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Abstract

Modern electronic markets have been characterized by a relentless drive towards faster de-
cision making. Significant technological investments have led to dramatic improvements in
latency, the delay between a trading decision and the resulting trade execution. We describe
a theoretical model for the quantitative valuation of latency. Our model measures the trading
frictions created by the presence of latency, by considering the optimal execution problem of a
representative investor. Via a dynamic programming analysis, our model provides a closed-form
expression for the cost of latency in terms of well-known parameters of the underlying asset. We
implement our model by estimating the latency cost incurred by trading on a human time scale.
Examining NYSE common stocks from 1995 to 2005 shows that median latency cost across
our sample roughly tripled during this time period. Furthermore, using the same data set, we
compute a measure of implied latency, and conclude that the median implied latency decreased
by approximately two orders of magnitude. Empirically calibrated, our model suggests that
the reduction in cost achieved by going from trading on a human time scale to a low latency
time scale is comparable with other execution costs faced by the most cost efficient institutional
investors, and is consistent with the rents that are extracted by ultra low latency agents, such
as providers of automated execution services or high frequency traders.

1. Introduction

In the past decade, electronic markets have become pervasive. Technological advances in these
markets have led to dramatic improvements in latency, or, the delay between a trading decision
and the resulting trade execution. In the past 30 years, the time scale over which a trade is
processed has gone from minutes1 to milliseconds2 — “low latency” in a contemporary electronic
market would be qualified as under 10 milliseconds, “ultra low latency” as under 1 millisecond. This
change represents a dramatic reduction by five orders of magnitude. To put this in perspective,
human reaction time is thought to be in the hundreds of milliseconds.

One factor behind this trend has been competition between exchanges, as one mechanism for
differentiation between exchanges is latency. This competition is driven by a significant demand
∗The first author would like to thank Jim Gatheral for a helpful discussion that motivated this work. The authors

would like to thank Albert Menkveld, Larry Glosten, and Jialin Yu for their helpful comments.
1NYSE, pre-1980 upgrade (Easley et al., 2008).
2“The value of a millisecond: Finding the optimal speed of a trading infrastructure,” TABB Group, April 2008.
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amongst a class of investors, sometimes called “high frequency” traders, for low latency trade
execution. High frequency traders are thought to account for more than half of all US equity
trades.3 They expend significant resources in order to develop algorithms and systems that are
able to trade quickly. For example, on the time scale of milliseconds, the speed of light can become
a binding constraint on the delay in communications. Hence, traders seeking low latency will “co-
locate”, or house their computers in the same facility as the exchange, in order eliminate delays
due to a lack of physical proximity. This co-location comes at a significant expense, however it has
been stated that a 1 millisecond advantage can be worth $100 million to a major brokerage firm.4

There has been much discussion of the importance of latency among various market participants,
regulators, and academics. Despite the significant amount of recent interest, however, latency
remains poorly understood from a theoretical perspective. For example, how does latency relate
to transaction costs? Is latency only relevant to investors with short time horizons, such as high
frequency traders, or does latency also affect long term investors such as pension funds and mutual
funds? Many of these important questions have been considered in anecdotal or ad hoc discussions.
Our goal here is to provide a framework for quantitative analysis of these issues.

In particular, we wish to understand the benefit to a single trader in the marketplace of lowering
their latency, while holding everything else fixed. This is a different question than understanding
the social costs of latency, i.e., whether in equilibrium the collective marketplace is better or worse
off given lower latency. One might imagine, for example, that the benefit to a individual agents of
lower latency may diminish in an equilibrium setting. Equilibrium or welfare analysis of low latency
trading is a complex question with important policy and regulatory implications. We believe that
understanding the single-agent effects of low latency trading, however, is an important first step
which will inform our ultimate understanding of collective effects.

The cost that a trader bears due to latency can take many different forms, depending on
the precise trading strategy. However, we can identify a number of broad themes,5 sometimes
overlapping, as to why the ability to trade with low latency might be valuable to an investor:

1. Contemporaneous decision making. A trader with significant latency will be making
trading decisions based on information that is stale.

For example, consider an automated trader implementing a market-making strategy in an
electronic limit order book. The trader will maintain active limit orders to buy and sell. The
prices at which the trader is willing to buy or sell will naturally depend on, say, the limit
orders submitted by other investors, the price of the asset on other exchanges, the price of
related assets, overall market factors, etc. If the trader cannot update his orders in a timely
fashion in response to new information, he may end up trading at disadvantageous prices.

2. Comparative advantage/disadvantage. The ability to trade with low latency in absolute
3“Stock traders find speed pays, in milliseconds,” New York Times, July 23, 2009.
4“Wall Street’s quest to process data at the speed of light,” Information Week, April 21, 2007.
5See Cespa and Foucault (2008) for a related discussion.
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terms may not be as important as the ability to trade with low relative latency, that is, as
compared to competitors.

For example, consider a program trader implementing an index arbitrage strategy, seeking
to profit on the difference between an index and its underlying components. There may be
many market participants pursuing such strategies and identifying the same discrepancies.
The challenge for the trader is to be able to act in the marketplace to exploit a discrepancy
before a price correction takes place, i.e., before competitors are able to act. The means
having a low relative latency.

3. Time priority rules. Many modern markets treat orders differentially based on the time
of arrival, and favor earlier orders.

For example, in an electronic limit order book, the limit orders on each side of the market
are prioritized in a particular way. When a market order to buy arrives, it is matched against
the limit orders to sell according to their priorities. Priority is first determined by price,
i.e., limit orders with more lower prices receive higher priority. In many markets, however,
prices are mandated to be discrete with a minimum tick size. In these markets, there may be
multiple limit orders at the same price, which are then prioritized according to the time of
their arrival. While a trader can always increase the priority of his orders by decreasing price,
this comes at an obvious cost. If a trader can submit orders in a faster fashion, however, he
can increase priority while maintaining the same price. Higher priority can be valuable for
two reasons: first, higher priority orders have a higher likelihood of execution over any given
time horizon. To the extent that investors submitting limit orders have a desire to trade, and
to trade sooner rather than later, this is desirable. Second, higher priority orders at the same
price level experience less adverse selection (see, e.g., Glosten, 1994; Sandås, 2001). Hence,
all things being equal, an investor who submits orders with lower latency will benefit from
higher priority than if that investor had higher latency. This can be particularly important
(in that a small improvement in latency can result in a significant difference in priority) when
an existing quote is about to change. For example, consider the situation where a stock price
is about to move up because of trades or cancellations at the best offered price. One might
expect the bid price to rise as well, there will be a race among traders reacting to the same
order book events to establish time priority at the new bid.

In this paper, we will quantify the cost of latency due to the first effect, a lack of contemporane-
ous decision making. We do not consider effects of latency that arise from strategic considerations,
or from time priority rules or price discreteness. It is an open question as to whether the other
effects are more or less significant than the first, and their relative importance may depend on the
particular investor and their trading strategy. Our analysis does not speak to this point. However,
in what follows we will demonstrate that, by itself, the lack of contemporaneous decision making
can induce trading costs that are of the same order of magnitude as other execution costs faced by
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large investors, and hence cannot be neglected.
Further, the importance of contemporaneous decision making will certainly vary from investor

to investor. We will focus on an aspect of this that is universal, however, which is the importance
of timely information for the execution of contingent orders. A contingent order, such as a limit
order in an electronic limit order book or a resting order in a dark pool, presents the possibility of
uncertain execution over an interval of time in exchange for price improvement relative to a market
order, which executes immediately and with certainty. Specifically, when an investor employs a
contingent order, the investor may be exposed to the realization of new information (for example,
in the form of price movements, news, etc.) over the lifespan of the order. Latency, which prevents
the investor from continuously and instantaneously accessing the market so as to update the order,
can thus adversely impact the investor.

As a broad proxy for understanding the importance of latency in contingent order execution,
we consider the effects of latency in an extremely simple yet fundamental trade execution problem:
that of a risk-neutral investor who wishes to sell 1 share of stock (i.e., an atomic unit) over a fixed,
short time horizon (i.e., seconds) in a limit order book, and must decide between market orders
and limit orders. Our problem formulation is reminiscent of barrier-diffusion models for limit order
execution (e.g., Harris, 1998). It captures the fundamental cost of immediacy of trading (e.g.,
Grossman and Miller, 1988; Chacko et al., 2008), that is, the premium due to a patient liquidity
supplier (who submits limit orders) relative to an impatient demander of liquidity (who submits
market orders). While this problem is quite stylized, we will argue that it is broadly relevant since,
at some level, all investors make such a choice of immediacy. For example, it may not seem at first
glance that our execution problem is relevant for a pension fund that trades large blocks of stock
over multiple days. However, the execution of a block trade via algorithmic trading involves the
division of a large “parent” order into many atomic orders over the course of a day, each of these
atomic “child” orders can be executed as limit orders or as market orders.

