du

fo}VudU
_ (_10g7> /Ooo (1 Py { (1- 6)7’ — AN(T) < 'LL,VT‘ .7:0}) v du

Define
be=(1—¢€)ty— Af,

and note that

Pr{supbg <u+(1+¢) —A‘fo} :Pr{(l—E)T—AN(T) S’U,,VT‘.F()}.
V4

Let Ay = (1 — €)(tee1 — o) — A, so that, = S257F A,

Since the process is generated by a finite state irreducible Markov chain, the
tail of the interarrival times, . ; —t, is bounded by a decaying exponential. Hence,
the moment generating functiord®>¢] of A, is finite forn € (—oo,7) for some
7 > 0. It follows thatb, has a finite-valued moment generating function

Ele| o] = E[e? o] (E[e1) 1),

forn € (—o0,7). (Note that since the system is starting in an arbitrary initial state,
Ag has a different distribution thafy, for ¢ > 0.) By the Chernoff bound, for any
n € (—oo,7) andz > 0,

Pr{b; > x| Fo} < e™" E[e"™0| Fo) (E[e"™]) 71 = e tpoB)HE=Den(n),

wherep;(n) = log E[e"¢]. Sincep;(0) = E[A;] = —e < 0, there exist scalars
A>0,¢>0ands = —p(¢) > 0 such that

Pr{by > 2| Fo} < Ae ¢
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Then,

1—Pr{supbg Su(l—i—e)—A} < ZPr{bg>u—(1+e)A}
¢ =0

IN

Z Ae_C(u+(1+E)_A)_Hk
£=0

_ A e Clut(1+e-A)

1—e "

The final term is finite ify > e~¢. Note, however, by choosing sufficiently
small,y can be made arbitrarily close to 1. Hence, for such a choige Bfco| Fo]
is finite. ]

7 Convergence Analysis

We will first introduce tools from the theory of stochastic approximation. Using
these tools, we will be able to establish the convergence of the two algorithms
presented earlier.

7.1 Stochastic Approximation

Stochastic approximation provides an iterative method to solve equations of the
form
g(0) =0
for some continuous functiof(d). In our instance, if we sej(f) = VA(0),
stochastic approximation will allow us to find policy parameters which are local
optima of the expected average reward function.
In particular, consider the iterative scheme

(7.1) O(k+1)=0(k)+eg(0(k),&(K)).
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Here,g(6(k),£(k)) is an estimate ofi(6(k)) at timek, and¢(k) is a process that
captures the underlying state and whatever additional noise memory is required to
compute the estimate. In our framework, we will require th@t) has a Markov
structure: giverd(k), the distribution of(k + 1) depends only og(k). In other
words,

(7.2) Pr¢(k +1) € [Fr) =P (&(k),-|0(K)) ,

for some transition functiof®.

We have not yet defined the relationship between the estimgi@r$) and the
function g(#). We will require that, wherd is held fixed, the values(6, £(k))
locally average tg(#). In order to make this notion precise, note that for a fixed
value off, the transition functiorP(-, -|#) defines a Markov chain we shall call the
fixed-9 chain and denote by (k). The local averaging condition requires that

K—1
. 1 _
(7.3) dim o E LZ_O 9(0, Ee(k))] = g(6),
for each initial conditiorg, (0).
Consider the ordinary differential equation

(7.4) 0(t) = g(0(t)).
DefineL to be the set of limit points of (7.4) over all initial conditions. I6&tk) be
the sequence of parameters resulting from (7.1) with a particular §ix&thally,
define a continuous-time interpolation(t) if 6<(k) by settingd<(t) = 0°(k) if
t € [ke, ke + ¢€). In the following lemma, we will establish conditions for the weak
convergence of“(t) to a solutiond(¢) of the ODE (7.4) as—0, such that the
fraction of the time interval0, T'] that6<(¢) spends in a small neighborhood £f
will go to 1 in probability ass—0 andT—oo.

Note that wherg(6) = VgA(0), the functionA(0) is a Lyapunov function for
the ODE. Then, the set of limit poinfsis the set of stationary pointsfor which

VoA(0) = 0.
Hence, the limit points are local optima f0).
Lemma 7.1. Assume the following conditions:
1. The iterated6<(k)|k, ¢} are bounded.

2. There exists atf;-measurable proces§t) € I C =, wherel is a com-
pact set in a complete separable metric sp&;end a transition function
P(-,-]0) such that the Markov conditiofr.2) holds.
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3. P(&,]0) is weakly continuous ¥, £), that is, for every bounded and con-
tinuous real-valued functiof’ on ®°, the value of the integral

[ FéPie.ado)
is continuous in#, &).

4. The set of invariant measures under transition functi®g, -|0) is tight
over all 6.

5. The estimate functiog(6, &) is continuous, bounded, and measurable, and
satisfies the local averaging conditi¢n.3)for a fixed# chain.

Then, for any sequence of proces$89t)|e—0} there exists a subsequence
that weakly converges #(t) as—0, whered(t) is a solution to the ODE7.4).
Further, ford > 0, defineN;(L£) to be a neighborhood of radiusaround the limit
setL. The fraction of time thai*(¢) spends inV;(£) over the time interval0, 7]
goes to 1 in probability as—0 and T— .

Proof. The result follows directly from Theorem 8.4.3 in [2]. O

7.2 Convergence of the Distributed Algorithm

We wish to prove convergence of the stochastic approximation scheme correspond-
ing to our distributed optimization algorithm:

(7.5) 05 (k + 1) = 05 (k) + €2 (k) (1 — a)Yi(k).

Theorem 7.1. Assume that the set of iteraté® (k)| k, ¢} from (7.5) are bounded.
Then, the conclusions of Lemma 7.1 hold.

Proof. We will use the framework provided by Lemma 7.1. Define
E(k) = (w(k), a(k), 2/ (k). 2 (k), Y (k)).

Z = X x A x RNt To see that(t) takes values in a compact subsetfit
suffices to prove thaztf(k) andY (k) are bounded. Yet,

k k
)| = [ i) < LY <
=0 =0 1=
SN R
[Y(®) = > a" QU KRO)| < —.
£=0




where

n 1/2

Zri(w,a)Q

i=1

Further, sincéw(k), a(k)) form a Markov chain and from (3.2) and the defi-
nition of Y'(k), clearly&(t) is anFi-measurable Markov chain. The fact that the
associated transition function is weakly continuous follows from the smoothness
conditions onry(a|x) provided by Assumption 2.1. Define the function

g(@,&) = (91(07‘£>7 s 7gn(97§)>7

PL = max
weW,acA

where
9i(0,&) = (1 — )z (t)yi(t).
Boundedness gf(0, &) is clear, further

xi(t) = gi(0(1),&(1))-

Finally, Theorem 5.1 provides the appropriate averaging condition for the fixed-
chain. O
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