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Recent years have seen extensive investigation of the information aggregation properties of markets. How-

ever, relatively little is known about conditions under which a market will aggregate the private information

of rational risk averse traders who optimize their portfolios over time; in particular, what features of a mar-

ket encourage traders to ultimately reveal their private information through trades? We consider a market

model involving finitely many informed risk-averse traders interacting with a market maker. Our main result

identifies a basic asymptotic smoothness condition on prices in the market that ensures information is aggre-

gated as long as portfolios converge; further, under this assumption, the allocation achieved is ex post Pareto

efficient. Asymptotic smoothness is fairly mild: it requires that, eventually, infinitesimal purchases or sales

should see the same per unit price. Notably, we demonstrate that, under some mild conditions, algorithmic

markets based on cost functions (or, equivalently, markets based on market scoring rules) aggregate the

information of traders.
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1. Introduction

Recent years have seen a surge of development and interest in prediction markets. These are typi-

cally online markets where the assets pay a fixed amount if a given event occurs. The basic goal of

a prediction market is to determine the likelihood that a given event will happen: informally, if the

price of an event is low relative to the likelihood that it will occur, then at least some traders should

find it profitable to buy—and thus the price will go up. In this way, the expectation is that prices

in prediction markets aggregate the information available to individual traders (Pennock and Sami

2007).

A wide range of prediction markets have emerged in the last decade. Two of the most well

known prediction markets include Betfair and Intrade, which both run prediction markets on a

wide range of outcomes (including political races, economic outcomes, etc.); these are both markets

where individuals trade securities with real currency. Other markets, such as the Hollywood Stock
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Exchange (HSE), Crowdcast, and Inkling, provide prediction markets based on various forms of

virtual currency. In all cases, the goal is to leverage market mechanisms to aggregate information

from diverse traders into an efficient prediction.

This basic goal has led to extensive investigation of the information aggregation properties of

prediction markets (see, e.g., Jian and Sami 2012, Healy et al. 2010). More broadly, however, the

notion that information is aggregated in market prices has been a longstanding topic of study in

economics (see, e.g., Hayek 1945, Radner 1979, Glosten and Milgrom 1985, Kyle 1985).1 Roughly

speaking, the idea that market prices should reflect the information collectively possessed by market

participants is one element of the efficient markets hypothesis (Lo 2008). A second, closely related

objective is that markets that function well should achieve Pareto efficient allocations: it should not

be possible to reallocate assets between agents so that some agent’s expected utility is improved

without reducing the expected utility of another agent. Taken together, these goals—information

aggregation and allocative efficiency—underlie much of the appeal of decentralized markets in

settings where traders possess asymmetric information.

Despite the central connection between information aggregation, Pareto efficiency, and market

behavior, significant open problems remain. In particular, relatively little is known about conditions

under which a market will aggregate the private information of rational risk-averse traders who

optimize their portfolios over time, or whether the market will achieve efficient allocations. The

central goal of this paper is to investigate conditions under which these results are obtained.

Our main contributions are as follows:

1. Smoothness and information aggregation. Our main result identifies a basic smoothness condi-

tion on prices in a complete market that ensures information will be aggregated. Formally, we show

that in any perfect Bayesian equilibrium, if the portfolios held by traders converge over time, and

the limiting price charged by the market maker is continuously differentiable at zero with respect

to the quantity traded, then information is aggregated. This is an interesting result, because, in

particular, it suggests the per unit price for a small purchase and a small sale should be essentially

the same—that is, there should be no bid-ask spread near zero quantity.

We note that without such a smoothness condition, it is possible that information aggregation

may fail. Consider a strategic market maker that seeks exclusively to maximize trading profits.

If such a market maker is sufficiently concerned that traders possess significantly superior private

information regarding the value of a traded asset, then prices may be set in a manner that com-

pletely precludes trading and thus the dissemination of information (Glosten and Milgrom 1985,

1 A variety of strands of the literature consider aggregation of information in dynamic economic environments; see
also, e.g., the literature on social learning (Banerjee 1992, Bikhchandani et al. 1992).
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Glosten 1994). In settings where market makers faced with privately informed traders impose bid-

ask spreads for infinitesimal trades that are uniformly bounded away from zero, our results do not

apply. This includes many financial markets, for example, where a minimum ‘tick size’ is often

required by regulators or market operators. We emphasize however that the smoothness condition

is needed only in the limit: the market maker may set positive bid-ask spreads after any finite

sequence of trades; we only require the spreads to vanish in the limit.

Furthermore, there are many settings where a market maker is not averse to trading with traders

with superior private information. In a prediction market, for example, the foremost goal of a

market maker is to aggregate diffuse private information. The information so aggregated may be

useful for forming more accurate forecasts of future uncertainties and aid in making better decisions.

For example, prediction markets have been used to forecast project completion times (see, e.g.,

Cowgill et al. 2009, Othman and Sandholm 2013). Knowing that a project would not be completed

in time would allow a market maker to take remedial actions well in advance. Such a market maker

may be willing to incur losses so as to induce trade with privately informed traders in order to

achieve this end. Our main contribution is to demonstrate that a smoothness assumption on the

market ensures sufficient trade and thereby guarantees the diffusion of the information available

to the individual traders.

Notably, many algorithmic market makers used in prediction markets are smooth in the sense we

require; in particular, we give conditions under which cost function market makers (or, equivalently,

market makers based on market scoring rules) satisfy the smoothness requirement. In addition to

virtual currency markets such as Inkling that use algorithmic market makers, others have been

established using real currency as well. For example, Yoonew ran a prediction market that could be

used by fans of sports teams to obtain tickets for championship games at discount prices; essentially,

the market allowed individuals to bid on tickets contingent on their team actually making it to the

championship game. This market ran on a market scoring rule known as the logarithmic market

scoring rule.

2. Markets with risk averse traders. The market model we consider involves finitely many

informed risk-averse traders interacting with a market maker. This is distinct from prior work in

this area (Chen et al. 2010, Ostrovsky 2012), which primarily considered information aggregation

among traders that are risk neutral.

This modeling choice is significant for two reasons. First, in many markets, risk aversion is

important. For example, traders may bid on contracts in prediction markets as insurance to hedge

against risks inherent in other elements of their portfolio. Second, if all traders and the market

maker are risk neutral and strategic, then in general, the no-trade theorem applies and precludes

trade (Milgrom and Stokey 1982). Informally, the problem is that two rational risk neutral traders



Iyer, Johari, and Moallemi: Information Aggregation and Allocative Efficiency in Smooth Markets 4

cannot take opposing positions in the market and both expect to be better off. However, with risk

aversion, trading can occur even if all traders are rational: traders may trade purely on the motive

of hedging, if the initial allocation of risk is not ex-ante Pareto efficient. More generally, even in

settings where no-trade theorems do not apply (e.g., when market makers are not strategic), the

transfer of risk between agents with different risk aversion is an important motivation for trade.

3. Allocative efficiency. We show that regardless of the level of risk aversion of the traders, the

final allocation and prices together constitute a competitive equilibrium; thus, in particular, the final

portfolios of the traders are ex post Pareto efficient. Note that as a consequence of this result, when

traders are risk averse, prices may not reflect the true posterior probabilities of events occurring.

This is because competitive equilibrium prices must also reflect the marginal expected utility of

the traders; thus, in general, prices are risk-adjusted probabilities. If even one trader in the market

is risk neutral, however, then prices are accurate posterior probabilities.

We note that though we demonstrate ex post Pareto efficiency, the market mechanism we describe

will not generally be ex ante Pareto efficient. That is, we cannot exclude the possibility of other

mechanisms that yield a higher ex ante expected utility to each agent. Further, we also note that our

notion of ex post efficiency excludes the market maker. This is reasonable, as we do not model the

market makers as utility maximizers, and hence do not have a satisfying method to incorporate their

welfare. However, we note that the trade in the market is not primarily driven by any inefficiency

in the initial allocation of the traders. Even if the initial allocation among the traders were ex ante

efficient, an algorithmic market maker may simply trade securities at a discount to initiate and

facilitate trade. Intuitively, since the supply of the securities is not constrained due to the presence

of the market maker, there may be trade even if the initial allocation were efficient among the

traders.

The most closely related paper to our work is by Ostrovsky (2012). He shows that if the securities

under consideration are “separable” in an appropriate sense, and all traders are risk neutral, then

information is aggregated in markets based on the competitive dealer model of Kyle (1985), as well

as in markets based on market scoring rules. The markets we consider are complete with respect

to payoff-relevant uncertainty (i.e., there exists one contingent contract for each possible payoff-

relevant event that can occur); and with the partition model for signal structure that Ostrovsky

considers, a complete market is always separable.2 Our main innovation is in studying markets

with risk averse traders, and establishing the aforementioned smoothness condition as essential to

information aggregation.

2 Although in the case of finite signal space, our model of signals can be reformulated as a partition model, our results
hold in more general signal spaces. Moreover, Ostrovsky assumes that upon pooling of all the signals of the traders,
there is no further uncertainty in the market, whereas we allow for payoff-relevant uncertainty even after the signals
of the traders are pooled.
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The remainder of the paper is organized as follows. In the next section we define our basic

model, including the game played by market participants, as well as perfect Bayesian equilibrium

for this game. In Section 3, we formally define information aggregation. In Section 4, we claim that

if the portfolios of traders converge and the market is asymptotically smooth, then information

is aggregated. In Section 5, we provide insight into ex post Pareto efficiency of the market. In

Section 6, we study a class of markets based on cost functions, and show information aggregation

under the assumption of portfolio convergence.