In our problem, in the absence of latency, the optimal strategy of the seller is a “pegging”
strategy: the seller maintains a limit order at a constant spread above the bid price at any instant
in time. We consider this case as a benchmark. In the presence of latency, the seller can no longer
maintain continuous contact with the market so as to track the bid price in the market. The
seller is forced to deviate from the benchmark policy in order to take into account the uncertainty
introduced by the latency delay by incorporating a safety margin and lowering his limit order prices.
The friction introduced by latency thus results in a loss of value to the seller. We will establish the
difference in value to the seller between the case with latency and the benchmark case via dynamic
programming arguments, and thus provide a quantification of the effects of latency.

The contributions of this paper are as follows:

• We mathematically quantify the cost of latency.

The trading problem we consider (deciding between limit and market orders) is faced by all
large investors in modern equity markets, either directly (e.g., high frequency traders) or
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indirectly (e.g., pension funds who execute large trades via providers of automated execution
services). Our analysis suggests that latency impacts all of these market participants, and
that, all else being equal, the ability to trade with low latency results in quantifiably lower
transaction costs. Further, when calibrated with market data, the latency cost we measure
can be significant. It is of the same order of magnitude as other trading costs (e.g., commis-
sions, exchange fees, etc.) faced by the most cost efficient large investors. Moreover, it is
consistent with the rents that are extracted by agents who have made the requisite technolog-
ical investments to trade with ultra low latency. For example, the latency cost of our model
is comparable to the execution commissions charged by providers that offer algorithmic trade
execution services on an agency basis. It is also comparable to the reported profits of high
frequency traders.

To our knowledge, our model is the first to provide a quantification of the costs of latency in
trade execution.

• We provide a closed-form expression for the cost of latency as a function of well-known pa-
rameters of the asset price process.

The cost of latency in our model can be computed numerically via dynamic programming.
However, in the regime of greatest interest, where the latency is close to zero, we provide a
closed-form asymptotic expression. In particular, define the latency cost associated with an
asset as the costs incurred due to latency as a fraction of the overall cost of immediacy (the
premium paid to a patient liquidity supplier by an impatient demander of liquidity). Given
a latency of ∆t, a price volatility of σ, and a bid-offer spread of δ, the latency cost takes the
form

(1) σ
√

∆t
δ

√
log δ2

2πσ2∆t

as ∆t→ 0.

• Our method can provide qualitative insight into the importance of latency.

From (1), it is clear that the latency cost is an increasing function of the ratio of the standard
deviation of prices over the latency interval (i.e., σ

√
∆t) to the bid-offer spread. Latency

has a more important role when trading assets that are either more volatile (σ large) or,
alternatively, more liquid (δ small). Further, as the latency approaches 0, the marginal
benefit of latency reduction is increasing.

• We empirically demonstrate that latency cost incurred by trading on a human time scale has
dramatically increased for U.S. equities and the implied latency of a representative trader in
this market decreased by approximately two orders of magnitude.
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We consider the cost due to the latency of trading on the time scale of human interaction.Using
the data-set of Aït-Sahalia and Yu (2009), we estimate the latency cost of NYSE common
stocks over the 1995–2005 period. We show that the median latency cost roughly tripled in
this time. This coincides with a period of decreasing tick sizes and increasing algorithmic and
high frequency trading activity (Hendershott et al., 2010).

An alternative perspective is to consider a hypothetical investor who fixes a target level of cost
due to latency, relative to the overall cost-of-immediacy. The representative trader maintains
this target over time through continual technological upgrades to lower levels of latency. We
determine the requisite level of implied latency for such a trader, over time and across the
aggregate market. Using the same data-set, we observe that the median implied latency
decreased by approximately two orders of magnitude over this time frame.

The rest of this paper is organized as follows: In Section 1.1, we review the related literature. In
Section 2, as a starting point, we present a stylized, continuous-time trade execution problem in the
absence of latency. We develop a variation of the model with latency in Section 3. In Section 4, we
provide a mathematical analysis of the optimal policy for our problem. By contrasting the results
in the presence and absence of latency, we are able to quantitatively assess the cost of latency. In
Section 5, we consider some empirical applications of the model. Finally, in Section 6 we conclude
and discuss some future directions.

1.1. Related Literature

There has been a significant empirical literature studying, broadly speaking, the effects of improve-
ments in trading technology. Closest to the aspect we consider is the work of Easley et al. (2008).
They empirically test the hypothesis that latency affects asset prices and liquidity by examining the
time period around an upgrade to the New York Stock Exchange technological infrastructure that
reduced latency. Hendershott et al. (2010) explore the more general, overall effects of algorithmic
and high frequency trading. Hasbrouck and Saar (2009) provide different evidence of changes in
investor trading strategies that may be a result of improved technology. In subsequent work, they
further consider the impact of measurements of low latency on market quality (Hasbrouck and Saar,
2010). Hendershott and Riordan (2009) analyze the impact of algorithmic trading on the price for-
mation process using a data set from Deutsche Börse and conclude that algorithmic trading assists
in the efficient price discovery without increasing the volatility. Kirilenko et al. (2010) consider the
impact of high frequency trading on the ‘flash crash’ of 2010, while Brogaard (2010) more broadly
examines the impact of high frequency traders on market quality.

On the theoretical front, Cespa and Foucault (2008) consider a rational expectations equi-
librium between investors with different access to past transaction data. Some investors observe
transactions in real-time, while others only observe transactions with a delay. This model of latency
focuses on latency of the price ticker of past transactions, as opposed to latency in execution, which
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we consider here. Moreover, the goals of the two models differ significantly: Cespa and Foucault
(2008) seek to build intuition regarding the equilibrium welfare implications of differential access
to information via a structural model. We, on the other hand, seek a reduced form model that can
be used to directly estimate the value of execution latency in a particular real world instance, given
readily available data. Also related is the work of Ready (1999) and Stoll and Schenzler (2006), who
consider the ability of intermediaries (e.g., specialists or dealers) to delay customer orders for their
own benefit, thus creating a “free option” in the presence of execution latency. Cohen and Szpruch
(2011) show that latency arbitrage exists between two traders with different speeds of trading in
the presence of a limit order book. Finally, Cvitanić and Kirilenko (2010) and Jarrow and Protter
(2011) consider the effect of high frequency traders on asset prices.

The trade execution problem we consider is that of an investor who wishes to sell a single share
of and must decide between market and limit orders. This problem has been considered by many
others (e.g., Angel, 1994; Harris, 1998; Lo et al., 2002). Our formulation is similar to the class of
barrier-diffusion models considered by these authors; Hasbrouck (2007) provides a good account
of this line of work. For a broad survey on limit order markets, see Parlour and Seppi (2008).
In our model, the inability to trade continuously gives a limit order an option-like quality that
relates execution cost, order duration, and asset volatility. This idea goes as far back as the work
of Copeland and Galai (1983). Closely related is the concept of the cost of immediacy, or, the
premium paid by a liquidity demander via a market order to a liquidity supplier who posts a limit
order. Grossman and Miller (1988) and Chacko et al. (2008) develop theoretical explanations of
the cost of immediacy. For empirical evidence of the demand for immediacy in capital markets, see
Bacidore et al. (2003) and Werner (2003).

Finally, also related is work on the discrete-time hedging of contingent claims with or without
transaction costs (e.g., Boyle and Emanuel, 1980; Leland, 1985; Bertsimas et al., 2000). This
literature addresses a different problem and draws different conclusions than our paper, however
both relate to implications of a lack of continuous access to the market.

2. A Stylized Execution Model without Latency

Our goal is to understand the impact on the trade execution of latency. To this end, we will first
describe a trade execution problem in the absence of latency. In Section 3, we will revisit this model
in the presence of latency, so as to understand the resulting trade friction that is introduced. The
spirit of our model it to consider an investor who wants to trade, but at a price that depends on an
informational process that evolves stochastically and must be monitored continuously. We could
directly consider such an abstract model of investor behavior. Instead, however, we will motivate
the informational dependence of the trader through a specific optimal execution problem.

Consider the following stylized execution problem of an uninformed trader who must sell exactly
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one share6 of a stock over a time horizon [0, T ]. At any time t ∈ [0, T ), the trader can take one of
two actions:

1. The trader can submit a market order to sell. This order will execute at the best bid price
at time t, denoted by St. We assume that the bid price evolves according to

(2) St = S0 + σBt,

where the process (Bt)t∈[0,T ] is a standard Brownian motion and σ > 0 is an (additive) volatil-
ity parameter. Here, the choice of Brownian motion is made for simplicity; our model can be
extended to the more general class of Markovian martingales, as discussed in Section 4.4.

2. The trader can choose to submit a limit order to sell. In this case, the trader must also decide
the limit price associated with the order, which we denoted by Lt.

Once the trader sells one share, he exits the market. If the trader is not able to sell 1 share before
time T , however, we assume that he is forced sell via a market order at time T , and therefore
receives ST . Here, we imagine the time horizon T to be small, on the order of the typical trade
execution time (i.e., seconds).

