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1 Markov Decision Processes

Consider a Markov chain(w(k), a(k)) defined fork = 0, 1, . . . and withw(k) ∈
W, a(k) in A, whereW andA are finite sets representing the system state space
and the action space, respectively. The transition probabilities are defined by the
function

Pθ(w′, a′, w, a) = Pr
{

w(k + 1) = w, a(k + 1) = a|w(k) = w′, a(k) = a′
}

.

Here,θ ∈ RN is a vector of policy parameters.
We will make the following assumption regarding the dynamics.

Assumption 1.1. For all θ, the Markov chain(w(k)) is ergodic (aperiodic, irre-
ducible).

While the system is in statew ∈ W and actiona ∈ A is applied, a reward
r(w, a) is accrued. We will use the shorthandr(k) = r(w(k), a(k)). Given As-
sumption 1.1, we can define the long term average reward by

λ(θ) = lim
K→∞

1
K

E

[
K−1∑
k=0

r(k)

]
=

∑
w∈W,a∈A

ηθ(w, a)r(w, a),
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wherenθ(w, a) is the steady-state distribution corresponding to the transition func-
tion Pθ(w′, a′, w, a).

Define the differential reward function

qθ(w, a) = lim
K→∞

E

[
K−1∑
k=0

(r(w(k), a(k))− λ(θ))

∣∣∣∣∣w(0) = w, a(0) = a

]
.

The following result provides a crucial expression for the gradient ofλ(θ). It is
important in that it does not rely on terms of the form∇θηθ(w, a), which would
be difficult to estimate over finite sample paths. It is a standard result in Markov
decision process theory, see [3], for example, for a proof.

Theorem 1.1. Assume thatPθ(w′, a′, w, a) is continuously differentiable with re-
spect toθ. Then,

(1.1) ∇θλ(θ) =
∑

w∈W,a∈A

∑
w′∈W,a′∈A

ηθ(w′, a′)∇θPθ(w′, a′, w, a)qθ(w, a).

2 Network Structure

Assume the network hasn components. Corresponding to each componenti, there
is a subsetWi ∈ W. At thekth epoch, there are a set of control actionsa1(k) ∈
A1, . . . , an(k) ∈ An, where eachA1, . . . , An is a finite set. We will denote the
entire action vector(a1(k), . . . , an(k)) asa(k) ∈ A = A1×· · ·×An. Actions are
governed by a set of policiesπ1

θ1
, . . . , πn

θn
, where the policyπi

θi
at componenti is

parameterized by a vectorθi ∈ RNi . Eachith action process transitions only if the
statew(k) is an element ofWi. At the time of transition, the probability thatai(k)
becomes anyai ∈ Ai is given byπi

θi
(ai|w(k)). Hence, the corresponding action

sequence evolves according to

ai(k) =

{
a′i with probabilityπi

θi
(a′i|w(k)), if w(k) ∈ Wi,

ai(k − 1) otherwise.

The state transitions depend on the prior state and action vector. In particular,
there is a transition kernelP that defines the state dynamics:

Pr
{
w(k) = w|w(k − 1) = w′, a(k − 1) = a′

}
= P (w′, a′, w).

Hence, ifθ = (θ1, . . . , θn), we have

(2.1) Pθ(w′, a′, w, a) = P (w′, a′, w)
∏

i:w∈Wi

πi
θi

(ai|w)
∏

i:w/∈Wi

1{a′i=ai}.
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Finally, we will assume that the reward is an average of rewards occurring at each
component, that is

r(w, a) =
1
n

n∑
i=1

ri(w, a).

We will use the shorthandri(k) = ri(w(k), a(k)).
We will make the following assumption regarding the policies.

Assumption 2.1.For all i and everyw ∈ Wi, ai ∈ Ai, πi
θi

(ai|w) is a continuously
differentiable function ofθi. Further, for everyi, there exists a bounded function
Li(w, ai, θ) such that for allw ∈ Wi, ai ∈ Ai,

∇θi
πi

θi
(ai|w) = πi

θi
(ai|w)Li(w, ai, θ).

The latter part of the assumption is satisfied, for example, if there exists a
constantε > 0 such that for eachi,w ∈ Wi,ai ∈ Ai,

either∀θi, π
i
θi

(ai|w) = 0 or ∀θi, π
i
θi

(ai|w) ≥ ε.

Without loss of generality, we will assume thatπi
θi

(ai|w) > 0, and hence define a
boundL by

sup
i,θi,w∈Wi,ai∈Ai

∥∥∥∥∥∇θi
πi

θi
(ai|w)

πi
θi

(ai|w)

∥∥∥∥∥ < L.

In this framework, the gradient expression of Theorem 1.1 becomes signifi-
cantly simpler.

Theorem 2.1. For all i,

∇θi
λ(θ) =

∑
w∈Wi,a∈A

ηθ(w, a)
∇θi

πi
θi

(ai|w)
πi

θi
(ai|w)

qθ(w, a).

Proof. Examining (2.1), it is clear that

∇θi
Pθ(w′, a′, w, a) = Pθ(w′, a′, w, a)

∇θi
πi

θi
(ai|w)

πi
θi

(ai|w)
1{w∈Wi}.

Combining with Theorem 1.1, we have

∇θi
λ(θ) =

∑
w,a

w′,a′

ηθ(w′, a′)Pθ(w′, a′, w, a)
∇θi

πi
θi

(ai|w)
πi

θi
(ai|w)

1{w∈Wi}qθ(w, a)

=
∑
w,a

∇θi
πi

θi
(ai|w)

πi
θi

(ai|w)
1{w∈Wi}qθ(w, a)

∑
w′,a′

ηθ(w′, a′)Pθ(w′, a′, w, a)

=
∑

w∈Wi,a∈A
ηθ(w, a)

∇θi
πi

θi
(ai|w)

πi
θi

(ai|w)
qθ(w, a).
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3 Centralized Gradient Estimation

Forβ ∈ (0, 1], define the eligibility vector

zβ
i (k) =

k∑
`=0

βk−`
∇θi

πi
θi

(ai(`)|w(`))
πi

θi
(ai(`)|w(`))

1{w(`)∈Wi}(3.1)

= βzβ
i (k − 1) +

∇θi
πi

θi(k)(ai(k)|w(k))

πi
θi(k)(ai(k)|w(k))

1{w(k)∈Wi}.(3.2)

We can define a centralized estimate of the gradient∇θi
λ(θ) by

χ̄i(k) = r(k)zβ
i (k),

where we are using the shorthandr(k) = r(w(k), a(k)).
Define∇i(k) as shorthand for

∇θi
πi

θi
(ai(k)|w(k))

πi
θi

(ai(k)|w(k))
1{w(k)∈Wi}.