2. Model

In this section we describe the operation of the market, as well as our equilibrium notion for the

resulting game, perfect Bayesian equilibrium.

2.1. Market Operation

We consider a market consisting of n traders and organized by a market maker. Trading takes

place in the market sequentially at an infinite sequence of times t ∈ {1,2, . . .}. In particular, at

time t the trader it engages in trade with the market maker, and the sequence {it} is known3

a priori to all the traders and the market maker. We further assume that each trader visits the

market infinitely often. Here, note that t indexes the set of trading opportunities, and not calendar

time. We imagine a market in which trading occurs over a short, finite calendar time horizon, by

traders who make decisions rapidly. However, in order not to a priori limit the number of trading

opportunities available to an agent, we allow each trader to access the market an infinite number

of times.

The uncertainty in the value of future securities is captured by a random variable ω̃ taking values

in the finite set Ω= {1, . . . ,m}; we refer to the random variable ω̃ as the payoff-relevant state of the

world, and assume that all traders have a common prior distribution for ω̃. We assume that the

payoff-relevant state is only revealed after all trades are completed. Further, we assume the market

for securities over payoff-relevant uncertainty, i.e., possible realizations of ω̃, is complete. That is,

we assume traders can trade in any of m securities labeled 1, . . . ,m; one share of security ω pays

$1 in state ω, and 0 otherwise. These are often referred to as Arrow securities. Note that we do not

make the assumption of complete markets over all sources of uncertainty; in particular, traders do

not trade over payoff-irrelevant events that do not directly affect the trader’s preferences.

3 We note here that our results can be extended to allow for the random arrivals of traders, as long as: (i) the sequence
of arrivals is independent of the rest of the randomness in the system, and (ii) the identity of each visiting trader
is common knowledge subsequent to each trade. Without the latter requirement, the operation of the market would
create additional private information for each trader (e.g., namely the times at which the trader traded), and this
may interfere with the aggregation of the information in the private signals. See footnote 8 for a related discussion.
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Suppose that trader it = i visits the market at time t to trade with the market maker. Let yt ∈R
m

denote the corresponding trade, where the component yt(ω) is the quantity of security ω bought

by the trader i at time t. The history ht at time t as observed by the traders (and the market

maker) consists of all the trades until time t. In other words,

ht , (y1, y2, . . . , yt−1).

As a matter of convention, we let h1 , ∅ denote the null history at time 1. We denote by Ht the

set of all possible histories up to time t, and let Hf , ∪t≥1Ht denote the set of all possible finite

histories. Finally, let h∞ , (y1, y2, . . .) denote the infinite history, or the path taken by the market,

and let H∞ denote the set of all possible infinite histories.

The portfolio of a trader i at time t consists of the different quantities of each security she holds.

Let wi,t(ω) denote the quantity of security ω held by trader i at time t; we refer to the vector wi,t

as the portfolio of trader i at time t. We assume that the initial portfolio of each trader is common

knowledge among the traders and the market maker.

Observe that if a trader holds the portfolio 1 , (1, . . . ,1), i.e., one unit of each security, then

the trader receives a payoff of $1 regardless of the realized state. For this reason we refer to the

1 portfolio as money, or the risk-free asset, and throughout the paper we interpret monetary

payment of $x to or from a trader as credits or debits of x units of the 1 portfolio. Equivalently,

we can imagine all trades as being simultaneously settled upon realization of the payoff-relevant

state.

The market maker determines the price for trades of different quantities of the securities; this

price may depend on the history. In particular, we let K(ht, y) represent the price charged for a

portfolio y after history ht; thus the trader’s net trade at time t is yt −K(ht, yt)1. We assume

the functional form of K is known to all traders a priori.4 To reflect the fact that the trade in

the market is voluntary, we assume that the pricing function K does not penalize any trader for

not participating in the market. More precisely, we assume that after any history ht, the pricing

function satisfies K(ht,0) = 0, where 0, (0, . . . ,0).

2.2. The Game and Equilibrium

In this section our main goal is to define our equilibrium concept, perfect Bayesian equilibrium

(PBE). Informally, PBE requires that traders’ strategies maximize their utility given their beliefs

over any uncertain elements of the model, and their beliefs are consistent with the strategies adopted

4 We note that this does not preclude a strategic market maker: our model allows for the possibility that K is simply
the equilibrium pricing strategy of the market maker. Our only requirement is that the price schedule K(ht, ·) be
known to the trader arriving at time t; in other words, the market maker’s pricing strategy should be a deterministic
function of history.
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by other traders in equilibrium. In our model, uncertainty arises because the payoff-relevant state

ω̃ is unknown; however, we assume traders are informed, and receive signals regarding the true

state. In this section we define signals, beliefs, strategies, utilities, and, ultimately, the concept of

PBE.

It should be noted that, to be precise, these constructs should be defined in a measure-theoretic

framework. However, for clarity of exposition we suppress measure-theoretic details in the main

text; in Appendix C we provide a formal measure-theoretic description of each of the elements

introduced here.

Signals. Before trading begins, each trader i receives a private signal s̃i ∈ Σi. We refer to s̃ ,

(s̃1, . . . , s̃n) as the joint signal and Σ, Σ1 × · · · ×Σn as the joint signal space.5 Let P denote the

joint prior distribution of ω̃ and s̃1, . . . , s̃n. We assume that this joint distribution P is common

knowledge among the traders.

An important class of signal structures that we focus on in this paper is one where the traders’

private signals satisfy conditional independence.6 Formally, this requires that the private signals

are independent conditional on the payoff-relevant state ω̃. (We revisit and relax this assumption

in Appendix B.)

Beliefs. Let S , H∞ × Ω × Σ. Observe that an element of S captures all uncertainty in the

model: the path of the market, the payoff-relevant state, and the signals of all the traders. All

uncertainty can therefore be represented by probability distributions over this space. In particular,

we assume that after each history ht, and having observed signal si, trader i’s belief νi(ht, si) is a

probability distribution over S. This represents trader i’s forecast of the future actions by traders,

the payoff-relevant state ω̃, and the signal vector s̃.

Strategies. The trader i is said to follow the strategy δi if, after a history h ∈ Hf , the trader

selects a trading decision according to the distribution specified by δi(h, si), where si denotes the

private signal received by the trader. (Of course, a trader i can only trade at those times where

it = i.) Let yt(δi, ht) denote the trade specified by the strategy δi at time t. If δi is a mixed strategy,

then yt(δi, ht) is the realized trade when trader i chooses her trade according to δi. Note that the

distribution of yt(δi, ht) at time t depends only on the realized history ht and the private signal

s̃i. When the context is clear, we omit the explicit history dependence. Let δ = (δ1, . . . , δn) denote

the collective strategy profile, where each trader i follows the strategy δi. Also, for each i, let

δ−i = (δj)(j 6=i) denote the strategy of every trader except i.

5 A special case of our general model is the finite partition model of signals. This case arises when each Σi is a
partition of the payoff-relevant state space Ω, and the private signal s̃i denotes the partition element in which ω̃ is
contained. Conversely, it can be shown that any general signal structure where the signal space Σi of trader i is finite
can be reformulated as a finite partition model. However, such a reformulation involves the introduction of additional
components in the state, altering the state space Ω and possibly rendering a complete market incomplete.

6 Note that, in particular, the finite partition model satisfies conditional independence.
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Note that the strategy profile δ, together with the common prior distribution P over the payoff-

relevant state of the world and the signals, defines a probability measure Qδ over the space S.

Utility and the value function. We assume that if trader i is holding a portfolio wi, and the payoff-

relevant state ω̃ = ω is realized, then trader i obtains a utility ui(ω,wi(ω)). The utility function

ui : Ω×R→R of each trader is common knowledge among the traders and the market maker. We

consider traders who are risk averse, and who, all else being equal, prefer greater wealth to less

wealth. These two characteristics of the traders are captured by assuming that, for each trader i

and each payoff-relevant state ω, the function ui(ω, ·) is strictly increasing and concave. We further

make the assumption in our analysis that each function ui(ω, ·) is differentiable. Note that all these

assumptions hold trivially for risk neutral traders, whose utility functions are given by ui(ω,x) = x

for all ω ∈Ω, x∈R. Observe that it is important to allow for each trader’s utility to depend on the

payoff-relevant state. This flexibility allows for the modeling of agents who may trade for hedging

purposes, for example.