2.1. Limit Order Execution

It remains to describe the execution of limit orders. In our setting, a limit order can execute in one
of the following two ways:

1. We assume that there are impatient buyers who arrive to the market according to a Poisson
process with rate µ. Denote by (Nt)t∈[0,T ) the cumulative arrival process for impatient buyers.
Each impatient buyer seeks to buy a single share. An arriving impatient buyer arriving at
time t has a reservation price St + zt, expressed as a premium zt ≥ 0 above the bid price
St that the buyer is willing to forgo in order to achieve immediate execution. We assume
that the premium zt is independent and identically distributed with cumulative distribution
function F : R+ → [0, 1]. In this setting, the instantaneous arrival rate of impatient buyers
at time t willing to pay a limit order price of Lt is given by

(3) λ(ut) , µ
(
1− F (ut)

)
,

where ut , Lt − St is the instantaneous price premium of the limit order. In what follows,
6Note that the trade quantity of a single share is meant to represent an atomic unit of the asset, or the smallest

commonly traded lot size. The underlying assumption is that the desired trade execution will ultimately be accom-
plished by a single transaction. In typical U.S. equity markets, for example, this atomic unit might be a block of 100
shares.
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t
0 T

St

Lt

Sτ1 + δ

τ1

Sτ2 + δ

τ2 τ3

market orders arrive

limit order executes

Figure 1: An illustration of the limit order execution in the stylized model over the time horizon [0, T ].
Here, we assume the trader leaves a limit order with the (constant) price Lt and St is the bid price
process. If market orders arrive at times τ1 and τ2, the limit order would execute at time τ2 but not
time τ1, since the limit order price is in excess of δ to the best bid price. The limit order would also
execute at time τ3 in the absence of a market order arrival, since the bid price crosses the limit order
price at this time.

we will be particularly interested in the special case where

(4) λ(ut) ,

µ if ut ≤ δ,

0 otherwise.

Here, we assume that every impatient buyer is willing to pay a price premium of at most
δ > 0. We assume that δ will be specific to the security and fixed for the trading horizon.
We will discuss the extension to the general case (3) in Section 4.4.

Given (4), an impatient buyer is willing to buy 1 share at a fixed premium δ > 0 to the bid
price at the time of their arrival. Hence, if a buyer arrives at time τ ∈ [0, T ), and the trader
has placed a limit order with price Lτ , the limit order will execute if Lτ ≤ Sτ + δ.

2. Alternatively, a limit order will also execute at time τ if the bid price crosses the limit order
price, i.e., Sτ ≥ Lτ .

The execution of limit orders in the model is illustrated in Figure 1.
The limit order execution dynamics above can also be economically interpreted in the spirit

of the non-informational trade model of Roll (1984). In particular, imagine that the asset has a
fundamental value Vt at time t, and that Vt evolves exogenously according to the additive random
walk

Vt = V0 + σBt.

If all investors observe this underlying value process and are symmetrically informed, competitive
market makers will always be willing to sell shares at a price of δ/2 above the fundamental value
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or buy shares at a spread of δ/2 below the fundamental value. Here, the quantity δ captures the
per share operating costs of trade to the market markers. The liquidating trader can thus sell at
the bid price St = Vt − δ/2 at any time t. We assume that all other traders in the market are
impatient, and that these traders arrive according to the Poisson dynamics described above. An
arriving impatient buyer will choose to purchase from the liquidating trader only at a price lower
than that provided by the market makers, i.e., only below the price of Vt+δ/2 = St+δ. In this way,
we can interpret the parameter δ as the prevailing bid-offer spread, that is, the bid-offer spread in
the absence of the liquidating trader.

2.2. Optimal Solution

Let P denote the random variable associated with the sale price. We assume the trader is risk-
neutral and seeks to maximize the expected sale price. Equivalently, we assume the trader seeks
to solve the optimization problem

(5) h̄0 , maximize E [P ]− S0.

Here, the maximization is over policies of market orders and limit orders which are non-anticipating,
i.e., policies adapted to the filtration generated by the underlying market primitives, (Bt, Nt)t∈[0,T ].
This objective is equivalent to minimizing implementation shortfall (Perold, 1988).

Note that, while this stylized problem may seem quite simplified, it seeks to answer a funda-
mental question: at the level of an atomic unit of stock and over a short time horizon, how should
a risk-neutral investor choose between limit orders and market orders? This problem is a central
ingredient in more sophisticated optimal execution problems involving risk averse investors selling
large quantities over longer time horizons.7 This is because, in a typical algorithmic trading setting,
a large “parent” order will be scheduled across time into many very small “child” orders. Each of
these “child” orders need to be executed optimally. Since each child order is small and since there
are many such child orders, it is reasonable to view the investor as risk-neutral with respect to each
child order.

The following lemma characterizes a simple strategy that is optimal for the execution problem
we have described:

Lemma 1. An optimal strategy is to employ only limit orders at times t ∈ [0, T ), with limit price
Lt = St + δ. In other words, the limit order price is “pegged” at a constant premium δ above the
bid price. This pegging strategy achieves the optimal value

(6) h̄0 = δ
(
1− e−µT

)
.

7For example, see Bertsimas and Lo (1998) or Almgren and Chriss (2001). These questions have also recently
been addressed by Back and Baruch (2007) and Pagnotta (2010) in equilibrium settings.
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t
0 T

St

Lt

Lt = St + δ

Figure 2: An illustration of an optimal strategy with no latency, over the time horizon [0, T ]. The
trader uses only limit orders prior to end of the time T . The limit order price Lt is pegged to the bid
price St, with an additional premium corresponding to the bid-offer spread δ.

Proof. Consider a trader using an arbitrary strategy, and denote by τ ∈ [0, T ] the (random) time
at which the trader sells the share, and by τ1 ∈ [0,∞) the time at which the first impatient buyer
arriving to the market. Let E be the event that the trader sells via a limit order to an impatient
buyer at the price Lτ . Then, under the event Ec, the trader sells at the bid price Sτ . Then, the
sale price P can be written as8

P = Sτ IEc + Lτ IE ≤ Sτ IEc + (Sτ + δ)IE ≤ Sτ + δI{τ1<T}.(7)

Here, for the first inequality, we used the fact that an impatient buyer will only buy at time τ is
Lτ ≤ Sτ + δ, and, for the second inequality, we used the fact that the event E can only occur if
an impatient buyer arrives in the time interval [0, τ). Denote by h̄0 the value under an optimal
strategy. Using the fact that τ is a bounded stopping time and the fact that St is a martingale, by
the optional sampling theorem,

h̄0 ≤ E[P ]− S0 ≤ E[Sτ + δI{τ1<T}]− S0 = δP(τ1 < T ) = δ
(
1− e−µT

)
.

On the other hand, the hypothesized strategy results in equality in (7). Thus, the result follows. �

The optimal pegging strategy suggested by Lemma 1 is illustrated in Figure 2. This policy can
be interpreted intuitively as follows: since the trader is risk-neutral and the bid price process is a
martingale, the trader is indifferent between trading at time 0 at the bid price or trading at any
other time at the bid price. Via a limit order, however, the trader can receive a price which is in
excess of the bid price. The excess premium is limited to δ, since an impatient buyer will not pay
more than this. Hence, the trader maintains a single limit order in the book, and continuously
updates the price to track bid price, plus an additional premium of δ.

Note that our stylized execution model captures only the behavior of a single agent. Our model
8We denote by IE the indicator function of the event E .
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does not capture the strategic response of other agents, either competing agents submitting limit
orders to sell, or contra-side impatient buyers. Both of these types of agents might be expected to
react to the activity of the limit order trader, and may diminish the gains of the limit order trader.
Separately, our model also exaggerates the gains to be earned by placing limit orders rather than
market orders, due to the fact we do not include adverse selection costs incurred by limit orders.

However, at a high level, a trader in our model with a mandate to trade over a fixed time horizon
but with no private information as to the asset value prefers limit orders to market orders. We
believe this is representative of the situation of algorithmic traders executing large “parent” orders
in practice. When executing a “child” order over a short time horizon, such traders typically first
submit limit orders, and then “clean up” with market orders as time runs short. Hence, despite
omissions of strategic considerations and other significant simplifications, the resulting policies do
capture representative features of real world trading, if only at a stylized level. Moreover, our
simplified single-agent mode enables us to address the dynamic nature of trade execution and
obtain a closed-form expression highlighting the exact drivers of the latency cost.

3. A Model for Latency

The optimal policy for the stylized execution problem of Section 2 relied on the ability of a trader to
continuously track an informational process, namely, the bid price in the market, and to update his
order as the process evolves. Here, we will consider a variation of that problem where the trader
is unable to continuously participate in the market, but faces a fixed latency ∆t > 0.9 We are
interested in quantifying the cost of this latency by comparing the expected payoff in this model to
that in the stylized model without latency. Note that the model at hand is quite basic with regards
to some of primitives (e.g., the stochastic process describing the evolution of bid prices), we will
discuss a number of tractable extensions in Section 4.4, including more complicated models of the
bid price process and of limit order execution.