The following lemma will be useful in subsequent analysis.

Lemma 3.1. If ` < k, E[∇i(k)|F`] = 0.

Proof. Note that for̀ < k,

E[∇i(k)|F`] =
∑

w∈Wi

∑
ai∈Ai

Pr {w(k) = w| F`}πi
θi

(ai|w)

[
∇θi

πi
θi

(ai|w)
πi

θi
(ai|w)

]
=

∑
w∈Wi

Pr {w(k) = w| F`}
∑

ai∈Ai

∇θi
πi

θi
(ai|w)

=
∑

w∈Wi

Pr {w(k) = w| F`}∇θi

∑
ai∈Ai

πi
θi

(ai|w)


=

∑
w∈Wi

Pr {w(k) = w| F`}∇θi
(1)

= 0.

4



We will now establish convergence of long term averages of the discounted gra-
dient estimator. Note that a stronger result is proved in [1], however the following
is sufficient for our purposes.

Theorem 3.1. For anyi and0 < β < 1,

lim
K→∞

1
K

E

[
K−1∑
k=0

χ̄i(k)

]
=

∑
w∈Wi,a∈A

ηθ(w, a)
∇θi

πi
θi

(ai|w)
πi

θi
(ai|w)

qβ
θ (w, a),

whereqβ
θ (w, a) is the discounted differential reward function

qβ
θ (w, a) = lim

K→∞
E

[
K−1∑
k=0

βk (r(w(k), a(k))− λ(θ))

∣∣∣∣∣w(0) = w, a(0) = a

]
.

Further,

lim
β↑1

lim
K→∞

1
K

E

[
K−1∑
k=0

χ̄i(k)

]
= ∇θi

λ(θ).

Proof. Note that

1
K

E

[
K−1∑
k=0

χ̄i(k)

]
=

1
K

E

[
K−1∑
`=0

∇i(`)
K−1∑
k=`

βk−`r(k)

]

=
1
K

E

[
K−1∑
`=0

∇i(`)
K−1∑
k=`

βk−` (r(k)− λ(θ))

]

=
1
K

E

[
K−1∑
`=0

∇i(`)q
β
θ (w(`), a(`),K − `)

]
,

where we use the fact the E[∇i(`)] = 0, from Lemma 3.1, and where

qβ
θ (w, a,K) = E

[
K−1∑
k=0

βk (r(w(k), a(k))− λ(θ))

∣∣∣∣∣w(0) = w, a(0) = a

]
.

It is clear theqβ
θ (w, a,K)→qβ

θ (w, a) asK→∞, then, since∇i(`) is bounded, it
follows that

lim
K→∞

1
K

E

[
K−1∑
k=0

χ̄i(k)

]
= lim

K→∞

1
K

E

[
K−1∑
`=0

∇i(`)q
β
θ (w(`), a(`))

]

=
∑

w∈W,ia∈A
ηθ(w, a)

∇θi
πi

θi
(ai|w)

πi
θi

(ai|w)
qβ
θ (w, a),
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where the last step follows since(w(`), a(`)) is ergodic (Assumption 1.1). The
balance of the result follows from the fact thatlimβ↑1 qβ

θ (w, a) = qθ(w, a).

4 Distributed Gradient Estimation

Consider the following gradient estimator:

(4.1) χi(k) = zβ
i (k)

1
n

n∑
j=1

k∑
`=0

dα
ij(`, k)rj(`),

Here, the random variables{dα
ij(`, k)}, with parameterα ∈ (0, 1), represent an ar-

rival process describing the communication of rewards across the network. Indeed,
dα

ij(`, k) is the fraction of the rewardrj(`) at componentj that is learned by com-
ponenti at timek ≥ `. We will assume the arrival process satisfies the following
conditions.

Assumption 4.1. For eachi, j, `, andα ∈ (0, 1), the process{dα
ij(`, k)|k = `, ` +

1, ` + 2, . . .} satisfies:

1. dα
ij(`, k) isFk-measurable.

2. There exists a scalarγ ∈ (0, 1) and a random variablec` such that for all
k ≥ `, ∣∣∣∣ dα

ij(`, k)
(1− α)αk−`

− 1
∣∣∣∣ < c`γ

k−`,

with probability 1. Further, we require that the distribution ofc` givenF`

depend only on(w(`), a(`)), and that there exist a constantc̄ such that

E [c`|w(`) = w, a(`) = a] < c̄ < ∞,

with probability 1 for all initial conditionsw ∈ W anda ∈ A.

3. The distribution of{dα
ij(`, k)|k = `, ` + 1, . . .} givenF` depends only on

w(`) anda(`).

Note that from Assumption 4.1(2), it is clear that
∑∞

k=` dα
ij(`, k) converges

absolutely with probability 1. Further, we have∣∣∣∣∣
∞∑

k=`

(
dα

ij(`, k)− (1− α)αk−`
)∣∣∣∣∣ <

∞∑
k=`

c`(1− α)αk−`γk−`

=
c`(1− α)
1− αγ

.
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Hence, with probability 1,

(4.2) lim
α↑1

∞∑
k=`

dα
ij(`, k) = lim

α↑1

∞∑
k=`

(1− α)αk−` = 1.

5 Relation to Centralized Gradient Estimation

For convenience, defineR = maxi,a,w |ri(w, a)|. The following lemma will be
useful throughout this analysis.

Lemma 5.1. There exists constantsC andη ∈ (0, 1) such that, for allk, l, and
any functionsg andf ,

|E [g(w(`), a(`))f(w(k), a(k))]− E [g(w(`), a(`))] E [f(w(k), a(k))]|
≤ max

w,a
|f(w, a)|max

w,a
|g(w, a)|Cη|k−`|.

In particular, for an arbitrary functionf ,

‖E [f(w(`), a(`)∇i(k)]| ≤ max
w,a

|f(w, a)|LCη|k−`|,

Proof. The first statement follows immediately from Assumption 1.1. The second
statement follows from the first once we observe (from Lemma 3.1) that

E[∇i(k)] = 0.

Lemma 5.2. For eachi, j, k ≥ `, α ∈ (0, 1) andβ ∈ (0, 1),

E
[∥∥∥zβ

i (k)dα
ij(`, k)

∥∥∥∣∣∣F`

]
<

(1− α)(1 + c̄)Lαk−`

1− β
.

Proof. From Assumption 4.1(2),

|dα
ij(`, k)| < (1− α)(1 + c`)αk−`.

Then, ∥∥∥zβ
i (k)dα

ij(`, k)
∥∥∥ ≤ (1− α)(1 + c`)Lαk−`

k∑
u=0

βk−u

<
(1− α)(1 + c`)Lαk−`

1− β
.