While we assume that traders act as expected utility maximizers, as trading proceeds over an

infinite horizon, defining this objective precisely is somewhat subtle. In particular, if the history

up to time t is ht, the strategy profile is δ, and trader i’s belief is νi, then trader i’s value function

at time t is defined to be

Ji,t(δ),Eνi(ht,si),δ

[

lim inf
T→∞

ui(ω̃,wi,T (ω̃))
]

. (1)

We assume that traders act at each time period to maximize their value function.7

The objective (1) has several notable features. First, it is defined through a limiting portfolio

of the trader. In order to motivate this, suppose for a moment that the portfolio of the trader

converges over time. Then, the quantity limT→∞ ui(ω̃,wi,T (ω̃)) is the final utility of the trader i

at the conclusion of trading in the market. Thus the value function captures the expected utility

of the eventual portfolio of the trader. Defining the value function in terms of the limit inferior is

a generalization that allows us to capture a broader class of possible trader behaviors that is not

restricted to only those cases where the portfolios are required to converge asymptotically. This

approach is common, for example, in the literature on infinite horizon dynamic programming prob-

lems. Second, there is no discounting in the objective (1). This is because all intermediate transfers

in the market occur through the risk-free asset. Thus all payments, whether from intermediate

transfers or security payoffs, occur at the termination of the game. Moreover, as discussed earlier,

we imagine the market as consisting of rapid trading over a short, finite calendar time horizon.

7 Note that the value function is defined as the expectation of a limit inferior of the utility; in what follows, we
ultimately will focus on equilibria where portfolios converge along the equilibrium path, and in these cases the value
function reduces to the expectation of the limiting utility.
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In such a setting, it is not necessary to discount either wealth or utility. Finally, note that the

value function is not separable over the trades that occur at different time periods, rather, it is

derived from the limiting wealth and aggregates the impact of the actions taken at all times in

a nonlinear way. Hence, analysis of the value function does not immediately decompose into the

separate analysis of individual trades.

Perfect Bayesian equilibrium. Finally, we describe the notion of PBE for the market defined

above. (See Fudenberg and Levine (1983), Fudenberg and Tirole (1991) for the general definition

of PBE.) We say the strategy profile δ and the beliefs νi for each i constitute a PBE if the following

two conditions hold:

1. For each i, for each ht ∈ Ht and all si ∈ Σi, and for any strategy δ′i, the value function

Ji,t(δ
′
i, δ−i) exists, and we have

δi ∈ argmax
δ′
i

Ji,t(δ
′
i, δ−i).

2. For each i and for each si, the belief νi(ht, si) after any history ht ∈Ht is derived from the

belief νi(ht−1, si) after history ht−1 through Bayes’ rule whenever possible.

The first condition requires that after any history, the action specified by the strategy δi for trader

i is optimal, holding fixed the strategies of all the other traders. The second condition requires

that after any history, the traders update their beliefs through Bayes’ rule whenever possible. Note

that, along an equilibrium path, we have νi(ht, si)(·) =Qδ(· | ht, s̃i = si) for all si ∈Σi.

Whenever we consider a PBE associated with a particular strategy profile δ, we append δ as a

superscript to all the relevant quantities. Thus, for example, wδ
i,t denotes the portfolio of trader i

at time t in the PBE with strategy profile δ.

3. Information Aggregation

In this section, we define the notion of information aggregation. Informally, information aggregation

occurs when the private signals observed by individual traders are aggregated into a common

market belief. In order to give a precise definition, we begin by defining some notation.

Fix a PBE with strategy profile δ and beliefs {νi}. Recall that Q
δ is the joint probability measure

induced on the space S by the strategy profile δ and the common prior distribution P over the

payoff-relevant state and the signals. For much of our analysis, we require notation for the belief of

an uninformed market observer who is able to observe market transactions, is aware of all common

knowledge, and shares the same prior distribution as market participants. In particular, we define

ϕt, the common belief of the market over the payoff-relevant state and private signals at time t, by

ϕt(·),Qδ(·|ht).
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The notion of a common belief is an important tool in analyzing dynamic games with

asymmetric information in a number of different contexts, for example, in models of ratio-

nal learning (Blume and Easley 1998), herding (Smith and Sorensen 2006), and reputation

(Mailath and Samuelson 2006). A similar idea was employed by Ostrovsky (2012) in his work on

information aggregation.

Further, trader i has beliefs that are informed by both the history of trading and the private

signal observed. We define ϕi,t to be the belief of trader i over the payoff-relevant state and signals

at time t, and in a PBE this is given by

ϕi,t(·),Qδ(·|ht, s̃i = si).

We note that in our definition ϕt and ϕi,t are beliefs only over the state and signals, i.e., distri-

butions over Ω×Σ. Further, note that ϕt and ϕi,t have implicit history dependence. Trivially, ϕi,t

can be obtained from ϕt by conditioning on trader i’s signal: ϕi,t(·) =ϕt(·|s̃i = si).
8

The following result is common in analysis of PBE in infinite horizon games: it establishes that

beliefs converge to well-defined limits. The proof, which is omitted, involves writing the probabilities

as a Doob martingale and then applying the martingale convergence theorem.

Lemma 1. Under the measure Qδ, almost surely, the sequence of beliefs ϕt (resp., ϕi,t) con-

verges weakly to a probability distribution ϕ∞ (resp., ϕi,∞), where ϕ∞(·) =Qδ(·|h∞), and ϕi,∞(·) =

Qδ(·|h∞, s̃i = si).

We are now ready to make the main definition.

Definition 1. (Information Aggregation) The market aggregates the information of the

traders in a PBE δ if, almost surely, for all ω ∈Ω,

ϕ∞(ω̃= ω) =P(ω̃= ω|s̃).

On the left hand side, we have the posterior common belief of the market after the infinite

trading history has been observed. On the right hand side, we have the posterior distribution of the

payoff-relevant state if all traders’ signals could be pooled. Thus, information aggregation requires

that, via the trading history, the common market belief completely pools the private signals of the

traders.

Note that the preceding definition does not require that the prices of the securities reflect the

posterior beliefs of the traders. Our definition only requires that an uninformed outsider sharing

8 Note that this is a consequence of the fact that, at any time, all information in the market, is common knowledge,
except the traders’ private signals. This will no longer be true, for example, if the arrivals of traders are random,
without revealing the trader’s identity subsequent to each trade, as discussed in footnote 3.
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the common knowledge and prior distribution of the traders, and having knowledge of the sequence

of trades conducted, should be able to infer the relevant information in the joint private signal

s̃. Subsequently, we show a stronger result: in fact, the asymptotic portfolios and prices together

constitute a competitive equilibrium of the limiting economy, where traders maximize expected

utility given the joint signal s̃. This observation allows us to show that an uninformed outsider can

infer the information in the joint signal under much milder requirements. Further, we demonstrate

the relationship between prices and the utility functions of the traders.

The following lemma relates information aggregation to a condition on the limiting common

belief of the market. We make use of this relation in the proof of our main theorem in the next

section.

Lemma 2. In any PBE, information aggregation holds if and only if, almost surely, the state ω̃

is independent of the joint signal s̃ under the limiting belief ϕ∞.

Proof. Observe that after any history ht in the market, we have ϕt(ω̃ = ω|s̃) = P(ω̃ = ω|s̃).

This is because the history cannot contain any more information about ω̃ than the joint signal s̃.

On taking the limit t→∞, we obtain from Lemma 1 that ϕ∞(ω̃ = ω|s̃) =P(ω̃ = ω|s̃). Thus, we

obtain from the definition that information aggregation is equivalent to requiring the state ω̃ to be

independent of the joint signal s̃ under the limiting belief ϕ∞. �

4. Asymptotic Smoothness

A central theme of our paper is that if the prices set by the market maker are sufficiently “smooth”

with respect to small purchases or sales by traders, then information will be aggregated. Formally,

we introduce the following condition:

Assumption 1. (Asymptotic Smoothness) Consider a strategy profile δ and the associated

induced distribution Qδ. We assume that there exists an open neighborhood N of zero such that for

almost all (under Qδ) histories h∞, for all y ∈N , the limit

K(h∞, y), lim
t→∞

K(ht, y),

exists, and is finite and continuously differentiable in y.

The preceding condition essentially requires that, asymptotically, if a trader buys or sells an

infinitesimal portfolio, the marginal price is the same. This rules out the possibility of a nonzero

bid-ask spread for infinitesimal trades. Note that such nonzero bid-ask spreads have been observed

in prior models, e.g., in the limit-order book model with adverse selection as studied by Glosten

(1994). A central observation in those models is that if the initial bid-ask spread is too wide,

then trading may not take place simply because informed traders will not find it profitable to
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participate. Using this insight it is straightforward to construct examples of markets that are not

asymptotically smooth, and in which information aggregation does not occur.

Although we have stated asymptotic smoothness as a property of the pricing function K, it may

alternatively be viewed as the property of the underlying equilibrium. In other words, one might

consider equilibria where the behavior of the market marker arises endogenously. In such settings,

if the induced pricing function K that arises from the market maker’s activity is asymptotically

smooth, then our results apply.

Additionally, we make the following assumption on the equilibria under consideration.

Assumption 2. (Portfolio Convergence) Under the strategy profile δ, the portfolio of each

trader i converges as trading proceeds in the market. More precisely, for each trader i, the limit

wδ
i,∞(ω), lim

t→∞
wδ

i,t(ω),

exists and is finite for all ω ∈Ω, almost surely.

Portfolio convergence precludes those instances where the market maker’s pricing function is

too weak to restrict traders from taking arbitrarily large positions. The assumption is violated,

for example, in instances where a trader possesses a sequence of actions which yield unbounded

utility. Furthermore, the assumption also captures the idea that the traders are unwilling to accept

unbounded losses in any state, even states on which their belief assigns zero weight. In these

respects, one can view Assumption 2 as excluding pathological equilibria.