In general, latency that a trader experiences can take many forms. Minimally, for example,
there is the delay of the data feeds that deliver market price information to the trader. There is
the delay of the trader’s own decision making. Finally, there is the delay of the trader’s resulting
order reaching the marketplace. We assume that the trader makes decisions instantaneously — we
will see that this is reasonable since the optimal decision rule for the trader will take a very simple
form. Further, from the trader’s perspective, the roundtrip delay (the total delay for an order to
be processed by an exchange and reflected in the data feeds observed by the trader) cannot be
decomposed into a delay to the exchange and a delay from the exchange. Hence, without loss of

9Note that many modern exchanges explicitly allow for pegged orders; these orders obviate the need for the trader
to continually track the bid price in the manner we describe. However, more generally, when tracking an alternative
informational process such as the price on a different exchange, the fundamental value (see Section 2), etc., a trader
would still need to continuously monitor the market relative to the informational process, and latency would be
important.
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T0 = 0 Ti = i∆t Ti+1 Ti+2 T = n∆t· · · · · ·

`i−1
`i

`i+1

`0 `i `i+1 `i+2

Figure 3: An illustration of the model of latency. Here, the time horizon [0, T ] is divided into n slots,
each of duration equal to the latency ∆t. The limit order price `i is decided at the start of the ith
time slot, i.e., at time Ti. This price only takes effect ∆t units of time later, and is active during the
subsequent time interval [Ti+1, Ti+2).

generality, we will assume that the trader is able to observe market price information with no delay
or latency,10 but that the trader’s orders experience a latency ∆t before they are processed by the
exchange. This latency is meant to capture, for example, networking or routing delays that are
specific to the trader, and that might be reduced through colocation or additional investment in
networking technology.

In our latency model, we consider an investor who maintains a limit order to sell one share over
the time horizon [0, T ] (the possibility of market orders will be discussed shortly), so that once
the limit order is executed, the investor immediately exits the market. The time horizon [0, T ] is
divided into n slots each of length ∆t, i.e., T = n∆t. For each i ∈ {0, 1, . . . , n}, define Ti , i∆t.

At each time Ti, based on all information observed thus far, we assume that the trader can
instantaneously decide to update the limit order with a new price `i. Due to a latency of ∆t, the
updated price does not reach the market and take effect until the beginning of the next time slot,
i.e., Ti+1. This limit order price remains active until time Ti+2, at which point it is superseded11

by the next price `i+1. This sequence of events is illustrated in Figure 3. Between the time Ti,
when the price `i is decided, and the time Ti+1, when the updated order reaches the market, the
following events can occur:

• E(1)
i : An impatient buyer arrives in the time interval (Ti, Ti+1) and `i−1 ≤ STi + δ, i.e., the

prior limit price `i−1, which is active at that time, is within a margin δ of the bid price at the
start of the interval. In this case, the limit order executes at the price `i−1, and the investor
leaves the market. Note that the updated limit price `i never takes effect.

We assume that the probability that an impatient buyer arrives in any given time slot is µ∆t,
and that these arrivals occur independently of everything else.12 We assume that ∆t < 1/µ

10Equivalently, we can assume that our definition of time corresponds to the trader’s clock.
11In practice, this ordering scheme might be achieved by a sequence of cancel-and-replace limit orders, each of

which cancels the prior limit order, and inserts a new limit order with the updated price. If the prior limit order has
already been filled when a subsequent cancel-and-replace order arrives, the new order will fail. Hence, the investor is
guaranteed to sell at most one share.

12Note that this is simply a discrete-time Bernoulli arrival process that is analogous to the the Poisson arrival
process of Section 2.
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so that this probability is well-defined. The bid price process evolves according to the random
walk (2).

• E(2)
i : Otherwise, if STi+1 ≥ `i, i.e., the bid price has crossed the order price `i at the instant

the order reaches the market, then the order immediately executes at price STi+1 .

• E(3)
i : Otherwise, the limit order price `i is active over the time interval [Ti+1, Ti+2).

In order to consider the possibility of market orders, we allow the limit price `i = −∞. By
picking this price, the trader can guarantee that the bid price at time Ti+1 will cross the order price,
i.e., STi+1 ≥ `i with probability 1. Thus, the choice of `i = −∞ corresponds to a certain execution
at the bid price STi+1 , i.e., a market order. Similarly, the trader can make the decision at time Ti
not to trade by setting `i = ∞. As in the model of Section 2, if the investor has been unable to
sell the share by the end of the time horizon T , the investor is forced to sell via a ‘clean-up’ trade,
i.e., a market order at time T . This is accomplished by enforcing the constraint that `n−1 = −∞,
which we will assume implicitly in what follows.

As before, if P is the random variable associated with the sale price, the trader is risk-neutral
and seeks to solve the optimization problem

(8) h0(∆t) , maximize
`0,...,`n−1

E [P ]− S0.

Here, the maximization is over the choice of limit order prices (`0, `1, . . . , `n−1). We assume that
the price decisions are non-anticipating, i.e., each `i is adapted to the filtration generated by the
bid price process and the arrival of impatient buyers up to and including time Ti. Our goal is to
analyze h0(∆t), which is the value under an optimal trading strategy when the latency is ∆t.

Note that, as compared to the model of Section 2, our present model with latency differs in two
ways: First, the trader makes decisions at the beginning of discrete-time intervals of length ∆t, as
opposed to continuously. Second, the orders of the trader incur a latency or delay of length ∆t
before they reach the marketplace. We are interested in studying the impact of the latter feature,
latency, and we adopt the former feature, discrete-time decision making, so as to admit a tractable
dynamic programming analysis. In Section 4.3, however, we will see that in the low latency regime
in which we are most interested, the discrete-time nature of our model has a negligible impact.

4. Analysis

In this section, we solve for the optimal policy for the trader in the latency model of Section 3. This
problem can be solved via a dynamic programming decomposition that is presented in Section 4.1.
While the exact dynamic programming solution can be computed numerically, in Section 4.2 we
will present an asymptotic analysis that provides a closed-form analytic expression for the cost of
latency in the low latency regime, where ∆t→ 0. In Section 4.3, we will consider the implications
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of the discrete-time nature of our latency model. Finally, in Section 4.4, we will discuss a number
of extensions of our latency model.

4.1. Dynamic Programming Decomposition

The standard approach to solving the optimal control problem (8) is to employ dynamic program-
ming arguments. In Appendix A of the electronic companion, we formally derive the optimal
control policy using these methods. In order to focus on the high level picture, however, for the
moment we will be content with summarizing those results.

In particular, assume a fixed latency of ∆t. For each decision time Ti with 0 ≤ i < n, define Ui
to be the event that the trader’s limit order remains unfulfilled prior to time Ti+1, i.e., none of the
orders submitted at prices `0, . . . , `i−1 are executed. Note that if the event Ui does not hold, then
the limit order price `i to be decided at time Ti is irrelevant. This is because, by the time that
order arrives to the market, the trader would have already sold a share. Define the quantity

(9) hi , maximize
`i,...,`n−1

E [P | STi , Ui]− STi .

Note that h0 = h0(∆t), where h0(∆t) is defined in (8), and thus our notation is consistent. More
generally, for i > 0, we can interpret hi to be the trader’s expected payoff at time Ti relative to
the current bid price STi under the optimal policy, the order does not get filled prior to time Ti+1.
Thus, hi can be interpreted as a continuation value in the dynamic programming context.

The continuation values {hi} quantify the remaining value for a trader at each time period if
his order remains unfulfilled. Given the continuation values, at each time Ti, the investor can make
an optimal decision as to the limit order price `i by balancing the benefits of execution in the time
slot [Tt+1, Ti+2) with the value hi+1 that will be obtained if the order is not executed. Moreover,
the optimal decisions and continuation values can be jointly computed via backward induction of a
Bellman equation. This result is captured in the following theorem. The proof, which is provided
in Appendix A of the electronic companion, follows from formal dynamic programming arguments.

Theorem 1. Suppose {hi} satisfy, for 0 ≤ i < n− 1,

hi = max
ui

{
µ∆t

[
ui

(
Φ
(

ui

σ
√

∆t

)
− Φ

(
ui − δ
σ
√

∆t

))
+ σ
√

∆t
(
φ

(
ui

σ
√

∆t

)
− φ

(
ui − δ
σ
√

∆t

))]
+hi+1

[
(1− µ∆t)Φ

(
ui

σ
√

∆t

)
+ µ∆tΦ

(
ui − δ
σ
√

∆t

)]}
,

(10)

and

(11) hn−1 = 0.

Here, φ and Φ are, respectively, the p.d.f. and c.d.f. of the standard normal distribution. Then,
{hi} correspond to the continuation values under the optimal policy.
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Suppose further that, for 0 ≤ i < n−1, u∗i is a maximizer of (10). Then, a policy which chooses
limit order prices which are pegged to the bid prices according to the premia defined by {u∗i }, i.e.,

`∗i = STi + u∗i , ∀ 0 ≤ i < n− 1,

is optimal.