The result follows after taking a conditional expectation.
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Let

ẑαβ
ij (`,K) = E

[
K−1∑
k=`

zβ
i (k)dα

ij(`, k)

∣∣∣∣∣F`

]
.

By Lemma 5.2, forα ∈ (0, 1) andβ ∈ (0, 1), {ẑαβ
ij (`,K)|K = `, `+1, `+2, . . .}

is a Cauchy sequence, and therefore,

ẑαβ
ij (`) = lim

K→∞
ẑαβ
ij (`,K),

is well-defined and finite. The following lemma follows immediately.

Lemma 5.3. For anyi andj, α ∈ (0, 1), andβ ∈ (0, 1),

lim
K→∞

∥∥∥∥∥ 1
K

E

[
K−1∑
`=0

rj(`)
(
ẑαβ
ij (`,K)− ẑαβ

ij (`)
)]∥∥∥∥∥ = 0.

Lemma 5.4. For any i, `, and α ∈ (0, 1), limK→∞ ẑα1
ij (`,K) is well-defined.

Further, if we definêzα1
ij (`) = limK→∞ ẑα1

ij (`,K), then for anyj,

lim sup
α↑1

lim sup
K→∞

∥∥∥∥∥ 1
K

E

[
K−1∑
`=0

rj(`)
(
ẑα1
ij (`)− z1

i (`)
)]∥∥∥∥∥ = 0.

Proof. Note that

ẑα1
ij (`,K)

= E

[
K−1∑
k=`

k∑
s=0

∇i(s)dα
ij(`, k)

∣∣∣∣∣F`

]

= E

[∑̀
s=0

∇i(s)
K−1∑
k=`

dα
ij(`, k)

∣∣∣∣∣F`

]
+ E

[
K−1∑

s=`+1

∇i(s)
K−1∑
k=s

dα
ij(`, k)

∣∣∣∣∣F`

]
= Gα

ij(`,K) + Hα
ij(`,K).

For the termGα
ij(`,K), note that

lim
K→∞

Gα
ij(`,K) = z1

i (`) lim
K→∞

fα
ij(w(`), a(`),K − `),

where, using Assumption 4.1(3), we define

fα
ij(w, a,K) = E

[
K−1∑
k=0

dα
ij(0, k)

∣∣∣∣∣w(0) = w, a(0) = a

]
.
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Note that forJ < K, from Assumption 4.1(2),

∣∣fα
ij(w, a,K)− fα

ij(w, a, J)
∣∣ ≤ (1− α)(1 + c̄)

K−1∑
k=J

αk

≤ (1 + c̄)αJ .

Hence, forα ∈ (0, 1), {fα
ij(w, a,K)|K = 1, 2, . . .} is a Cauchy sequence, and we

can define the limit
fα

ij(w, a) = lim
K→∞

fα
ij(w, a,K).

Further, the following limit exists,

lim
K→∞

E
[
Gα

ij(`,K)
∣∣F`

]
= z1

i (`)fα
ij(w(`), a(`)).

For the termHα
ij(`,K), note that forJ < K,∥∥E

[
Hα

ij(`,K)−Hα
ij(`, J)

∣∣F`

]∥∥
=

∥∥∥∥∥E

[
K−1∑
s=J

∇i(s)
K−1∑
k=s

dα
ij(`, k) +

J−1∑
s=`+1

∇i(s)
K−1∑
k=J

dα
ij(`, k)

∣∣∣∣∣F`

]∥∥∥∥∥
≤ L(1− α)(1 + c̄)

(
K−1∑
s=J

K−1∑
k=s

αk−` +
J−1∑

s=`+1

K−1∑
k=J

αk−`

)

≤ L(1 + c̄)

(
K−1∑
s=J

αs−` +
J−1∑

s=`+1

αJ−`

)

≤ L(1 + c̄)
(

αJ

1− α
+ (J − ` + 1)αJ−`

)
.

Hence,{Hα
ij(`,K)|K = ` + 1, ` + 2, . . .} is a Cauchy sequence. Then, we can

define
ẑα1
ij (`) = lim

K→∞
ẑα1
ij (`,K).
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To establish the balance of the result, note that∥∥∥∥∥ 1
K

E

[
K−1∑
`=0

rj(`)
(
ẑα1
ij (`)− z1

i (`)
)]∥∥∥∥∥

=

∥∥∥∥∥ 1
K

E

[
K−1∑
`=0

rj(`) lim
M→∞

(
Gα

ij(`,M) + Hα
ij(`,M)− z1

i (`)
)]∥∥∥∥∥

≤

∥∥∥∥∥ 1
K

E

[
K−1∑
`=0

rj(`)
(
1− fα

ij(w(`), a(`))
)
z1
i (`)

]∥∥∥∥∥
+

∥∥∥∥∥ 1
K

E

[
K−1∑
k=0

rj(`) lim
M→∞

Hα
ij(`,M)

]∥∥∥∥∥
= (A) + (B).

For term(A), note that∥∥∥∥∥ 1
K

E

[
K−1∑
`=0

rj(`)
(
1− fα

ij(w(`), a(`))
)
z1
i (`)

]∥∥∥∥∥
=

∥∥∥∥∥ 1
K

E

[
K−1∑
`=0

∑̀
u=0

rj(`)
(
1− fα

ij(w(`), a(`))
)
∇i(u)

]∥∥∥∥∥
≤ RLC

K

K−1∑
`=0

∑̀
u=0

η`−u max
w∈W,a∈A

∣∣1− fα
ij(w, a)

∣∣
≤ RLC

1− η
max

w∈W,a∈A

∣∣1− fα
ij(w, a)

∣∣ .
Note that this bound is independent ofK, and, by the Dominated Convergence
Theorem and (4.2),limα↑1 fα

ij(w, a) = 1, hence the(A) term vanishes.
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For term(B), note that fors > `, E[∇i(s)| F`] = 0 from Lemma 3.1. Hence,∥∥∥∥∥ 1
K

E

[
K−1∑
k=0

rj(`) lim
M→∞

Hα
ij(`,K)

]∥∥∥∥∥
=

∥∥∥∥∥ 1
K

E

[
K−1∑
k=0

rj(`) lim
M→∞

E

[
M−1∑
s=`+1

∇i(s)
K−1∑
k=s

dα
ij(`, k)

∣∣∣∣∣F`

]]∥∥∥∥∥
=

∥∥∥∥∥E

[
K−1∑

s=`+1

∇i(s)
K−1∑
k=s

(
dα

ij(`, k)− (1− α)αk−`
)∣∣∣∣∣F`

]∥∥∥∥∥
≤

K−1∑
s=`+1

L

K−1∑
k=s

E
[
c`(1− α)αk−`γk−`

∣∣∣F`

]

≤ c̄(1− α)L
K−1∑

s=`+1

αs−`γs−`

1− αγ

≤ c̄(1− α)L
αγ

(1− αγ)2
.