The following theorem, which is a key step to the main result of this section, shows that under

asymptotic smoothness and portfolio convergence, all the information contained in any single

trader’s signal is eventually revealed through the trades in the market.

Theorem 1. In any PBE where asymptotic smoothness (Assumption 1) and portfolio conver-

gence (Assumption 2) hold, we obtain that, almost surely, the true state ω̃ is independent, under

the limiting common belief ϕ∞, of each trader i’s private information s̃i.

Before we prove the theorem, we provide some intuition for the result. In a PBE, each trader

starts with private information which may not be reflected in the pricing function of the market

maker. As long as the information of any trader is not fully incorporated into the pricing function,

asymptotic smoothness (Assumption 1) suggests that, eventually, the trader should be able to

profit from trading infinitesimal quantities of the appropriate securities. Portfolio convergence in

the PBE (Assumption 2), on the other hand, suggests that, eventually, the trader ceases to exploit

any such opportunities. We therefore expect that all the information of an individual trader will

ultimately be incorporated into the prices, and thus into the limiting common belief. This implies
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that any further uncertainty in the private information s̃i of trader i is independent of the payoff

relevant state ω̃. Observe that our result holds even in the case where the utility of traders does

not depend on the state. This is because we assume utility that is strictly increasing in wealth.

Hence, traders with private information who are indifferent to the ultimate realization of the state

still have incentive to trade in a manner that reveals their private information.

The proof of Theorem 1 uses the fact that in a PBE, a unilateral deviation by any trader should

result in lower utility for that trader. Using this fact, we show that in the limit, the trader i’s belief

over ω̃, given the infinite history h∞, is independent of her private signal s̃i.

Proof of Theorem 1. Given portfolio convergence and the continuity of the utility function, the

value function of a trader i after the history ht can be written as

Ji,t(δ) =Eνi(ht,s̃i)

[

ui(ω̃,w
δ
i,∞(ω̃))

]

.

Now, consider a unilateral deviation for trader i after any history ht, where the trader instead of

following the strategy δi, decides to trade a fixed quantity z ∈R
m and never trade in the market

thereafter. Let wz
i,t denote the payoff vector of the trader i after such a trade, i.e.,

wz
i,t ,wδ

i,t−1 + z−K(ht, z)1.

As δ is a PBE strategy profile, any deviation after history ht cannot lead to a higher utility for

the trader. Thus, almost surely,

Eνi(ht,s̃i)

[

ui(ω̃,w
z
i,t(ω̃))

]

≤Eνi(ht,s̃i)

[

ui(ω̃,w
δ
i,∞(ω̃))

]

, (2)

for all z ∈R
m, and for all t. Next, observe that

Eνi(ht,s̃i)

[

ui(ω̃,w
z
i,t(ω̃))

]

=
∑

ω∈Ω

ϕi,t(ω̃= ω)ui(ω,w
δ
i,t(ω)+ z(ω)−K(ht, z)).

As the pricing function satisfies asymptotic smoothness (Assumption 1), we have K(ht, z) →

K(h∞, z) almost surely for all z ∈ N . Moreover, from portfolio convergence (Assumption 2), we

have wδ
i,t(ω)→ wδ

i,∞(ω) almost surely for each ω ∈ Ω. Furthermore, we know from Lemma 1 that

for each ω ∈Ω, the trader’s belief ϕi,t(ω̃ = ω) converges to ϕi,∞(ω̃ = ω) almost surely. Using these

facts and the continuity of the utility function, we obtain almost surely for all z ∈N ,

lim
t→∞

Eνi(ht,s̃i)

[

ui(ω̃,w
z
i,t(ω̃))

]

= lim
t→∞

∑

ω∈Ω

ϕi,t(ω̃= ω)ui(ω,w
δ
i,t(ω)+ z(ω)−K(ht, z))

=
∑

ω∈Ω

ϕi,∞(ω̃= ω)ui(ω,w
δ
i,∞(ω)+ z(ω)−K(h∞, z))

=Eϕi,∞

[

ui(ω̃,w
z
i,∞(ω̃))

]

, (3)
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where we have defined wz
i,∞ as

wz
i,∞(ω),wδ

i,∞(ω)+ z(ω)−K(h∞, z) for all ω ∈Ω.

On the other hand, almost surely,

lim
t→∞

Eνi(ht,s̃i)

[

ui(ω̃,w
δ
i,∞(ω̃))

]

= lim
t→∞

EQδ

[

ui(ω̃,w
δ
i,∞(ω̃)) |ht, s̃i

]

=EQδ

[

ui(ω̃,w
δ
i,∞(ω̃)) | h∞, s̃i

]

=Eϕi,∞

[

ui(ω̃,w
δ
i,∞(ω̃))

]

. (4)

Here, the first equality follows since νi is the belief of trader i in a PBE. The second equality follows

by a backwards martingale convergence argument. The third equality follows by the definition of

ϕi,∞.

Thus, from equations (2), (3) and (4), we obtain almost surely for all z ∈N that

Eϕi,∞

[

ui(ω̃,w
z
i,∞(ω̃))

]

≤Eϕi,∞

[

ui(ω̃,w
δ
i,∞(ω̃))

]

.

Since w0
i,∞ =wδ

i,∞, we conclude that, almost surely,

0∈ argmax
z∈N

Eϕi,∞

[

ui(ω̃,w
z
i,∞(ω̃))

]

. (5)

By asymptotic smoothness, the pricing function is K(h∞, y) is differentiable at y = 0. Moreover,

the traders have differentiable utility functions. This implies that the following first order necessary

condition holds:

ϕi,∞(ω̃= ω)u′
i(ω,w

δ
i,∞(ω)) =∇y(ω)K(h∞,0) Eϕi,∞

[

u′
i(ω̃,w

δ
i,∞(ω̃))

]

, for all ω ∈Ω. (6)

Note that (6) holds almost surely over possible values of the infinite history h∞ and the private

signal s̃i. Further, observe that we are able to differentiate through the expectation since the

expectation is only over the finitely many possible realizations of ω̃.

Recall that ϕi,∞(ω̃= ω) =ϕ∞(ω̃= ω
∣

∣s̃i). Using this fact and rearranging the above equation, we

have almost surely that

ϕ∞(ω̃= ω
∣

∣s̃i)

Eϕ∞

[

u′
i(ω̃,w

δ
i,∞(ω̃))

∣

∣s̃i
] =

∇y(ω)K(h∞,0)

u′
i(ω,w

δ
i,∞(ω))

, for all ω ∈Ω. (7)

The preceding equation is true almost surely over the possibilities for the infinite history h∞ and

the private signal s̃i. However, observe that once h∞ is known, the right hand side of the (7) is

fixed, and does not further depend on s̃i. In particular, this implies that the quantity on the left

hand side is almost surely a constant for all realized values s̃i = si that are possible given a fixed

infinite history h∞, i.e., for all values of s̃i in the support of ϕ∞. On summing the left hand side
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over all values of ω ∈Ω, and noting that the numerator sums to 1, we obtain that the denominator

Eϕ∞

[

u′
i(ω̃,w

δ
i,∞(ω̃))| s̃i = si

]

also does not depend on si in the support of ϕ∞. This, in turn, implies

that for all ω ∈ Ω, the numerator ϕ∞(ω̃ = ω
∣

∣s̃i) itself does not depend on the realization of s̃i in

the support of ϕ∞, i.e., ϕ∞(ω̃= ω|s̃i) =ϕ∞(ω̃= ω) almost surely. From this argument we conclude

that under the limiting common belief ϕ∞, the payoff-relevant state ω̃ is independent of the private

signal s̃i of each trader i. �

We have shown that in a PBE, asymptotic smoothness and portfolio convergence together suffice

to ensure that the payoff relevant state ω̃ and each trader i’s private information s̃i are pairwise

independent. However, note that the preceding theorem does not imply information aggregation;

recall from Lemma 2 that for information aggregation to hold, we require the payoff relevant state

ω̃ to be independent of the joint signal s̃. In particular, any information that is encoded collectively

in the signals of multiple traders may still remain unrevealed through the trades in the market.

Nevertheless, if we obtain a condition on the signal structure that ensures independence of the joint

signal s̃ and the payoff relevant state ω̃ from pairwise independence for each trader i, then using

Lemma 2, we obtain information aggregation. The following theorem, which is the main result of

this section, states that one such condition on the signal structure is conditional independence. In

Appendix B, we show that a broader class of signal structures, namely those satisfying hierarchical

conditional independence, satisfy the requirement.

Theorem 2. Suppose the signal structure satisfies conditional independence. Then, in any PBE

where asymptotic smoothness (Assumption 1) and portfolio convergence (Assumption 2) hold, the

market aggregates the information of the traders.