Theorem 1 suggests a computational strategy for determining continuation values and an opti-
mal policy. Starting with the terminal condition hn−1 = 0, one proceeds via backward induction,
solving the single variable optimization problem (10) over the decision variable ui once per time
slot. So long as optimal solutions exist, they will determine the continuation values and optimal
policy. Moreover, the optimal policy is a pegging strategy. That is, the limit order price is pegged at
a deterministic (but time varying) premium above the current bid price. These limit order premia
are given by the maximizers {u∗i }.

In the following theorem, whose proof is provided in Appendix B of the electronic companion,
we establish the existence and uniqueness of the optimal solutions to (10) and provide upper and
lower bounds for the resulting limit price premia, for small values of latency ∆t.

Theorem 2. Fix α > 1. If ∆t is sufficiently small, then there exists a unique optimal solution {hi}
to the dynamic programming equations (10)–(11). Moreover, the corresponding optimal policy {u∗i }
is unique. For 0 ≤ i < n− 1, this strategy chooses limit prices in the range

`∗i ∈

Si + δ − σ

√
∆t log αL∆t , Si + δ − σ

√
∆t log R(∆t)

∆t

 ,
where

L ,
δ2

2πσ2 , R(∆t) , δ2(1− µ∆t)2n

2πσ2 .

Figure 4 illustrates the intuition behind Theorem 2, by considering the situation of a trader at
time t = 0, when the bid price is S0. In the absence of latency, the trader would peg the limit order
price at a fixed premium of δ, i.e., `0 = S0 +δ. This would result in a trade with the next impatient
buyer with probability 1. If there is latency present, however, this limit price is not optimal. To see
this, suppose that an impatient trader will arrive at time τ1 ∈ (∆t, 2∆t). If the limit order price is
set at `0, the probability that the trade does not get executed is

P (`0 ≥ S∆t + δ) = P (S0 ≥ S∆t) = 1/2.

When ∆t is small, the probability of missing an execution can be significantly lowered at a small
cost by lowering `0 by an additional safety margin. If we set this safety margin to be C standard
deviations of the one-period price change, i.e., `′0 = S0 +δ−Cσ

√
∆t, then the probability of missing
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Figure 4: An illustration of the optimal policy of Theorem 2. In the absence of latency, at time t = 0,
the trader would set the limit price at a premium of δ, i.e., `0 = S0 + δ. In an environment with latency,
the trader might set the limit price to be `′0, which lowers `0 by an additional safety margin of C
standard deviations. This serves to increase the likelihood of trade execution in the interval (∆t, 2∆t).
The optimal limit price `∗0 utilizes a safety margin that is slightly larger.

execution becomes

P
(
`′0 ≥ S∆t + δ

)
= P

(
S0 − Cσ

√
∆t ≥ S∆t

)
= Φ(−C).

This probability can be made close to 0 by the choice of C. However, given a fixed choice of C
independent of ∆t, the probability remains constant (i.e., independent of ∆t) and non-zero. The
additional safety margin corresponding to the log term in Theorem 2 is a second order adjustment.
This is introduced so that, given the optimal limit price `∗0, the probability of execution tends to 1
as ∆t→ 0.

4.2. Asymptotic Analysis

The dynamic programming decomposition developed in Section 4.1 allows the exact numerical
computation of the value h0(∆t), the value under an optimal policy of the latency model introduced
in Section 3, when the latency is ∆t. As discussed earlier, the latency observed in modern electronic
markets is extremely small, often on the time scale of milliseconds. Thus, we are most interested in
the qualitative behavior of h0(∆t) in the asymptotic regime where ∆t→ 0. The main result of this
section is the following theorem, whose proof is provided in Appendix C of the electronic companion.
It provides a closed-form expression for h0(∆t), which holds asymptotically13 as ∆t→ 0.

13In what follows, given arbitrary functions f and g, and a positive function q, we will say that f(∆t) =
g(∆t) + O(q(∆t)) if lim sup∆t→0 |f(∆t) − g(∆t)|/q(∆t) < ∞, i.e., if the difference between f and g, as ∆t → 0,
is asymptotically bounded above by some positive multiple of q. Similarly, we will say that f(∆t) = g(∆t)+o(q(∆t))
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Theorem 3. As ∆t→ 0,

h0(∆t) = h̄0

1− σ

δ

√
∆t log δ2

2πσ2∆t

+ o
(√

∆t
)
,

where
h̄0 = δ

(
1− e−µT

)
is the optimal value for the stylized model without latency, i.e., the value defined by (5).

Theorem 3 is not surprising when considered in the context of Theorem 2. In the stylized model
without latency, the optimal strategy is to peg the limit order price at a premium of δ, and this
yields a value of h̄0. On the other hand, Theorem 2 suggests a trader facing latency ∆t will lower
this limit price premium by a factor of, approximately,

σ

δ

√
∆t log δ2

2πσ2∆t + o
(√

∆t
)
.

If this lowers the ultimate value proportionally, then the value of the optimal policy in the presence
of latency ∆t should approximately be

h̄0

1− σ

δ

√
∆t log δ2

2πσ2∆t

+ o
(√

∆t
)
.

The proof of Theorem 3, provided in Appendix C of the electronic companion, makes this intuition
precise.

One implication of Theorem 3 is that h0(∆t) → h̄0 as ∆t → 0, i.e., the value of the latency
model converges to that of the stylized model without latency of Section 2. This suggests the
following definition:

Definition 1. Define the latency cost associated with latency ∆t by

(12) LC(∆t) , h̄0 − h∗0(∆t)
h̄0

.

Latency cost has an easy interpretation. Using h̄0, the value obtained in the stylized model
without latency as a benchmark, the numerator of (12) is the lost revenue incurred due the the
presence of latency. On the other hand, we can regard the denominator as the cost of immediacy for
an impatient investor in a time horizon of length T . This is because, in the stylized model without

if lim∆t→0 |f(∆t)− g(∆t)|/q(∆t) = 0, i.e., if the difference between f and g, as ∆t→ 0, is asymptotically dominated
by every positive multiple of q. Finally, we will say that f(∆t) = g(∆t) + Θ(q(∆t)) if 0 < lim inf∆t→0 |f(∆t) −
g(∆t)|/q(∆t) ≤ lim sup∆t→0 |f(∆t) − g(∆t)|/q(∆t) < ∞, i.e., if the difference between f and g is asymptotically
bounded above and below by positive multiples of q.
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latency, it is the difference in revenue obtained by a risk-neutral investor willing to patiently provide
liquidity by employing limit orders over the length of the time horizon, and an impatient investor
who demands immediate liquidity and sells at the bid price at time t = 0, cf. (5). Therefore, we
can describe the latency cost as the amount a trader forgoes due to latency, as a percentage of the
cost of immediacy.

The following corollary restates the asymptotic approximation of Theorem 3 in terms of latency
cost.

Corollary 1. As ∆t→ 0,

LC(∆t) = σ
√

∆t
δ

√
log δ2

2πσ2∆t + o
(√

∆t
)
.

There are a number of interesting observations that can be made regarding the asymptotic
approximation of Corollary 1. First of all, asymptotically, latency cost does not depend on the
length of the time horizon T or the arrival rate of impatient traders µ. As a function of the
remaining parameters, the asymptotic latency cost depends only on a composite parameter that
is the ratio the one-period standard deviation of price changes σ

√
∆t to the bid-offer spread δ.

Both of these quantities are readily measurable empirically. Corollary 1 suggests that the latency
cost increasing in this ratio. Thus, at the same level of latency, the latency cost is most significant
for assets which are very volatile or very liquid. Further, Corollary 1 suggests that, when latency
is low, there are increasing marginal benefits to further reductions in latency, i.e., LC′′(∆t) < 0.
In Section 5.1, we illustrate some of facts numerically, as well as considering the accuracy of our
approximation, as compared to the exact latency cost.

4.3. Discreteness of Time vs. Latency

The latency model introduced in Section 3 differs from the the stylized model without latency of
Section 2 in two principal ways: (i) the trader faces a delay or latency between the time that trading
decisions are made and when they reach the marketplace, and (ii) the latency model is formulated
in discrete-time rather than continuous time. The latter point refers to the facts that, in the model
with latency, a trader is only able to update his limit order at discrete intervals of time rather
than continuously, impatient buyers arrive according to a Bernoulli process rather than a Poisson
process, etc. In order to disentangle these two effects, in this section we will briefly describe a
trading model that is formulated in discrete time but without latency. By considering this model,
we will demonstrate that the asymptotic latency cost derived in Section 4.2 is indeed due to latency
effects and not due to the discreteness of time.

To this end, consider a model in the discrete-time setting of Section 3 but with no latency. Here,
at each time Ti , i∆t, for i = 0, 1, . . . , n, the investor sets a limit order price `i. This limit order
price takes effect immediately. Between time Ti and time Ti+1 the following events can occur:

19



• If STi ≤ `i, i.e., the bid price is less than the limit order price, the limit order immediately
executes at the price STi .