Note that this bound is independent ofK and tends to0 asα ↑ 1. Hence, term(B)
vanishes and the result is established.

Because the limit is well-defined, we extend our definition ofẑαβ
ij (`) to the case

of β = 1:
ẑα1
ij (`) = lim

K→∞
ẑα1
ij (`,K).

Lemma 5.5. For anyi andj,

lim sup
β↑1

lim sup
K→∞

∥∥∥∥∥ 1
K

E

[
K−1∑
`=0

rj(`)
(
z1
i (`)− zβ

i (`)
)]∥∥∥∥∥ = 0.

Proof. We have

E

[
K−1∑
`=0

rj(`)
(
z1
i (`)− zβ

i (`)
)]

= E

[
K−1∑
`=0

rj(`)
∑̀
k=0

(1− β`−k)∇i(k)

]

=
K−1∑
`=0

∑̀
k=0

(1− β`−k) E [rj(`)∇i(k)]

From Lemma 5.1,
‖E [rj(`)∇i(k)]‖ ≤ RLCη`−k.
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It follows that∥∥∥∥∥E

[
K−1∑
`=0

rj(`)
(
z1
i (`)− zβ

i (`)
)]∥∥∥∥∥ ≤ RLC

K−1∑
`=0

∑̀
k=0

(
1− β`−k

)
η`−k

≤ KRLC

(
1

1− η
− 1

1− βη

)
,

The result follows.

Lemma 5.6. For anyi, j, andα ∈ (0, 1),

lim sup
β↑1

lim sup
K→∞

∥∥∥∥∥ 1
K

E

[
K−1∑
`=0

rj(`)
(
ẑαβ
ij (`)− ẑα1

ij (`)
)]∥∥∥∥∥ = 0.

Proof. Note that

1
K

E

[
K−1∑
`=0

rj(`)
(
ẑαβ
ij (`)− ẑα1

ij (`)
)]

=
1
K

E

[
K−1∑
`=0

rj(`) lim
M→∞

E

[
M−1∑
k=`

(
zβ
i (k)− z1

i (k)
)

dα
ij(`, k)

∣∣∣∣∣F`

]]

=
1
K

E

[
K−1∑
`=0

rj(`) lim
M→∞

E

[
M−1∑
k=`

(
βk−`zβ

i (`)− z1
i (`)

)
dα

ij(`, k)

∣∣∣∣∣F`

]]

+
1
K

E

[
K−1∑
`=0

rj(`)

lim
M→∞

E

[
M−1∑
k=`

(
zβ
i (k)− βk−`zβ

i (`)− z1
i (k) + z1

i (`)
)
dα

ij(`, k)

∣∣∣∣∣F`

]]
= (A) + (B).

Consider term(A). From Assumption 4.1(3), we can define

gαβ
ij (w, a,M) = E

[
M−1∑
k=0

βkdα
ij(0, k)

∣∣∣∣∣w(0) = w, a(0) = a

]
.
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By Assumption 4.1(2), forα ∈ (0, 1) andβ ∈ [0, 1], and forJ < K∣∣∣gαβ
ij (w, a,K)− gαβ

ij (w, a, J)
∣∣∣

≤ E

[
(1− α)(1 + c0)

K−1∑
k=J

αkβk

∣∣∣∣∣w(0) = w, a(0) = a

]

≤ (1− α)(1 + c̄)αJβJ

1− αβ
.

Hence,{gαβ
ij (w, a,M)|M = 1, 2, . . .} is a Cauchy sequence, and we can define

the limit
gαβ
ij (w, a) = lim

M→∞
gαβ
ij (w, a,M).

Then, term(A) becomes

1
K

∥∥∥∥∥E

[
K−1∑
`=0

rj(`) lim
M→∞

E

[
M−1∑
k=`

(
βk−`zβ

i (`)− z1
i (`)

)
dα

ij(`, k)

∣∣∣∣∣F`

]]∥∥∥∥∥
=

1
K

∥∥∥∥∥E

[
K−1∑
`=0

rj(`)
(
gαβ
ij (w(`), a(`))zβ

i (`)− gα1
ij (w(`), a(`))z1

i (`)
)]∣∣∣∣∣

=
1
K

∥∥∥∥∥E

[
K−1∑
`=0

∑̀
u=0

rj(`)
(
β`−ugαβ

ij (w(`), a(`))− gα1
ij (w(`), a(`))

)
∇i(u)

]∣∣∣∣∣
Note that∣∣∣β`−ugαβ

ij (w(`), a(`))− gα1
ij (w(`), a(`))

∣∣∣
≤ lim

M→∞
E

[
(1− α)(1 + c0)

M−1∑
k=0

(1− βk+`−u)αk

∣∣∣∣∣w(0) = w, a(0) = a

]

≤ (1− α)(1 + c̄)
(

1
1− α

− β`−u

1− αβ

)
From Lemma 5.1,∥∥∥E

[
rj(`)

(
β`−ugαβ

ij (w(`), a(`))− gα1
ij (w(`), a(`))

)
∇i(u)

]∣∣∣
≤ RLC(1− α)(1 + c̄)η`−u

(
1

1− α
− β`−u

1− αβ

)
.

13



Applying this to term(A),

1
K

∥∥∥∥∥E

[
K−1∑
`=0

∑̀
u=0

rj(`)
(
β`−ugαβ

ij (w(`), a(`))− gα1
ij (w(`), a(`))

)
∇i(u)

]∣∣∣∣∣
≤ RLC(1− α)(1 + c̄)

K

K−1∑
`=0

∑̀
u=0

η`−u

(
1

1− α
− β`−u

1− αβ

)

≤ RLC(1− α)(1 + c̄)
K

K−1∑
`=0

(
1

(1− α)(1− η)
− 1

(1− αβ)(1− ηβ)

)
= RLC(1− α)(1 + c̄)

(
1

(1− α)(1− η)
− 1

(1− αβ)(1− ηβ)

)
,

which is a constant overK and vanishes asβ ↑ 1.
We are left with term(B). Note that

E

[
rj(`) lim

M→∞
E

[
M−1∑
k=`

(
zβ
i (k)− βk−`zβ

i (`)− z1
i (k) + z1

i (`)
)

dα
ij(`, k)

∣∣∣∣∣F`

]]

≤ RL E

[
lim

M→∞
E

[
M−1∑
k=`

(1− α)(1 + c`)αk−`
k∑

u=`+1

(1− βk−u)

∣∣∣∣∣F`

]]

≤ RL E

[
lim

M→∞

M−1∑
k=`

(1− α)(1 + c̄)αk−`

(
k − `− 1− βk−`

1− β

)]

≤ RL E

[
(1− α)(1 + c̄)

(
α

(1− α)2
− 1

1− β

(
1

1− α
− 1

1− αβ

))]
= RL(1− α)(1 + c̄)

(
α

(1− α)2
− α

(1− α)(1− αβ)

)
,

which, is a constant independent of` and goes to0 asβ ↑ 1. The result follows.