Proof. See Appendix A. �

We thus obtain that in any PBE of the dynamic market where the signal structure is condi-

tionally independent, if asymptotic smoothness and portfolio convergence hold, then the market

aggregates the private information of the traders. The crucial step in our proof is relation (7). Using

this equation, we conclude that, almost surely, conditional on the history, each trader’s signal is

independent of the payoff-relevant state. Note that we make use of the completeness of the market

over payoff-relevant states in writing this equation. Without market completeness, we cannot infer

that equation (7) holds for each ω ∈Ω, leading to a breakdown of our proof technique. Intuitively,

in the absence of market completeness, a trader may not be able to trade so as to fully exploit

their private information, and hence their private information may not be aggregated.

Before concluding this section, we briefly discuss how our result for the dynamic market is related

to information aggregation in static exchange economies.
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The standard tool to study information aggregation in such economies is a rational expec-

tations equilibrium (REE) (Radner 1979), and with complete markets, information aggrega-

tion corresponds to the existence of a fully revealing REE. Under general signal structure,

DeMarzo and Skiadas (1998, 1999) show the existence of a fully revealing REE in a restricted

class of static exchange economies that satisfy an additional condition that they term as quasi-

completeness. Furthermore, they introduce a separably oriented condition,9 under which the fully

revealing REE is the unique REE. Thus, in a quasi-complete exchange economy satisfying the

separably oriented condition, information aggregation holds.

To see how our work is related to the results of DeMarzo and Skiadas (1998, 1999), we introduce

a limiting exchange economy that operates after the dynamic market has closed. Formally, let δ

be a PBE of the dynamic market where asymptotic smoothness and portfolio convergence hold.

Consider an exchange economy where the traders’ initial endowments are their limiting portfolios

{wδ
i,∞ : i≤ n}, and their (common) prior belief is given by the limiting common market belief ϕ∞.

Each trader i, on receiving the signal s̃i, updates her belief to the limiting belief ϕi,∞. Without loss

of generality, we assume that for all ω ∈Ω, we have ϕ∞(ω̃= ω)> 0 (as otherwise, we just redefine

Ω accordingly).

Using (6), it is straightforward to show that for such an economy, the no-trade allocation and the

price vector ∇K(h∞,0) together constitute an REE. Furthermore, one can also show that the lim-

iting exchange economy satisfies the quasi-completeness condition (see Theorem 7 in Appendix D).

From the results of DeMarzo and Skiadas (1998), we obtain that if, almost surely, the limiting

exchange economy is separably oriented, then the aforementioned REE is unique and fully reveal-

ing. Since the market is complete, this implies that information aggregation holds in the PBE. To

summarize, the results of DeMarzo and Skiadas (1998) imply that in our setting, for a PBE δ sat-

isfying asymptotic smoothness and portfolio convergence, if, almost surely, the limiting exchange

economy is separably oriented, then information aggregation holds.

It turns out that the converse statement is also true: for a PBE δ satisfying asymptotic smooth-

ness and portfolio convergence, if information aggregation holds then, almost surely, the limiting

exchange economy is separably oriented (see Theorem 8 in Appendix D). Thus, from the preced-

ing discussion, we obtain that in complete markets, information aggregation is equivalent to the

condition that (almost surely) the limiting economy is separably oriented. As a consequence, The-

orem 2 can be understood as identifying conditions on the dynamic market—namely conditional

independence, asymptotic smoothness and portfolio convergence—that ensure, almost surely, the

existence of a limiting exchange economy that is quasi-complete, separably oriented, and for which

no-trade is the unique, fully revealing, REE.

9 Ostrovsky (2012) defines and studies a closely related notion of separable securities.
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5. Allocative Efficiency and Competitive Equilibrium

One of the primary reasons for organizing an information market is to ensure efficient allocation

of risk among the participating traders. Moreover, efficiency is important to ensure that traders

do not collude among themselves to leave the market, and trade through other mechanisms. In

this section we ask: in what sense is an asymptotically smooth market efficient? We focus on the

notion of ex post Pareto efficiency, which requires that the set of limiting portfolios of the traders

be Pareto efficient, if the information of all the traders is revealed.

Definition 2. (Ex Post Pareto Efficiency) An allocation of securities among the traders

is ex post Pareto efficient, if holding the total quantity of securities fixed, no trader’s expected

utility under the pooled information posterior P(·|s̃) can be increased without decreasing some

other trader’s expected utility.

Ex post Pareto efficiency is tied closely to the concept of competitive equilibrium. Formally,

consider an exchange economy among the traders where each trader maximizes expected utility

with respect to P(·|s̃), and trader i has an initial portfolio given by wi. A competitive equilibrium

for this economy is specified by an allocation w∗
i for each trader i, and a price p(ω) for each security

ω such that the following two conditions hold:

1. Market clearance. The net portfolio of all the traders in the allocation {w∗
i : 1≤ i≤ n} should

be the same as that in the initial allocation, that is,

n
∑

i=1

w∗
i (ω) =

n
∑

i=1

wi(ω), for all ω ∈Ω. (8)

2. Utility maximization. For each trader i, the allocation w∗
i of the security to trader i should

maximize her expected utility with respect to the pooled information posterior P(·|s̃), given the

price vector p. In other words, for each trader i, the allocation w∗
i is a solution to the optimization

problem

maximize EP

[

ui(ω̃,w
∗
i (ω̃))

∣

∣s̃
]

subject to
∑

ω∈Ω

p(ω)w∗
i (ω) =

∑

ω∈Ω

p(ω)wi(ω). (9)

The first fundamental theorem of welfare economics states that the allocation in any competitive

equilibrium is ex post Pareto optimal (Mas-Colell et al. 1995). Thus, it suffices for our purposes to

show that the limiting allocation of securities among the traders together with the limiting prices

in the market constitute a competitive equilibrium under pooled information.

Observe that if information is aggregated, then every trader effectively chooses to stop trading

given the joint signal s̃; in particular, no trader can profitably improve her expected utility at their

limiting portfolio. Informally, we might therefore expect that the limiting allocation, together with

the limiting prices, must be a competitive equilibrium of the economy where traders maximize

their expected utility conditional on s̃. The following theorem establishes this fact formally.
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Theorem 3. Suppose the signal structure satisfies (hierarchical) conditional independence. Con-

sider a PBE with strategy profile δ satisfying asymptotic smoothness (Assumption 1) and portfolio

convergence (Assumption 2). Then, the collection of traders’ limiting portfolios {wδ
i,∞ : 1≤ i≤ n}

and the price vector φ,∇yK(h∞,0) together constitute a competitive equilibrium of an exchange

economy with pooled information, where each trader i’s initial portfolio is specified by wδ
i,∞.

Proof. Observe that the market clearance condition (8) holds trivially in this case, since the

final and initial allocation are the same. So, in order for the allocation {wδ
i,∞ : 1≤ i≤ n} and the

price vector φ to constitute a competitive equilibrium, we require that the utility maximization

condition holds for all traders. As the maximization problem (9) is a convex program, sufficient

conditions for an allocation {wi : 1≤ i≤ n} to be optimal can be written as

P
(

ω̃= ω
∣

∣s̃
)

u′
i(ω,wi(ω)) = λp(ω), for all ω ∈Ω,

where λ∈R is a Lagrange multiplier.

Now we know from Theorem 2 that the market aggregates the information of the traders. Thus,

we obtain P
(

ω̃= ω
∣

∣s̃
)

=ϕ∞(ω̃= ω) =ϕ∞(ω̃= ω
∣

∣s̃i). Then, the sufficiency conditions become

ϕ∞(ω̃= ω
∣

∣s̃i)u
′
i(ω,wi(ω)) = λp(ω).

It is now easily seen from (7) that the sufficiency conditions are satisfied by the allocation

wi , wδ
i,∞ for the price vector p = φ , ∇yK(h∞,0), by setting the Lagrange multiplier λ ,

Eϕ∞

[

u′
i(ω̃,w

δ
i,∞(ω̃))

]

. This implies that the allocation wδ
i,∞ is utility maximizing for trader i with

the price vector φ. �

The preceding argument proves that the limiting portfolio of each trader is ex post Pareto optimal,

in the sense that if the traders were subsequently allowed to trade among themselves circumventing

the market maker, they would not have any incentive to do so. In this respect, asymptotically

smooth markets exhibit allocative efficiency.

We conclude with a brief discussion regarding the information content of prices. Suppose the

signal structure satisfies (hierarchical) conditional independence. Let φ,∇yK(h∞,0) denote the

eventual price vector in a PBE with strategy profile δ satisfying asymptotic smoothness (Assump-

tion 1) and portfolio convergence (Assumption 2). Because the limiting allocation is a competitive

equilibrium, it is clear that prices must reflect risk-adjusted probabilities; this is captured by (7),

which reveals that φ is the posterior state distribution, shaded by a factor proportional to the

marginal utility in each state. In particular, if at least one trader is risk neutral, then φ will be

equal to the posterior state distribution.

Although prices may not exactly reflect the posterior state distribution in general, by the defini-

tion of information aggregation, an observer of the market having the same knowledge as market
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participants can infer the information contained in the traders’ private signals. However, this is too

stringent a requirement. Using the fact that the limiting economy is in competitive equilibrium,

we identify in the following theorem a milder requirement under which an observer can infer the

posterior state distribution. The proof is straightforward, and follows from a standard result for

static economies in competitive equilibrium (see, e.g., Cochrane 2005).