• Otherwise, suppose that an impatient buyer arrives in the time interval (Ti, Ti+1) and `i ≤
STi + δ, i.e., the limit price `i is within a margin δ of the bid price at the start of the interval.
In this case, the limit order executes at the price `i. We assume that an impatient buyer
arrives with probability µ∆t, independent of everything else.

As before, if the investor is unable to sell the share by the end of the time interval, he is forced to
sell via a market order, i.e., `n = −∞. If P is the sale price, the optimal value for the trader in
this discrete model is given by

hD
0 (∆t) , maximize

`0,...,`n
E [P ]− S0.

We have the following result, whose proof is identical to the martingale argument used to establish
Lemma 1.

Lemma 2. An optimal strategy for the discrete model is to place limit orders at the price `i = STi +δ,
for i = 0, 1, . . . , n− 1. This strategy achieves the value

hD
0 (∆t) , δ

(
1− (1− µ∆t)n

)
.

Now, note that, for all 0 < ∆t < 1/µ,

e−µT−
1
2µ

2T∆t ≤ (1− µ∆t)T/∆t ≤ e−µT .

Therefore, the difference in value between the continuous model of Section 2 and the discrete model
considered here is at most

∣∣hD
0 (∆t)− h̄0

∣∣ ≤ δe−µT (1− e−
1
2µ

2T∆t
)
≤ 1

2δµ
2Te−µT∆t.

In other words, this difference is asymptotically O(∆t). By Theorem 3, however, the difference
between the continuous model and the latency model is asymptotically

Θ
(√

∆t log(1/∆t)
)
.

Hence, the asymptotic effect of latency dominates the asymptotic effect of the discreteness of time.

4.4. Extensions

The analysis of the latency model that we have presented proceeded according to two high level
steps:
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(i) First, in Section 4.1, a simplified dynamic programming decomposition was developed. In
this decomposition, at each time, the trader’s value function is parameterized by a single
scalar, rather than being an arbitrary function of state. This allows the Bellman equation to
be solved through a system of n equations in n unknowns, given by (10)–(11).

(ii) Second, in Section 4.2, an asymptotic analysis of the simplified dynamic programming equa-
tions (10)–(11) was performed. This gave rise to the asymptotic latency cost expression of
Corollary 1.

The dynamic programming decomposition step (i) that is at the heart of our analysis can be
extended to a much broader set of stochastic primitives than the present setting. In each of these
cases, a different set of simplified dynamic programming equations, analogous to (10)–(11) would
arise, and would require a customized variation of asymptotic analysis step (ii). In particular,
consider the following tractable generalizations:

• Price process. In our model, the price process St is a Brownian motion. Our dynamic
programming decomposition only requires that the St be a Markov process and a martin-
gale. It would be straightforward to extend the dynamic programming step (i) and con-
sider other Markovian martingales, for example, allowing for non-Gaussian processes, time-
inhomogeneous volatility, or for jump processes.

On the other hand, the asymptotic analysis step (ii) we have presented is quite sensitive
to distributional assumptions of the price process, and would require specialized analysis
for any such generalization. In Appendix D of the electronic companion, we consider one
generalization of particular interest, where the price dynamics also contain a jump component.

• Limit order execution. In our model, the execution of a limit order in the time slot
(Ti, Ti+1) required that the limit order price `i−1 be within a spread δ of the bid price STi ,
and that an impatient trader arrive. More generally, our dynamic programming decomposi-
tion only requires that the execution of this limit order, conditional on the price difference
`i−1 − STi , be independent of everything else. This can accommodate a number of general-
izations, for example, the arrival rate of impatient buyers can be time-varying. Further, the
maximum premium above the bid price St that an impatient buyer is willing to pay can be
randomly distributed, as in (3). This would allow models where a limit order that is priced
aggressively low has a much higher probability of execution. Such models could alternatively
be interpreted, as discussed in Section 2, as cases where the prevailing bid-offer spread is not
constant, but is independent and identically distributed, varying from period to period.

5. Empirical Estimation of Latency Cost

In this section, we will consider empirical applications of our model. First, we will illustrate
the optimal trading policy and the corresponding value function when the model parameters are
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estimated from high frequency market data for a single stock. We will also compare the exact
latency cost (numerically computed via dynamic programming) to the approximation provided by
Corollary 1 in order to access the quality of our approximation. Subsequently, we show the historical
evolution of latency cost and implied latency across a range of U.S. equities using cross-sectional
data on volatilities and bid-offer spreads during the 1995–2005 period.

Our empirical analysis should be regarded as a first-order study to obtain a rough calibration of
our model. It will allow us to analyze the model in relevant parameter regimes, as well as gaining
a broad understanding the implications of our model for the trading of U.S. equities. Under our
modeling assumptions (e.g., Browian motion price processes, Poisson arrivals of impatient traders,
constant bid-offer spread, etc.), our empirical measurement of latency cost requires estimates of the
high frequency price volatility σ and the prevailing bid-offer spread δ. Here, we make a number of
simplifications and rely on the recent empirical work of Aït-Sahalia and Yu (2009) to obtain these
quantities:

• We estimate price volatility σ using the maximum likelihood estimates of the volatility of
returns provided by Aït-Sahalia and Yu (2009). Note that this estimation of high frequency
volatility aims to filter out the impact of microstructure noise and obtain an unbiased estimate
of daily volatility. However, for an investor with a trading horizon of 1 second, microstructure
noise needs to be incorporated as well. Therefore, the high frequency volatility estimate that
is used in our empirical analysis underestimates the actual volatility faced by a high frequency
trader with a very short trading horizon.

• Recall that the prevailing bid-offer spread, δ, equals the bid-offer spread in the absence of
the liquidating trader. In the empirical data, it is impossible to disentangle the presence of
liquidating traders. Moreover, the bid-offer spread will not be constant, but will vary over
the course of the trading day. As a proxy for δ, we use the average bid-offer spread over the
trading day.

Despite these shortcomings, we believe that our empirical analysis can shed light on the importance
of latency in the trading of U.S. equities.

5.1. The Optimal Policy and the Approximation Quality

In what follows, we will numerically evaluate the optimal policy in our model, the corresponding
value function, and the latency cost approximation. These numerical experiments are meant to
be illustrative of our model. We will use realistic model parameters estimated from recent market
data for a single stock. Our methodology here is not meant to be authoritative — there are
many subtleties in the analysis of high frequency data; these are beyond the scope of the work at
hand. However, we do seek to demonstrate that our model parameters can be readily derived from
commonly available data.
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Specifically, the model parameters herein are estimated from trade-and-quote (TAQ) data for a
stock that is a representative example of a liquid name, Goldman Sachs Group, Inc. (NYSE: GS),
on the trading day of January 4, 2010. This data was obtained from the Wharton Research and
Data Services (WRDS) consolidated TAQ database. Only trades and quotes originating from the
primary exchange (NYSE) during regular trading hours were considered. The model parameters
were estimated as follows:

• Initial bid price: SGS
0 = $170.00. This was chosen to be the first transaction price on the

trading day.

• Bid-offer spread: δGS = $0.058, i.e., equivalently, 3.4 basis points relative to the initial price
SGS

0 . This was estimated by computing the average spread between bid and offer quotes over
the course of the trading day and rounding to the nearest cent.

• Arrival rate of market orders: µGS = 12.03 (per minute). This was estimated by dividing the
total number of NYSE trades by the length of the trading day.

• Price volatility: σGS = $1.92 (daily), i.e., approximately equivalent to an annualized volatility
of returns of 17.9%. These were estimated from the time series of transaction prices over the
course of the trading day, using maximum likelihood estimation as described inAït-Sahalia
and Yu (2009).

• Trading horizon: T = 10 (seconds).

Figure 5 illustrates the optimal limit order policy for GS under different values of latency. If
there is no latency, the limit orders are submitted at a constant premium of δ. When there is
latency, the optimal order policy is obtained using the exact dynamic programming solution of
(10)–(11). As the latency increases, the limit order premium is reduced below δ so as to account
for the increasing uncertainty of price movements over the latency interval. Theorem 2 suggests
that this reduction is approximately equal to

(13) σ

√
∆t log δ2

2πσ2∆t .

In Figure 5, we see that, with a latency of 500 ms, this adjustment is up to approximately 1.4σ
√

∆t,
i.e., 1.4 times the standard deviation of prices over the latency interval. When the latency is reduced
to 250 ms and to 50 ms, the adjustment increases to 1.6 and 2.1 standard deviations, respectively.
The fact that this adjustment, when measured as a multiple of the uncertainty over the latency
period, increases as the latency decreases is consistent with (13).

In Figure 5, we also observe that as t increases and the trading deadline approaches, the limit
order premium u∗t becomes lower. This makes intuitive sense: the trader faced with a terminal
value of 0 since he is required to sell using market order at the end of the period. As the deadline
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Figure 5: An illustration of the optimal strategy for GS, expressed in terms of limit price premium
over the course of the time, for different choices of latency. In each case, the dashed line illustrates the
relative distance below the bid-offer spread δ of the price premium of the final limit order, as a multiple
of the standard deviation of prices over the latency interval.

approaches, the trader is more willing to sacrifice the potential profits of a limit order in order to
increase the probability of execution.