Lemma 5.7. For all i, andα ∈ (0, 1), β ∈ (0, 1),

lim
K→∞

1
K

E

[
K−1∑
k=0

χi(k)

]
,

exists.

14



Proof. We have

1
K

E

[
K−1∑
k=0

χi(k)

]

=
1
K

E

 n∑
j=1

K−1∑
`=0

rj(`)
K−1∑
k=`

zβ
i (k)dα

ij(`, k)


=

1
K

E

 n∑
j=1

K−1∑
`=0

rj(`)z
β
i (`)

K−1∑
k=`

βk−`dα
ij(`, k)


+

1
K

E

 n∑
j=1

K−1∑
`=0

rj(`)
K−1∑
k=`

(
zβ
i (k)− βk−`zβ

i (`)
)

dα
ij(`, k)


= (A) + (B).

We will first examine term(A). Define

fαβ
ij (w, a,K) = E

[
K−1∑
k=0

βkdα
ij(0, k)

∣∣∣∣∣w(0) = w, a(0) = a

]
.

By Assumption 4.1(2), forJ < K,∣∣∣fαβ
ij (w, a,K)− fαβ

ij (w, a, J)
∣∣∣

=

∣∣∣∣∣E
[

K−1∑
k=J

βkdα
ij(0, k)

∣∣∣∣∣w(0) = w, a(0) = a

]∣∣∣∣∣
≤

∣∣∣∣∣E
[

(1− α)(1 + c0)
K−1∑
k=J

βkαk

∣∣∣∣∣w(0) = w, a(0) = a

]∣∣∣∣∣
≤ (1− α)(1 + c̄)αJβJ

(1− αβ)
.

Hence,{fαβ
ij (w, a,K)|K = 1, 2, . . .} is a Cauchy sequence, and we can define the

limit
fαβ

ij (w, a) = lim
K→∞

fαβ
ij (w, a,K).

Hence, we can define a constant

Cαβ
ij = sup

w∈W,a∈A,K>0

∣∣∣fαβ
ij (w, a,K)

∣∣∣ .
15



Define

gαβ
ij (w, a,K) = E

[
K−1∑
`=0

β`rj(`)f
αβ
ij (w(`), a(`),K − `)

∣∣∣∣∣w(0) = w, a(0) = a

]
.

Then, forJ < K,∣∣∣gαβ
ij (w, a,K)− gαβ

ij (w, a, J)
∣∣∣ ≤ 2Cαβ

ij R
K∑

`=J

β`

≤
2Cαβ

ij RβJ

1− β
.

Hence,{gαβ
ij (w, a,K)|K = 1, 2, . . .} is a Cauchy sequence, and we can define the

limit
gαβ
ij (w, a) = lim

K→∞
gαβ
ij (w, a,K).

SinceW andA are finite, this convergence is uniform overw anda.
Returning to term(A), note that using Assumption 4.1(3),

1
K

E

 n∑
j=1

K−1∑
`=0

rj(`)z
β
i (`)

K−1∑
k=`

βk−`dα
ij(`, k)


=

1
K

n∑
j=1

E

[
K−∑
`=0

∑̀
u=0

rj(`)β`−u∇i(u)
K−1∑
k=`

βk−`dα
ij(`, k)

]

=
1
K

n∑
j=1

E

[
K−1∑
u=0

∇i(u)
K−1∑
`=u

rj(`)β`−ufαβ
ij (w(`), a(`),K − `)

]

=
1
K

n∑
j=1

E

[
K−1∑
u=0

∇i(u)gαβ
ij (w(u), a(u),K − `)

]

Since∇i(u) is bounded, we have

lim
K→∞

1
K

∥∥∥∥∥E

[
K−1∑
u=0

∇i(u)
(
gαβ
ij (w(u), a(u))− gαβ

ij (w(u), a(u),K − u)
)]∥∥∥∥∥ = 0.

Yet, since(w(`), a(`)) is ergodic, the limit

lim
K→∞

1
K

n∑
j=1

E

[
K−1∑
u=0

∇i(u)gαβ
ij (w(u), a(u))

]
,
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exists, hence the limit of term(A) exists asK→∞.
We are left with term(B). Note that

1
K

E

 n∑
j=1

K−1∑
`=0

rj(`)
K−1∑
k=`

(
zβ
i (k)− βk−`zβ

i (`)
)

dα
ij(`, k)


=

1
K

n∑
j=1

E

[
K−1∑
`=0

rj(`)
K−1∑
k=`

dα
ij(`, k)

k∑
u=`+1

βk−u∇i(u)

]

=
1
K

n∑
j=1

E

[
K−1∑
`=0

rj(`)h
αβ
ij (w(`), a(`),K − `)

]
,

where

hαβ
ij (w, a,K) = E

[
K−1∑
k=0

dα
ij(0, k)

k∑
u=1

βk−u∇i(u)

∣∣∣∣∣w(0) = w, a(0) = a

]
.

Then, forJ < K,∥∥∥hαβ
ij (w, a,K)− hαβ

ij (w, a, J)
∥∥∥

≤ E

[
L(1− α)(1 + c0)

K−1∑
k=J

αk
k∑

u=1

βk−u

∣∣∣∣∣w(0) = w, a(0) = a

]

≤ L(1− α)(1 + c̄)αJ

(1− α)(1− β)
.

Hence,{hαβ
ij (w, a,K)|K = 1, 2, . . .} is a Cauchy sequence, and we can define the

limit
hαβ

ij (w, a) = lim
K→∞

hαβ
ij (w, a,K).

Then, we have

lim
K→∞

1
K

∥∥∥∥∥E

[
K−1∑
`=0

rj(`)
(
hαβ

ij (w(`), a(`))− hαβ
ij (w(`), a(`),K − `)

)]∥∥∥∥∥ = 0.

Yet, since(w(`), a(`)) is ergodic, the limit

lim
K→∞

1
K

n∑
j=1

E

[
K−1∑
`=0

rj(`)h
αβ
ij (w(`), a(`))

]
,

exists, hence the limit of term(B) exists asK→∞.
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Theorem 5.1. Holdingθ fixed, for alli, α ∈ (0, 1), andβ ∈ (0, 1), define

∇αβ
θi

λ(θ) = lim
K→∞

1
K

E

[
K−1∑
k=0

χi(k)

]

exists. Further,

lim sup
α↑1

lim sup
β↑1

∥∥∥∇αβ
θi

λ(θ)−∇θi
λ(θ)

∥∥∥ = 0.