Theorem 4. Suppose the signal structure satisfies (hierarchical) conditional independence. Con-

sider a PBE with strategy profile δ satisfying asymptotic smoothness (Assumption 1) and portfolio

convergence (Assumption 2). An observer with access to the limiting price vector φ,∇yK(h∞,0)

and the limiting portfolio of a single trader i, wδ
i,∞, along with her utility function ui, can infer the

posterior distribution ϕ∞ of ω̃.

Proof. Note that, as was argued at the end of the proof of Theorem 2, under these hypotheses, s̃i

is independent of ω̃ under the measure ϕ∞. The first order condition (7) in the proof of Theorem 2

can be rewritten as, for all ω ∈Ω,

ϕ∞(ω̃= ω)

Eϕ∞

[

u′
i(ω̃,w

δ
i,∞(ω̃))

] =
∇y(ω)K(h∞,0)

u′
i(ω,w

δ
i,∞(ω))

,Ri(ω),

almost surely. We then have, for all ω ∈Ω, almost surely,

ϕ∞(ω̃= ω) =Ri(ω)Eϕ∞

[

u′
i(ω̃,w

δ
i,∞(ω̃))

]

.

As ϕ∞(ω̃= ω) is a probability distribution, we obtain for all ω ∈Ω,

ϕ∞(ω̃= ω) =
Ri(ω)

∑

ω′∈ΩRi(ω′)
.

Thus, an uninformed observer with access to ∇y(ω)K(h∞,0) and {ui(ω,w
δ
i,∞(ω)) : ω ∈Ω} can infer

the common belief ϕ∞. �

6. Cost Function Market Maker

In this section we focus our attention on a class of algorithmic market makers defined via cost

functions. In such a market, the price seen by a trader is set by a fixed rule that depends only on

the total outstanding number of shares sold in the market. Cost function market makers encom-

pass a wide class of markets; of particular significance is the fact that market scoring rules can be

reformulated as cost functions (Chen and Pennock 2007, Agrawal et al. 2011). The ease of orga-

nizing a market based on a cost function has led to its use in many real settings, especially in

combinatorial prediction markets (Pennock and Sami 2007); see also Jian and Sami (2012) for a

recent experimental analysis of such markets. Our main observation is that for such markets, the

asymptotic smoothness condition developed in Section 4 is implied by the portfolio convergence
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assumption (Assumption 2). Thus, in markets based on cost functions, information aggregation

holds in any PBE where the portfolios of the traders converge.

Let qt(ω) denote the total quantity of the security ω sold by the market maker until time t. We

have the following relation between qt and the trades {yτ : 1≤ τ ≤ t} that have occurred up to

time t:

qt =
t
∑

τ=1

yτ .

A cost function market maker is defined by a continuously differentiable function C : Rm → R,

satisfying the following condition:

C(q+ a1) =C(q)+ a, for all a∈R. (10)

After any history ht, the market maker prices the trade y ∈R
m at time t according to

K(ht, y),C(qt−1 + y)−C(qt−1).

Market makers based on cost functions are a special case of the general class of market makers

studied in this paper. These market makers are distinguished by the fact that their pricing function

depends on the history only through the total quantity of securities sold up to current time. Further,

observe that the total revenue obtained by the market maker at time t is given by

t
∑

τ=1

K(hτ , yτ ) =
t
∑

τ=1

C(qτ )−C(qτ−1) =C(qt)−C(0).

Thus, at any time, the total revenue of the market maker is also dependent only on the total

quantity of securities sold, and not on the actual sequence of trades leading to the final position.

Also, note that the condition imposed by (10) on the cost function ensures that the traders cannot

profit via an exchange of money with the market maker. We note in passing that a major attraction

of cost function market makers is that typically for such market makers, exogenous guarantees can

be provided that ensure the loss to the market maker is bounded independent of the sequence of

trades in the market; see Pennock and Sami (2007) for further details and specific examples.

The following theorem shows that for cost function market makers in markets with (hierarchi-

cally) conditionally independent signal structure, under the portfolio convergence assumption, the

information of the traders is aggregated. Thus in such markets, we do not explicitly require the

asymptotic smoothness assumption on the pricing function to obtain information aggregation.

Theorem 5. In any PBE of a cost function based market with a (hierarchically) condition-

ally independent signal structure, if portfolio convergence (Assumption 2) holds, then the market

aggregates the information of the traders.
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Proof. The proof involves showing that any PBE of a cost function based market satisfying

portfolio convergence also satisfies asymptotic smoothness. Toward that end, we first define the

function Γ: Rm →R
m by

Γ(q), q−

(

1

m

∑

ω∈Ω

q(ω)

)

1.

Note that Γ(q) is the projection of q onto the subspace of vectors in R
m with components that sum

to zero. For a PBE with strategy profile δ, we have for all y ∈R
m,

K(ht, y) =C(qδt−1 + y)−C(qδt−1)

=C(qδt−1 + y)−

(

1

m

∑

ω∈Ω

qδt (ω)

)

−

(

C(qδt−1)−

(

1

m

∑

ω∈Ω

qδt (ω)

))

=C(Γ(qδt−1)+ y)−C(Γ(qδt−1)).

Here, in the final equality, we have used the fact that C(q+ a1) =C(q)+ a for all q ∈R
m.

Next, as the total quantity of the securities sold by the market maker at time t equals the sum

of the net change in the portfolio of all the traders and the total revenue obtained by the market

maker, we have

qδt =
n
∑

i=1

(

wδ
i,t −wδ

i,0

)

+

(

t
∑

τ=1

K(hτ , y
δ
τ )

)

1. (11)

This implies that

Γ(qδt ) =
n
∑

i=1

(

wδ
i,t −wδ

i,0 −

(

1

m

∑

ω∈Ω

(

wδ
i,t(ω)−wδ

i,0(ω)
)

)

1

)

. (12)

As the PBE under consideration satisfies portfolio convergence, we infer from the above equation

that there exists qδ∞ ∈ R
m such that Γ(qδt )→ qδ∞ almost surely. Since K(ht, z) = C(Γ(qδt−1) + z)−

C(Γ(qδt−1)), and since the cost function is continuous and differentiable, it follows that almost

surely K(ht, z) → K(h∞, z) , C(qδ∞ + z)− C(qδ∞) for all z ∈ R
m, where the function K(h∞, ·) is

continuously differentiable. This proves that asymptotic smoothness holds in this case, implying

through Theorem 2 that information aggregation obtains. �

Thus, we obtain that for any algorithmic market maker using a cost function, if the signal

structure is (hierarchically) conditionally independent, then portfolio convergence (Assumption 2)

suffices to ensure that the private information of the traders gets aggregated.

7. Conclusion

In this paper we have studied the information aggregation properties of market equilibria that

satisfy two conditions: asymptotic smoothness and portfolio convergence. We study a fairly general
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model consisting of finitely many rational, risk-averse traders. In our main results, we demonstrate

that these two conditions lead to aggregation of information in the market, as well ex post Pareto

efficiency of the allocation.

As noted in the Introduction, information aggregation has long been a central object of study

in the literature on markets in general and financial markets in particular. However, a significant

additional motivation for our analysis comes from the recent rise of prediction markets. In par-

ticular, prediction markets based on algorithmic market makers will often possess the asymptotic

smoothness property essentially for free (provided the algorithmic pricing rule is appropriately

“smooth”).

Our results support the premise that such market makers should lead to information aggregation

(provided trading asymptotically ceases). In addition, a key observation of our work is that such

markets can also serve as a mechanism to efficiently allocate risk in settings where traders may be

risk-averse.
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Appendix A: Proof of Theorem 2

In order to prove Theorem 2, we need the following two lemmas. The first lemma makes the intuitive

observation that under Qδ, even after observing past history, the signals are independent conditional on the

payoff-relevant state. (Note that this result holds even after infinite history, i.e., t=∞.)

Lemma 3. Under Qδ, conditional on the history ht and payoff-relevant state ω̃, the private signals

s̃1, . . . , s̃n are independent, for any 1≤ t≤∞.

Proof. The proof follows directly from Lemma 5 and the observation that conditionally independent sig-

nals are hierarchically conditionally independent with respect to the graph G= (V,E), where V = {0, . . . , n}

and E = {(0, i) : 1≤ i≤ n}. �

The second lemma shows that with conditionally independent signal structure, pairwise independence

implies joint independence.

Lemma 4. Let X and {Yi; i= 1, . . . , n} be random variables such that: (1) conditional on X, the random

variables {Yi} are independent; and (2) X is independent of Yi for each i. Then X and (Y1, . . . , Yn) are

independent.

Proof. Let g and f1, . . . , fn be bounded functions. As Y1, . . . , Yn are independent conditional on X, we

have

E

[

∏

i

fi(Yi)
∣

∣X

]

=
∏

i

E
[

fi(Yi)
∣

∣X
]

.

Moreover, we know that X and Yi are independent for all i. This implies that E
[

fi(Yi)
∣

∣X
]

=E [fi(Yi)]. Thus

we obtain

E

[

∏

i

fi(Yi)
∣

∣X

]

=
∏

i

E [fi(Yi)] .

We then reason as follows:

E

[

g(X)
∏

i

fi(Yi)

]

=E

[

g(X)E

[

∏

i

fi(Yi)
∣

∣X

]]

=E [g(X)]
∏

i

E [fi(Yi)] .