Figure 6 illustrates the corresponding continuation value under the optimal policy for GS, for
different values of latency. Clearly, the trader’s expected payoff decreases as latency increases or
the end of the trading horizon approaches.

Finally, Figure 7 illustrates the latency cost as a function of latency. Both the exact value of
the latency cost, computed numerically via the dynamic programming decomposition (10)–(11),
and the asymptotic latency cost approximation provided by Corollary 1 are shown. The latency
costs decrease from approximately 20% of the cost of immediacy to 5% of the cost of immediacy,
as the latency decreases from 500 ms to 5 ms. Further, the marginal benefit of reducing latency
increases as the latency approaches zero. Finally, we note that the approximate and exact latency
costs are quite close across the entire range of latency values. This suggests that the approximation
is of very high quality in this case.

5.2. Historical Evolution of Latency Cost

In this section, we will examine the historical evolution of latency cost in U.S. equities. Here, we
consider the situation of a hypothetical investor with a fixed latency of 500 milliseconds. This
choice of latency is made approximately to reflect the reaction time of a very fast human trader.
We will use this as a proxy for the fastest possible trading on a “human time scale”. By analyzing
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the evolution of the associated latency cost, we will get a sense of the importance of latency over
time.

Our empirical analysis relies on the data set of Aït-Sahalia and Yu (2009). Their data set
contains estimates for various liquidity measures for all NYSE common stocks on a daily basis during
the sample period of June 1, 1995 to December 31, 2005. The estimates are derived from intraday
transaction prices and quotes from the NYSE TAQ database. We utilized only the volatility and
bid-offer spread data as we have seen both analytically (Corollary 1) and numerically (Figure 7)
that, under our modeling assumptions, latency cost can be approximated accurately for low values
of latency using only these two measures.

The data set contain volatility and bid-offer spread estimates for given stock on a particular
day if the number of transactions on that day exceeds 200. The minimum, average, and maximum
number of stocks in the sample on any day are 61, 653, and 1,278, respectively. In particular, earlier
periods in the data set contain fewer stocks due to a smaller number of firms and a lower volume
of transactions. In this data set, the bid-offer spread is estimated using only NYSE quotes in the
regular trading hours. The volatility estimate is obtained using maximum likelihood estimation in
the presence of market microstructure noise. Maximum likelihood estimation is preferred over other
nonparametric estimation methods (e.g., “Two Scales Realized Volatility”) as a simulation study
shows that maximum likelihood estimation provides robust estimators under reasonable stochastic
volatility and jump models in the underlying asset. The reader is urged to consult to Section 2.1
of Aït-Sahalia and Yu (2009) for full details of their estimation procedure.

For each stock in the data set, on a daily basis, we compute the latency cost facing an investor
with a fixed latency of 500 ms using the asymptotic approximation of Corollary 1. These daily
latency costs are then averaged over each month. Figure 8 displays percentiles of the monthly
averages of latency cost over all of the stocks in the sample, as a function of time. As a representative
example of a liquid name, we also report the monthly averages of latency cost of Goldman Sachs
Group, Inc. (NYSE: GS). Note that the time series for GS begins from its initial public offering in
1999. For reference, we have added an additional point to this time series based on our estimation
in Section 5.1 of the latency cost for GS on January 4, 2010.

Figure 8 illustrates that latency costs have had an increasing trend over the 1995–2005 period.
In particular, we observe that the median latency cost incurred by trading on a human time scale
roughly tripled, by increasing from approximately 5% to approximately 14%. One important factor
in this increase has been the reduction of bid-offer spreads over this time period. Instances during
the period when the NYSE reduced the tick size (from $1/8 to $1/16 in June 1997, and from $1/16 to
$0.01 in January 2001) coincide with spikes in latency cost. This is consistent with bid-offer spreads
decreasing significantly and volatility maintaining the same level at these times. This suggests that
any future reduction in tick sizes will result in increased latency costs.

Using a data set in a similar time-frame, from February 2001 to December 2005, Hendershott
et al. (2010) conclude that in the post-decimalization era, the increase in algorithmic trading activity
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Figure 8: An illustration of the historical evolution of latency cost over the 1995–2005 time period.
Here, we consider a hypothetical “human time scale” investor with a fixed latency of ∆t = 500 (ms).
Percentiles for the resulting latency cost are reported across NYSE common stocks. The latency costs
are computed from data set of Aït-Sahalia and Yu (2009). The latency cost for GS is also reported,
beginning from its IPO. The dashed lines correspond to dates where the NYSE tick size was reduced.
We observe that latency cost had a consistent increasing trend over the 1995–2005 period. Specifically,
the median latency cost approximately increased three-fold by reaching roughly to 14% from 5%.
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had a positive impact on the level of liquidity. This result suggests that the increase in algorithmic
trading in and of itself elevated the importance of low latency trading and increased the cost of
latency.

5.3. Historical Evolution of Implied Latency

An alternative perspective on the historical importance of latency comes from considering a hypo-
thetical investor with a target level for the cost of latency, relative to the overall cost-of-immediacy.
The representative trader maintains this target over time through continual technological upgrades
to lower levels of latency. We determine the requisite level of latency for such a trader, over time
and across the aggregate market. In other words, fixing the latency cost percentage LC to the
target level, we can solve the asymptotic approximation (12) for the level of latency required at
each time to achieve latency cost LC. We call this the implied latency.

Figure 9 illustrates the implied latency values over the 1995–2005 period assuming that the
target level LC = 10% of overall transaction costs result from latency. We observe that the median
implied latency decreased by approximately two orders of magnitude over this time frame. The
90th percentile of U.S. equities, for example, went from an implied latency on the scale of seconds
to an implied latency on the scale of tens of milliseconds.

5.4. Empirical Importance of Latency

Our model captures the cost of latency due to a lack of contemporaneous information. Figure 8
suggests that, when our model is calibrated to the topmost quartile of U.S. equities, a investor
with latency on the human time scale faces a latency cost of at 15% to 25%. In order to assess the
significance of this, we can compare it to other trading costs. Suppose we normalize the cost of
immediacy to $0.01, which is the typical bid-offer spread for a liquid U.S. equity. Then, our model
suggests that the benefit of reducing latency from a human time scale of 500 ms to an ultra low
latency time scale of less than 1 ms is approximately $0.0015–$0.0025 per share traded.

While this might seem very small as an absolute number, note that is of the same order of mag-
nitude as other trading costs faced by the most cost efficient institutional investors. For example,
a hedge fund would pay an average commission of $0.0007 per share for market access.14 Further-
more, investors may pay an SEC fee of $0.0005 per share traded,15 and exchange fees or rebates
of $0.0020–$0.0030 per share traded. To the extent that a sophisticated institutional investor is
cost sensitive and wishes to optimize these other execution costs, they should also be concerned
with latency. This isn’t to suggest that latency cost is important to all investors. A typical retail

14“U.S. Equity Trading: Low Touch Trends,” TABB Group, July 2010.
15As of January 21, 2011, the SEC fee is a fraction $0.0000192 of the proceeds of an equity sale. If we assume a

typical stock price of $50, this is approximately $0.0010 per share sold. Amortizing this cost equally between buys
and sells results in $0.0005 per share traded.
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Figure 9: An illustration of the historical evolution of implied latency over the 1995–2005 time period.
Here, we consider a hypothetical investor who makes sufficient technological investments to ensure a
constant latency cost of 10%. The implied latency is the level of latency required to achieve this latency
cost. Percentiles for the implied latency are reported across NYSE common stocks. The implied latencies
are computed from data set of Aït-Sahalia and Yu (2009). The implied latency for GS is also reported,
beginning from its IPO. We observe that implied latency has had a decreasing trend over the 1995–2005
period. Specifically, the median implied latency decreased by approximately two orders of magnitude
over this time frame.
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investor, for example, may pay a brokerage fee that is up to $0.10 per share traded.16 For this
latter type of investor, the cost of latency as described here is not a significant component of overall
trading costs.

Alternatively, we can compare the $0.0015–$0.0025 per share traded latency cost to the rents
extracted by agents that have made the required technological investments to trade on an ultra low
latency time scale. For example, providers of automated algorithmic trade execution services charge
an average commission of $0.0033 per share traded for their execution services, which leverage
sophisticated low latency technological infrastructure.17 Note that this cost is comparable to the
latency cost. Another class of agents with ultra low latency trading capabilities are high frequency
traders. Reported net profit numbers for high frequency traders are in the range of $0.0010–$0.0020
per share traded.18 This is of the same order of magnitude as the latency cost.