Proof. From Theorem 3.1, it suffices to prove that

lim sup
α↑1

lim sup
β↑1

lim
K→∞

Lαβ
i (K) = 0,

where

Lαβ
i (K) =

∥∥∥∥∥ 1
K

E

[
K−1∑
k=0

χi(k)

]
− 1

K
E

[
K−1∑
k=0

χi(k)

]∥∥∥∥∥ .

Note that from Lemma 5.7 and Theorem 3.1,limK→∞ Lαβ
i (K) exists whenα ∈

(0, 1) andβ ∈ (0, 1).
We have

lim sup
β↑1

lim
K→∞

Lαβ
i (K)

= lim sup
β↑1

lim
K→∞

∥∥∥∥∥∥ 1
nK

E

 n∑
j=1

K−1∑
k=0

rj(`)
(
ẑαβ
ij (`,K)− zβ

i (`)
)∥∥∥∥∥∥

≤ lim sup
β↑1

lim sup
K→∞

∥∥∥∥∥∥ 1
nK

E

 n∑
j=1

K−1∑
k=0

rj(`)
(
ẑαβ
ij (`,K)− ẑαβ

ij (`)
)∥∥∥∥∥∥

+ lim sup
β↑1

lim sup
K→∞

∥∥∥∥∥∥ 1
nK

E

 n∑
j=1

K−1∑
k=0

rj(`)
(
ẑαβ
ij (`)− ẑα1

ij (`)
)∥∥∥∥∥∥

+ lim sup
β↑1

lim sup
K→∞

∥∥∥∥∥∥ 1
nK

E

 n∑
j=1

K−1∑
k=0

rj(`)
(
ẑα1
ij (`)− z1

i (`)
)∥∥∥∥∥∥

+ lim sup
β↑1

lim sup
K→∞

∥∥∥∥∥∥ 1
nK

E

 n∑
j=1

K−1∑
k=0

rj(`)
(
z1
i (`)− zβ

i (`)
)∥∥∥∥∥∥

= (A) + (B) + (C) + (D).
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From Lemma 5.3, term(A) equals0. From Lemma 5.6, term(B) equals0. From
Lemma 5.5, term(D) equals0. Hence, taking a limit asα ↑ 1,

0 ≤ lim
α↑1

lim sup
β↑1

lim
K→∞

Lαβ
i (K)

≤ lim sup
α↑1

lim sup
β↑1

lim
K→∞

Lαβ
i (K)

≤ lim sup
α↑1

lim sup
K→∞

∥∥∥∥∥∥ 1
nK

E

 n∑
j=1

K−1∑
k=0

rj(`)
(
ẑα1
ij (`)− z1

i (`)
)∥∥∥∥∥∥

= 0,

where we use Lemma 5.4.

6 Communication Protocol

In this section, we will describe a simple protocol that allows communication of
rewards in a fashion that satisfies the requirements of Assumption 4.1. This pro-
tocol communicates the rewards across the network over time using a distributed
averaging procedure.

In order to motivate our protocol, consider a different problem. Imagine each
componenti in the network is given a real valueRi. Our goal is to design an
asynchronous distributed protocol through which each node will obtain the average

R =
1
n

n∑
i=1

Ri.

To do this, define the vectorY (0) ∈ Rn by Yi(0) = Ri for all i. For each edge
(i, j), define a matrixQ(i,j) ∈ Rn×n by

Q
(i,j)
` Y =

{
Yi+Yj

2 if ` ∈ {i, j},
Y` otherwise.

At each timet, choose an edge(i, j), and setY (k+1) = Q(i,j)(Y (k)). If the graph
is connected and every edge is sampled infinitely often, thenlimk→∞ Y (t) = Y ,
whereY i = R. To see this, note that the operatorsQ(i,j) preserve the average
value of the vector, hence

1
n

n∑
i=1

Yi(k) = R.

19



Further, for anyk, eitherY (k + 1) = Y (k) or ‖Y (k + 1) − Y ‖ < ‖Y (k) − Y ‖.
Further,Y is the unique vector with average valueR that is a fixed point for all
operatorsQ(i,j). Hence, as long as the graph is connected and each edge is sampled
infinitely often, Yi(k)→R as k→∞ and the components agree to the common
averageR.

In the context of distributed optimization protocol, we will assume that each
componenti maintains a scalar valueYi(k) at timek representing an estimate of
the total global reward. We will define a structure by which nodes communicate.
In particular, for an ordered set of distinct edgesS =

(
(ii, j1), . . . , (i|S|, j|S|)

)
, we

will define a setWS ⊂ W. Let σ(E) be the set of all possible ordered sets of
disjoint edgesS, including the empty set. We will assume that the sets{WS |S ∈
σ(E)} are disjoint and together form a partition ofW.

If w(k) ∈ WS , for some setS, we will assume that the components along the
edges inS communicate in the order specified byS. Define

QS = Q(i|S|,j|S|) · · ·Q(i1,j1),

where the terms in the product are taken over the order specified byS. Define
R(k) = (r1(k), . . . , rn(k)) as the vector of rewards occurring at timek. The
update rule for the vectorY (k) is given by

Y (k + 1) = R(k + 1) + αQS(k+1)Y (k),

whereS(k + 1) is the element ofσ(E) that containsw(k + 1). We will make the
following assumption.

Assumption 6.1. Define the set of edgeŝE by

Ê = {(i, j)|(i, j) ∈ S andWS 6= ∅} .

The graph(V, Ê) is connected.

Since the process(w(k), a(k)) is aperiodic and has a single recurrent class (As-
sumption 1.1), this assumption guarantees that every edge on a connected subgraph
is sampled infinitely often.

Policy parameters are updated at each component according to the rule:

θi(k + 1) = θi(k) + εzβ
i (k)(1− α)Yi(k).

Note that, for this scheme, in relation to (4.1), we have

(6.1) dα
ji(`, k) = n(1− α)αk−`

[
Q̂(`, k)

]
ij

,

where
Q̂(`, k) = QS(k−1) · · ·QS(`),
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Lemma 6.1. The variablesdα
ji(`, k) defined by(6.1)satisfy Assumption 4.1.

Proof. By definition, Assumption 4.1(1) is satisfied. Assumption 4.1(3) is also
clearly satisfied.