As this is true for all bounded functions g, f1, . . . , fn, we infer that X and (Y1, . . . , Yn) are independent. �
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We are now ready to prove Theorem 2.

Proof of Theorem 2. By Lemma 3, under measure ϕ∞, the private signals s̃1, . . . , s̃n are independent

given the payoff-relevant state ω̃. From Theorem 1, we know that for each trader i, the payoff relevant state

ω̃ is independent of the private signal s̃i, under the limiting common belief. Together with Lemma 4, this

implies that under measure ϕ∞, the payoff-relevant state ω̃ and the joint signal of the traders s̃, (s̃1, . . . , s̃n)

are independent. The result then follows from Lemma 2. �

Appendix B: Hierarchically Conditionally Independent Signals

In the main paper, we considered a model where signals are conditionally independent: conditional on the

true payoff-relevant state ω̃, the signals of the traders are independent. Conditionally independent signals

are plausible if each trader independently conducts her own research about the payoff relevant state ω̃. To

achieve conditional independence, we must assume that this process of obtaining information is inherently

noisy, with independent noise across traders. Though traders may differ in the accuracy of their signals, a

key assumption is that each trader conducts their research in complete isolation: signal information is not

shared across traders, except through the market.

As a consequence, this model of obtaining information ignores the possibility that some traders might

obtain their information from others in the market. For example, consider a scenario where some subset of

traders first carry out research to estimate the state ω̃. Other traders then contact this “primary” set; for

these traders, their signals are inherently correlated with the signals of those primary traders they contacted.

For example, an individual investor may obtain information secondhand from the research department of

their brokerage. Our signal structure does not allow these correlation relationships, and thus our proofs of

information aggregation no longer apply directly.

We refer to these more general correlation relationships as hierarchical conditional independence. The

central probabilistic construct we require to capture this signal model is a Markov random field. A Markov

random field captures correlation structure between a collection of random variables through an underlying

graph.

Formally, a Markov random field is a probability measure associated with an undirected graph G= (V,E),

with vertex set V and edge set E. For any vertex v ∈ V , define ∂v , {u ∈ V : uv ∈ E} to be the set of

adjacent vertices, and let ∂̄v , ∂v ∪ {v}. Finally, let G\S denote the graph that remains if the set of nodes

S is removed from V , and any edges with endpoints in S are removed from E.

Definition 3. A collection of random variables {Xu : u∈ V } is a Markov random field with respect to

a graph G= (V,E) if, for all S,A,B ⊂ V where A is disconnected from B in G\S, {Xv : v ∈A} is conditionally

independent of {Xv : v ∈B} given {Xv : v ∈ S}.

We now give the definition of hierarchically conditionally independent signals. For ease of notation, define

s̃0 , ω̃. We have the following definition.

Definition 4. The traders’ signals are said to be hierarchically conditionally independent, if the set

of random variables {s̃0, . . . , s̃n} form a Markov random field with respect to a graph G on the set {0, . . . , n},

with no simple cycles containing the node 0.
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Figure 1 Hierarchically Conditionally Independent Signals.
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The key condition in the preceding definition is that the graph G contains no simple cycles with the node

0. Since s̃0 is the payoff-relevant state ω̃, this assumption implies that we can partition traders into subsets

as follows. Let T0 = {1, . . . , k} be the traders directly connected to node 0 in G; informally, these are the

traders who obtain information about the state by directly doing independent research. For each i, let Ti

be the set of traders who obtain their information (directly or indirectly) from trader i (including trader i

herself); assume every trader lies in one such set. Hierarchical conditional independence then requires that

the sets T1, . . . ,Tk are mutually disjoint. In other words, each trader in T0 is a primary source of information

for some subset of other traders; but no trader can have two primary sources.

Hierarchically conditionally independent signals are a generalization of conditionally independent signals.

This can be seen at once by noticing that, for conditionally independent signals, the set {s̃0, . . . , s̃n} forms a

Markov random field with respect to a tree on {0, . . . , n}, rooted at 0, with an edge (0, i) for all i∈ {1, . . . , n}.

At the same time, hierarchically conditionally independent signals are not fully general: for example, this

model precludes a trader obtaining information from two different primary sources, e.g., an online investing

site and their brokerage.

We now show that our main result continues to hold if the traders’ signals are hierarchically conditionally

independent. We have the following extension of Theorem 2, proving information aggregation with hierar-

chically conditionally independent signals in a complete market.
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Theorem 6. In any PBE of a complete market with hierarchically conditionally independent signals, if

asymptotic smoothness (Assumption 1) and portfolio convergence (Assumption 2) hold, then the market

aggregates the information of the traders.

We prove the theorem using two lemmas, analogous to the proof of Theorem 2. The first lemma shows

that the information revealed by the trades in the market preserves the hierarchical conditional independent

structure of the signals.

Lemma 5. Suppose that the traders’ signals are hierarchically conditionally independent with respect to a

graph G before the start of trading. Then in any PBE with strategy profile δ, under Qδ, conditional on the

history ht, the traders’ signals s̃1, . . . , s̃n are hierarchically conditionally independent with respect to the same

graph G for any 1≤ t≤∞.

Proof. Let G be the graph with no simple cycles involving node 0, under which the traders’ signals

are hierarchically conditionally independent under Qδ (without conditioning on ht). Recall that s̃0 = ω̃ by

definition.

The proof of the lemma is by induction. The base case for t = 1 is trivial. Assume the claim holds for

t= T , i.e. conditioning on the history hT , the set of random variables {s̃0, . . . , s̃n} form a Markov random

field with respect to G. This implies that for every set S,A,B ⊂ {0, . . . , n} with A and B disconnected in

G\S, {s̃i : i∈A} is conditionally independent of {s̃i : i∈B}, given {s̃i : i∈ S} and hT . Fix one such S,A and

B.

Let trader k arrive at the market at time T , i.e. iT = k, and let yT denote the trade conducted by the

trader. We have the following three cases, depending on whether k ∈ S, k ∈A or k ∈B.

1. k ∈ S: Since yT depends only on hT and s̃k and k ∈ S, conditioning on hT+1 = (hT , yT ) and {s̃i : i∈ S}

is same as conditioning on hT and {s̃i : i∈ S}. Thus it follows trivially that the induction step holds.

2. k ∈ A: Again, since yT depends only on s̃k and hT , we see that conditional on hT and {s̃i : i ∈ S},

the trade yT depends only on the set {s̃i : i ∈ A}. Thus, further conditioning on yT cannot change the

independence of {s̃i : i∈A} and {s̃i : i∈B}. Thus, again the induction step holds.

3. k ∈B: The argument is similar as that for k ∈A.

Thus, regardless of which trader arrives at the market, the induction step carries through. As S,A and

B were arbitrary, this proves the result for all t < ∞. The result for t = ∞ follows through the use of

Lemma 1. �

The following lemma plays an analogous role to Lemma 4 in the proof of Theorem 2.

Lemma 6. Let {Xv : v ∈ V } be a Markov random field with respect to a connected graph G= (V,E). Let

u∈ V be such that there exists no simple cycle involving u in G. Moreover, let Xu be independent of Xv for

each v ∈ ∂u. Then, Xu is independent of {Xv : v ∈ V, v 6= u}.

Proof. Let Av denote an event for each v ∈ V . As {Xv : v ∈ V } is a Markov random field, we get

P(Xv ∈Av ∀v /∈ ∂̄u, Xu ∈Au

∣

∣ Xi ∀i∈ ∂u)

=P(Xv ∈Av ∀v /∈ ∂̄u
∣

∣ Xi ∀i∈ ∂u) ·P(Xu ∈Au

∣

∣ Xi ∀i∈ ∂u).
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Next, note that conditional on Xu, the random variables in the set {Xv : v ∈ ∂u} are independent of each

other. Furthermore, we have that Xu is independent of Xv for each v ∈ ∂u. Thus, from Lemma 4, we obtain

that Xu is independent of {Xv : v ∈ ∂u}. This implies that P(Xu ∈Au

∣

∣Xi ∀i∈ ∂u) =P(Xu ∈Au). Thus, we

get

P(Xv ∈Av ∀v /∈ ∂̄u, Xu ∈Au

∣

∣Xi ∀i∈ ∂u)

=P(Xv ∈Av ∀v /∈ ∂̄u
∣

∣Xi ∀i∈ ∂u) ·P(Xu ∈Au).

This implies by definition that,

P(Xv ∈Av ∀v ∈ V ) =P(Xv ∈Av ∀v 6= u) ·P(Xu ∈Au).

As this is true for all events Av, we obtain that Xu is independent of {Xv : v ∈ V, v 6= u}. �

The proof of Theorem 6 follows directly from the preceding two lemmas.

Proof of Theorem 6. From Lemma 5, we obtain that, under ϕ∞, the state ω̃ and the signals s̃1, . . . , s̃n

satisfy hierarchical conditional independence. Furthermore, recall from Theorem 1 that, under ϕ∞, the payoff-

relevant state ω̃ is independent of any trader i’s private signal s̃i. Thus, using Lemma 6, we obtain that the

state ω̃ is independent of the joint signal s̃. The result then follows from Lemma 2. �

Can the signal structure be generalized further, and still yield information aggregation? To partly inves-

tigate this question, we end this section with an example of a market where the traders’ signals have a

more general dependence: we show that no trade is a PBE in this market, thus proving that information

aggregation may not occur with stronger correlation in the signals of traders.

Example 1. Let Ω = {0,1}, and let the state ω̃ be distributed uniformly at random. The signal space

for each trader is given by Σi = {0,1}. The signals of the traders are distributed according to the following

distribution:

P(s̃= (0,0)| ω̃= 0) =P(s̃= (1,1)| ω̃= 0) = 0.5,

P(s̃= (0,1)| ω̃= 1) =P(s̃= (1,0)| ω̃= 1) = 0.5.

That is, if the payoff relevant state ω̃ = 0, then the traders’ signals are the same and equal to 0 or 1 with

equal probability. On the other hand, if the state ω̃= 1, then the traders’ signals are again 0 or 1 with equal

probability, but now the signal are complementary to each other. Note that by pooling their information,

the two traders can always exactly determine the state ω̃.

Let the market maker use the cost function corresponding to the logarithmic market scoring rule to price

the trades. We now present a system of beliefs and a strategy for each trader, which together constitutes a

PBE. After any history h, let each trader’s belief about the state ω̃ and the other trader’s signal be given

by the distribution P conditioned on their private signal. Note that this belief structure does not condition

on the observed history, and thus this prevents any signaling between the traders. Consider a strategy δi

for the trader i, such that at any time t after any history h, the trade specified by δi is given by yt =−qt,

where qt denotes the total quantity of securities sold by the market maker until time t. Given the belief of a

trader about the state ω̃ and the other trader’s future actions, it can be shown that the optimal action for a
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trader to take is to always bring the total quantity of securities sold by the market maker to zero. Since the

actions of the traders do not depend on their signals, the beliefs satisfy the Bayes rule. Thus, it follows that

the strategy profile δ and the belief structure form a PBE.

Looking at the equilibrium path for the above PBE, one obtains that there is no trade occurring in the

market, if the market maker starts with q0 = 0. Thus at all time periods, the belief of the traders regarding

the payoff relevant state ω̃ assigns equal probability to both possible alternatives. However, if the signals

were to be pooled, then the true state would be known with complete certainty. Thus we observe that, with

general signal structure, there exist PBE where information aggregation does not occur. �

The preceding example is closely related to an example presented by Ostrovsky (see Ostrovsky 2012,

Example 1), where he shows the importance of separability of the security for information aggregation in

his market model. The main distinction is that in our model we have two securities, while in Ostrovsky’s

example trade is over one security (his security is a linear combination of those in the preceding example).

Appendix C: Measure Theoretic Formulation

Recall that the history at time t is given by the trades until time t:

ht = (y1, . . . , yt−1) .

Moreover, the infinite history is defined as the entire sequence of trade which takes place in the market,

given by h∞ , (y1, . . . , yt, . . . , ). Let Ht denote the set of all possible histories till time t, and let H∞ denote

the set of all possible infinite history. We endow H∞ with the topology of pointwise convergence, and let G∞

denote the Borel σ-algebra on H∞.

Let (Σi,Ti) be a measure space, and let T denote the product σ-algebra on Σ. Moreover, let C denote the

complete σ-algebra on Ω. Finally, let S ,H∞ ×Ω×Σ, and let F∞ denote the product σ-algebra on S.

Note that (S,F∞) captures all the uncertainty in our model. In particular, the random variables ω̃ and

s̃1, . . . , s̃n are all measurable with respect to the measure space (S,F∞).

The joint prior distribution P over the state ω̃ and the signals s̃1, . . . , s̃n shared by all the traders and the

market maker can now be represented as a measure over the restricted probability space
(

Ω×Σ, σ(C ×T )
)

.

Beliefs. The belief νi(ht, si) of a trader i after each history ht, and having observed signal si, is represented

as a probability measure on the set (S,F∞).

Strategies. The strategy δi of a trader i can be represented as a set of random variables δi(ht, si) such that

δi(ht, s̃i) is measurable with respect to the sub-σ-algebra generated by ht and s̃i. Note that if δi is a mixed

strategy, then we have to consider a larger measure space to include the randomization of the trader.

Given the joint prior P on ω̃ and the signals s̃1, . . . , s̃n, a PBE with strategy profile δ and the belief νi for

each trader i induces a probability measure Qδ on (S,F∞) through the Kolmogorov extension theorem. The

measures ϕi,t and ϕt can then be defined as in the main text.

Appendix D: Information Aggregation and Separable Orientedness

For the sake of completeness, in this section, we provide the formal statement and the proof of the results

claimed in the discussion at the end of Section 4. We follow the same notation as introduced in that section.

The following theorem states that the limiting exchange economy satisfies the quasi-completeness condi-

tion, as specified in Definition 2 of DeMarzo and Skiadas (1998, pg. 9, hereafter DS).



Iyer, Johari, and Moallemi: Information Aggregation and Allocative Efficiency in Smooth Markets 30

Theorem 7. The preceding exchange economy is quasi-complete, with the measure Q given by

Q(ω̃= ω, s̃i ∈Ai for all i) =∇y(ω)K(h∞,0)ϕ∞(s̃i ∈Ai for all i|ω̃= ω). (13)

(Note that Q is well defined, as
∑

ω
∇y(ω)K(h∞,0) = 1 from (6).)

Proof. First note that since the traders share a common prior belief, we have (as per the notation in DS),

Pi =ϕ∞,

for all i. This can be rewritten as

Pi(ω̃= ω, s̃i ∈Ai for all i) =ϕ∞(ω̃= ω)ϕ∞(s̃i ∈Ai for all i|ω̃= ω)

With Q as in the theorem statement, this implies that,

dQ

dPi

(ω̃= ω, s̃i) =
∇y(ω)K(h∞,0)

ϕ∞(ω̃= ω)

=
ϕ∞(ω̃= ω|s̃i)

ϕ∞(ω̃= ω)Eϕi,∞
[u′

i(ω̃,w
δ
i,∞(ω̃))]

·u′
i(ω,w

δ
i,∞(ω)). (14)

For any admissible price vector p, define the following quantities:

λp
i (ω̃= ω, s̃i) =

ϕ∞(ω̃= ω|s̃i)

ϕ∞(ω̃= ω)Eϕi,∞
[u′

i(ω̃,w
δ
i,∞(ω̃))]

,

θpi = 0. (15)

Note that, we have

λp
i =

ϕ∞(ω̃= ω|s̃i)

ϕ∞(ω̃= ω)
∑

ω̂∈Ωϕ∞(ω̃= ω̂|s̃i)u′
i(ω̂,w

δ
i,∞(ω̂))

≤
1

ϕ∞(ω̃= ω)u′
i(ω,w

δ
i,∞(ω))

≤
1

minω̂∈Ωϕ∞(ω̃= ω̂)u′
i(ω̂,w

δ
i,∞(ω̂))

<∞.

Here, the first inequality follows from the fact that ui is strictly increasing, and the final bound follows from

the finiteness of Ω.

With these substitutions, we see that for any admissible price vector p, we have, almost surely,

λp
iui

(

ω̃,wδ
i,∞(ω̃)+

∑

ω̂

θpi (ω̂)(I{ω̃= ω̂}− p(ω̂))

)

=
dQ

dPi

with λp
i measurable w.r.t the information in s̃i and the price vector p. This implies that the exchange economy

is quasi-complete. �

Define f : Σ→ [0,1]|Ω| as

f(s,ω) =EQ [I{ω̃= ω}|s̃= s] . (16)

From the results in DS, we obtain that if, almost surely, the mapping f in the limiting exchange economy is

separably oriented, then the aforementioned REE is unique and fully revealing. Since the market is complete,

this implies that information aggregation holds in the PBE.

The next theorem states that the converse result is also true.
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Theorem 8. If information aggregation holds in the dynamic market, then, almost surely, the function

f , as defined in (16) in the limiting exchange economy, is separably oriented.

Proof. For f to be separably oriented, we require the existence of product measurable and bounded

functions gi : Σi ×R
|Ω| →R

|Ω|, such that the following condition holds for all s∈Σ and r ∈R
|Ω|:

f(s) 6= r =⇒ (f(s)− r) ·
n
∑

i=1

gi(si, r)> 0. (17)

Note that if information aggregation holds, then by Lemma 2, under ϕ∞, the state ω̃ is independent of

the joint signal s̃. This implies that ϕ∞(s̃i ∈Ai for all i|ω̃= ω) =ϕ∞(s̃i ∈Ai for all i), and hence, from (13),

we obtain

Q(ω̃= ω, s̃i ∈Ai for all i) =∇ωK(h∞,0)ϕ∞(s̃i ∈Ai for all i).

Thus, even under measure Q, the state ω̃ is independent of the joint signal s̃. This implies that for all s∈Σ,

f(s) =∇K(h∞,0).

As f(s) is independent of s, we define the functions gi(si, r) as

g(si, r) =∇K(h∞,0)− r,

and observe that (17) holds. Thus, f is separably oriented. �

The preceding theorems imply that, in complete markets, information aggregation is equivalent to the

condition that, almost surely, the function f in the limiting economy is separably oriented.
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