Define the matrixE by Eij = 1/n for all i, j. Then, Assumption 4.1(2) is
equivalent to

(6.2)
∥∥∥Q̂(`, k)− E

∥∥∥ < c`γ
k−`,

for a constantγ ∈ (0, 1) and a random variablec`, such that the distribution of
c` givenF` depends only on(w(`), a(`)), and with E[c`|F`] ≤ c̄ for a constant
c̄ < ∞.

From Assumption 1.1 and Assumption 6.1, there must be some set of states
w0, . . . , wm−1 and corresponding edge setsS̄0, . . . , S̄m−1, such that for eachi,
wi ∈ WS̄i

,
m−1⋃
i=0

S̄i = Ê,

and for somè > 0,

Pr {w(`) = w0, . . . , w(` + m− 1) = wm−1} > 0.

Since this event occurs once with positive probability, it must occur infinitely often
with probability 1. DefineN(k) to be the number of non-overlapping occurrences
at or before timek, that is

N(k) =
k∑

`=0

1{w(`)∈WS̄0
,...,w(`+m−1)∈WS̄m−1

}.

Define matrixQ and the set{(i0, j0), . . . , (iM , jM )} by

Q = QS̄m · · ·QS̄0 =
M∏
`=0

Q(i`,j`).

and let
γ =

∥∥Q− E
∥∥ .

We wish to show thatγ < 1. Assume otherwise, and letx̂ be a vector such that
‖x̂‖ = 1 and‖(Q − E)x̂‖ ≥ 1. Note that for every(i, j), EQ(i,j) = Q(i,j)E = E ,
andE2 = E . Hence,

Q− E =
M∏
`=0

(
Q(i`,j`) − E

)
.
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Further, for any(i, j) and any vectorx, eitherQ(i,j)x = x or ‖(Q(i,j) − E)x‖ <
‖(I − E)x‖. Since

‖(I − E)x‖2 = xT (I − E)x = xT (I − E2)x = ‖x‖2 − ‖Ex‖2 ≤ ‖x‖2,

we have

1 ≤ ‖(Q− E)x̂‖ ≤

∥∥∥∥∥
(

M∏
`=0

(
Q(i`,j`) − E

))
x̂

∥∥∥∥∥ ≤
M∏
`=0

∥∥∥Q(i`,j`) − E
∥∥∥ ≤ 1.

Then, it follows that for every(i, j) ∈ Ê, Q(i,j)x̂ = x̂. Since the set of edges
Ê connects every node in the graph, if, for some pair of componentsp and q,
x̂p 6= x̂q, we could construct a path of edges in̂E betweenp andq, and for some
edge(i, j) along this path,Q(i,j)x̂ 6= x̂. Hence, the vector̂x must be constant.
Then,‖(Q− E)x̂‖ = 0. We have a contradiction, henceγ < 1.

Set
t` = min{k ≥ 0|N(k) = `}.

Define ∆ = E[t`+1 − t`] (for ` ≥ 1) to be the expected time between non-
overlapping observations of the communication pattern associated withQ, and
pick arbitraryε ∈ (0, 1) andδ ∈ (0, 1/∆̄). Defineγ = γ̄δ ∈ (0, 1), and note
thatγ < γ∆̄ < 1. Returning to (6.2), we have, for` < k,∥∥∥Q̂(`, k)− E

∥∥∥ ≤ γN(k−m)−N(`)1{`<k−m} + 1{`≥k−m}

≤ γ∆̄(N(k−m)−N(`))1{`<k−m} + 1{`≥k−m}

<
(
γ−(1−ε)mγ∆̄(N(k−m)−N(`))−(1−ε)(k−m−`)1{`<k−m}

+γ−(1−ε)m1{`≥k−m}

)
γ(1−ε)(k−`)

≤ c`γ
(1−ε)(k−`),

where

c` = γ−(1−ε)m

(
1 + sup

τ>0
γ∆̄(N(`+τ)−N(`))−(1−ε)τ

)
.

We wish to consider E[c`|F`]. Note that the distribution ofc` givenF` depends
only on(w(`), a(`)). It suffices consider the case where` = 0 over varying initial
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conditions(w(0), a(0)). Then, we have

E

[
sup

τ
γ∆̄N(τ)−(1−ε)τ

∣∣∣∣F0

]
=

∫ ∞

1
Pr
{

sup
τ

γ∆̄N(τ)−(1−ε)τ > x

∣∣∣∣F0

}
dx

= (− log γ)
∫ ∞

0
Pr
{

sup
τ

γ∆̄N(τ)−(1−ε)τ > γ−u

∣∣∣∣F0

}
γ−udu

= (− log γ)
∫ ∞

0
Pr
{

sup
τ

(1− ε)τ − ∆̄N(τ) > u

∣∣∣∣F0

}
γ−udu

= (− log γ)
∫ ∞

0

(
1− Pr

{
(1− ε)τ − ∆̄N(τ) ≤ u, ∀τ

∣∣F0

})
γ−udu

Define
b` = (1− ε)t` − ∆̄`,

and note that

Pr
{

sup
`

b` ≤ u + (1 + ε)− ∆̄
∣∣∣∣F0

}
= Pr

{
(1− ε)τ − ∆̄N(τ) ≤ u, ∀τ

∣∣F0

}
.

Let ∆` = (1− ε)(t`+1 − t`)− ∆̄, so thatb` =
∑`−1

s=0 ∆s.
Since the process is generated by a finite state irreducible Markov chain, the

tail of the interarrival timest`+1−t` is bounded by a decaying exponential. Hence,
the moment generating function E[eη∆` ] of ∆` is finite for η ∈ (−∞, η) for some
η > 0. It follows thatb` has a finite-valued moment generating function

E[eηb` |F0] = E[eη∆0 |F0](E[eη∆1 ])(`−1),

for η ∈ (−∞, η). (Note that since the system is starting in an arbitrary initial state,
∆0 has a different distribution than∆` for ` > 0.) By the Chernoff bound, for any
η ∈ (−∞, η) andx ≥ 0,

Pr {b` ≥ x| F0} ≤ e−ηx E[eη∆0 |F0](E[eη∆1 ])(`−1) = e−ηx+ρ0(β)+(`−1)ρ1(η),

whereρi(η) = log E[eη∆i ]. Sinceρ′1(0) = E[∆1] = −ε < 0, there exist scalars
A > 0, ζ > 0 andκ = −ρ(ζ) > 0 such that

Pr {b` ≥ x| F0} ≤ Ae−ζx−κ`.
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Then,

1− Pr
{

sup
`

b` ≤ u(1 + ε)− ∆̄
}

≤
∞∑

`=0

Pr
{
b` > u− (1 + ε)∆̄

}
≤

∞∑
`=0

Ae−ζ(u+(1+ε)−∆̄)−κk

=
A

1− e−κ
e−ζ(u+(1+ε)−∆̄).

Thus,

E

[
sup

τ
γ∆̄N(τ)−(1−ε)τ

∣∣∣∣F0

]
= (− log γ)

∫ ∞

0

(
1− Pr

{
(1− ε)τ − ∆̄N(τ) ≤ u, ∀τ

∣∣F0

})
γ−udu

≤ (− log γ)
∫ ∞

0

A

1− e−κ
e−ζ(u+(1+ε)−∆̄)γ−udu.

The final term is finite ifγ > e−ζ . Note, however, by choosingδ sufficiently
small,γ can be made arbitrarily close to 1. Hence, for such a choice ofγ, E[c0|F0]
is finite.

7 Convergence Analysis

We will first introduce tools from the theory of stochastic approximation. Using
these tools, we will be able to establish the convergence of the two algorithms
presented earlier.

7.1 Stochastic Approximation

Stochastic approximation provides an iterative method to solve equations of the
form

ḡ(θ) = 0

for some continuous function̄g(θ). In our instance, if we set̄g(θ) = ∇θλ(θ),
stochastic approximation will allow us to find policy parameters which are local
optima of the expected average reward function.

In particular, consider the iterative scheme

(7.1) θ(k + 1) = θ(k) + εg(θ(k), ξ(k)).
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Here,g(θ(k), ξ(k)) is an estimate of̄g(θ(k)) at timek, andξ(k) is a process that
captures the underlying state and whatever additional noise memory is required to
compute the estimate. In our framework, we will require thatξ(k) has a Markov
structure: givenθ(k), the distribution ofξ(k + 1) depends only onξ(k). In other
words,

(7.2) Pr(ξ(k + 1) ∈ ·|Fk) = P (ξ(k), ·|θ(k)) ,

for some transition functionP.
We have not yet defined the relationship between the estimatorsg(θ, ξ) and the

function ḡ(θ). We will require that, whenθ is held fixed, the valuesg(θ, ξ(k))
locally average tōg(θ). In order to make this notion precise, note that for a fixed
value ofθ, the transition functionP(·, ·|θ) defines a Markov chain we shall call the
fixed-θ chain and denote byξθ(k). The local averaging condition requires that

(7.3) lim
K→∞

1
K

E

[
K−1∑
k=0

g(θ, ξθ(k))

]
= ḡ(θ),

for each initial conditionξθ(0).
Consider the ordinary differential equation

(7.4) ˙̄θ(t) = ḡ(θ̄(t)).

DefineL to be the set of limit points of (7.4) over all initial conditions. Letθε(k) be
the sequence of parameters resulting from (7.1) with a particular fixedε. Finally,
define a continuous-time interpolation̄θε(t) if θε(k) by settingθ̄ε(t) = θε(k) if
t ∈ [kε, kε + ε). In the following lemma, we will establish conditions for the weak
convergence of̄θε(t) to a solutionθ̄(t) of the ODE (7.4) asε→0, such that the
fraction of the time interval[0, T ] thatθε(t) spends in a small neighborhood ofL
will go to 1 in probability asε→0 andT→∞.

Note that when̄g(θ) = ∇θλ(θ), the functionλ(θ) is a Lyapunov function for
the ODE. Then, the set of limit pointsL is the set of stationary pointsθ for which

∇θλ(θ) = 0.

Hence, the limit points are local optima ofλ(θ).

Lemma 7.1. Assume the following conditions:

1. The iterates{θε(k)|k, ε} are bounded.

2. There exists anFt-measurable processξ(t) ∈ I ⊂ Ξ, whereI is a com-
pact set in a complete separable metric spaceΞ, and a transition function
P(·, ·|θ) such that the Markov condition(7.2)holds.
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3. P(ξ, ·|θ) is weakly continuous in(θ, ξ), that is, for every bounded and con-
tinuous real-valued functionF on<S , the value of the integral∫

F (ξ̃)P(ξ, dξ̃|θ)

is continuous in(θ, ξ).

4. The set of invariant measures under transition functionsP(ξ, ·|θ) is tight
over allθ.

5. The estimate functiong(θ, ξ) is continuous, bounded, and measurable, and
satisfies the local averaging condition(7.3) for a fixed-θ chain.

Then, for any sequence of processes{θ̄ε(t)|ε→0} there exists a subsequence
that weakly converges tōθ(t) as ε→0, whereθ̄(t) is a solution to the ODE(7.4).
Further, forδ > 0, defineNδ(L) to be a neighborhood of radiusδ around the limit
setL. The fraction of time that̂θε(t) spends inNδ(L) over the time interval[0, T ]
goes to 1 in probability asε→0 andT→∞.

Proof. The result follows directly from Theorem 8.4.3 in [2].

7.2 Convergence of the Distributed Algorithm

We wish to prove convergence of the stochastic approximation scheme correspond-
ing to our distributed optimization algorithm:

(7.5) θε
i (k + 1) = θε

i (k) + εzβ
i (k)(1− α)Yi(k).

Theorem 7.1. Assume that the set of iterates{θε(k)|k, ε} from (7.5)are bounded.
Then, the conclusions of Lemma 7.1 hold.

Proof. We will use the framework provided by Lemma 7.1. Define

ξ(k) = (w(k), a(k), zβ
1 (k), . . . , zβ

n(k), Y (k)),

Ξ = X × A × RN+n. To see thatξ(t) takes values in a compact subset ofΞ, it
suffices to prove thatzβ

i (k) andY (k) are bounded. Yet,

∥∥∥zβ
i (k)

∥∥∥ =

∥∥∥∥∥
k∑

`=0

βk−`∇i(`)

∥∥∥∥∥ ≤ L
k∑

`=0

βk−` ≤ L

1− β
,

‖Y (k)‖ =

∥∥∥∥∥
k∑

`=0

αk−`Q̂(`, k)R(`)

∣∣∣∣∣ ≤ R̂

1− α
,
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where

R̄ = max
w∈W,a∈A

∣∣∣∣∣
n∑

i=1

ri(w, a)2
∣∣∣∣∣
1/2

.

Further, since(w(k), a(k)) form a Markov chain and from (3.2) and the defi-
nition of Y (k), clearlyξ(t) is anFk-measurable Markov chain. The fact that the
associated transition function is weakly continuous follows from the smoothness
conditions onπθ(a|x) provided by Assumption 2.1. Define the function

g(θ, ξ) = (g1(θ, ξ), . . . , gn(θ, ξ)) ,

where
gi(θ, ξ) = (1− α)zi(t)yi(t).

Boundedness ofg(θ, ξ) is clear, further

χi(t) = gi(θ(t), ξ(t)).

Finally, Theorem 5.1 provides the appropriate averaging condition for the fixed-θ
chain.
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