6. Conclusion and Future Directions

This paper provides a model to quantify the cost of latency on transaction costs. We consider
a stylized execution problem, where a trader must sell an atomic unit of stock over a fixed time
horizon. We consider this model in the absence of latency as a benchmark, and we incorporate
latency by not allowing the trader to continuously participate in the market. Orders submitted
by the trader reach the market with a fixed latency, and the trader is forced to deviate from the
benchmark policy in order to take into account the uncertainty introduced by this delay. We
quantify the cost of latency as the normalized difference in expected payoffs between this model
and the stylized model without latency.

Since the latency values observed in modern electronic markets are on the order of milliseconds,
we provide an asymptotic analysis for the low latency regime, in which we obtain an explicit
closed-form solution. In order to compute this asymptotic latency cost empirically, we only need
to estimate the volatility and the average bid-offer spread of the stock. This is an elegant and
practical result as data sets and estimation procedures for these quantities are readily abundant
in the literature. Indeed, using an existing data set, we show that the cost of latency incurred by
trading on a human time scale (500 ms) increased three-fold over the 1995–2005 time-frame. In
addition, using the alternative approach of keeping a fixed level of latency cost through continuous
technological improvements, we compute the various percentiles of the implied latency over this
time frame. Using the same data set, we observe that the median implied latency decreased by
approximately two orders of magnitude.

16For example, at the time of writing, the brokerage firm E-TRADE charges $10 per trade. Assuming a typical
trade of 100 shares, this cost is $0.10 per share traded.

17“U.S. Equity Trading: Low Touch Trends,” TABB Group, July 2010. Note that some institutional investors pay
significantly larger commissions for trade execution in order to compensate their brokers for trading ideas or research
services. The commission we quote here is for “non-idea driven” services that relate purely to trade execution using
the algorithms and technological platform of the broker.

18“Tradeworx, Inc. Public Commentary on SEC Market Structure Concept Release,” Tradeworx, Inc., April 2010.

30



Our empirical analysis can also be utilized to compare the magnitude of latency cost to other
trading costs incurred by institutional investors. Our results suggest that the difference in payoff
between trading with a human time scale (500 ms) and an automated trading platform with ultra
low latency (1 ms) is approximately of the same order of magnitude as other trading costs faced
by institutional investors. This observation certainly underlines the significance of latency for such
investors. In conclusion, our model is the first theoretical approach in the literature to concretely
quantify the impact of latency on the optimal order submission policy and its resulting cost to the
trader.

There are a number of interesting future directions for research. First, as discussed in Sec-
tion 4.4, there are a number of tractable extensions to the present model that can be analyzed.
More generally, in the introduction, we identified a number of broad themes to the costs that arise
from latency. The model we have presented captures mainly costs due to a lack of contemporaneous
decision making. It does not capture the latency costs due to strategic effects (i.e., comparative
advantage/disadvantage relative to other investors) or due to time priority rules. These remain
important questions for future research.
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A. Dynamic Programming Decomposition

In order to solve the optimal control problem (8) via dynamic programming, note that we can
equivalently consider the objective of maximizing the sale price P . Consider a decision time Ti
with 0 ≤ i < n, and assume that the trader’s limit order remains unfilled at time Ti. The state of
the system consists of the current price, STi as well as the previously chosen limit price,1 `i−1, since
this price will become active at time Ti. We can define an optimal value function Ji(STi , `i−1), as
a function of this state, by optimizing the eventual sale price over all future decisions. In other
words,

(A.1) Ji(STi , `i−1) , maximize
`i,...,`n−1

E [P | STi , `i−1] .

At time T = Tn, the trader must sell via a market order, hence

(A.2) Jn(STn , `n−1) = STn .

Now, for 0 ≤ i < n, there are three mutually exclusive events one of which must occur between
time Ti and time Ti+1. These are the events E(1)

i , E(2)
i , and E(3)

i described in Section 3. By
considering cases corresponding to these events, we have the Bellman equation

(A.3) Ji(STi , `i−1) , max
`i

E
[
IE(1)

i

`i−1 + IE(2)
i

STi+1 + IE(3)
i

Ji+1(STi+1 , `i)
∣∣∣∣ STi , `i−1

]
.

Here, the first term corresponds to an execution at the prior price `i−1, the second term corresponds
to the price `i being crossed by the bid price upon arrival to the market, and the third term
corresponds to all other cases.

Define the function Qi, for 0 ≤ i ≤ n, by

Qi(STi , vi−1) , Ji(STi , STi + vi−1)− STi .

1We will assume that `−1 =∞, i.e., there is no limit order active at the beginning of the time horizon.
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The function Qi is the premium of the value at time Ti, relative to the current bid price STi .
Similarly, vi−1 , `i−1 − STi is the premium of limit price decided at time Ti−1 relative to the
current bid price at time Ti. Then, applying (A.3), we have for 0 ≤ i < n,

Qi(STi , vi−1)

= max
`i

E
[
IE(1)

i

(STi + vi−1) + IE(2)
i

STi+1 + IE(3)
i

Ji+1(STi+1 , `i)
∣∣∣∣ STi , vi−1

]
− STi

= max
ui

E
[
IE(1)

i

vi−1 + IE(2)
i ∪E

(3)
i

Xi+1 + IE(3)
i

Qi+1(STi +Xi+1, ui −Xi+1)
∣∣∣∣ STi , vi−1

]
.

Here, Xi+1 , STi+1 − STi ∼ N(0, σ2∆t) is the change in bid price from time Ti to time Ti+1. We
define ui , `i−STi as the premium of the limit price at time Ti (i.e., the decision variable) relative
to the current bid price STi . Note that the price change Xi+1 is zero mean under the event

E(2)
i ∪ E

(3)
i =

(
E(1)
i

)c
,

by our assumption that the arrival of impatient buyers is independent of the bid price process,
hence

(A.4) Qi(STi , vi−1) = max
ui

E
[
IE(1)

i

vi−1 + IE(3)
i

Qi+1(STi +Xi+1, ui −Xi+1)
∣∣∣∣ STi , vi−1

]
.

Finally, by (A.2),

(A.5) Qn(STn , vn−1) = 0.

As should be clear from the above discussion, the Bellman equation (A.3) with terminal condi-
tion (A.2) and the backward recursion (A.4) with terminal condition (A.5) are completely equiv-
alent, up to a change in variables. Expressing these equations in the latter form, however, brings
significant simplifications, as the following lemma shows.

Lemma 3. Suppose a collection of functions {Qi} satisfies the dynamic programming equations
(A.4)–(A.5). Then, for each 0 ≤ i < n, Qi does not depend on the price STi, and takes the form

(A.6) Qi(vi−1) = I{vi−1≤δ}
[
µ∆tvi−1 + (1− µ∆t)hi

]
+ I{vi−1>δ}hi,

where the scalar hi satisfies

(A.7) hi = max
ui

P(Xi+1 < ui)E [Qi+1(ui −Xi+1) | Xi+1 < ui] .

2



Proof. Observe that, for 0 ≤ i < n, (A.4) can be simplified according to

Qi(STi , vi−1)

= max
ui

µ∆tvi−1I{vi−1≤δ}

+
(
1− µ∆tvi−1I{vi−1≤δ}

)
E
[
I{Xi+1<ui}Qi+1(STi +Xi+1, ui −Xi+1)

∣∣∣ STi

]
,

(A.8)

where we have used the definitions of the events E(1)
i and and E(3)

i .
Now, we proceed by backward induction. For the terminal case i = n− 1, from (A.8) and the

fact that Qn = 0 and un−1 = −∞ (i.e., the trader must use a market order at the last time slot),
we have that

Qn−1(STn−1 , vn−2) = µ∆tvn−2I{vn−2≤δ}.

In other words, Qn−1 satisfies the hypotheses of the lemma, with hn−1 = 0.
Now, suppose that the result holds for some 0 ≤ i+ 1 < n. By (A.8), and since Qi+1 does not

depend on STi+1 ,

Qi(STi , vi−1)

= max
ui

µ∆tvi−1I{vi−1≤δ} +
(
1− µ∆tvi−1I{vi−1≤δ}

)
E
[
I{Xi+1<ui}Qi+1(ui −Xi+1)

]
= µ∆tvi−1I{vi−1≤δ} +

(
1− µ∆tvi−1I{vi−1≤δ}

)
hi

= I{vi−1≤δ}
[
µ∆tvi−1 + (1− µ∆tvi−1)hi

]
+ I{vi−1>δ}hi.

Here, in the second equality, we define hi through (A.7). The result then follows. �

Notice that, at the beginning of the trading horizon, there is no active limit order, i.e., u−1 =∞.
From Lemma 3, we have that

h0 = Q0(∞) = maximize
`0,...,`n−1

E [P | S0]− S0.

In other words, h0 = h0(∆t), as defined in (8), and our notation is consistent. More generally, for
i > 0, from (A.7), we can interpret hi to be the trader’s expected payoff at time Ti relative to the
current bid price under the optimal policy, assuming that the limit order does not get executed in
that time slot. Thus, hi can be interpreted as a continuation value in the dynamic programming
context, as in (9).

The continuation values {hi} allow for a compact representation of the value function, since
they consist of only a single real number for each time slot, rather than a function of the entire state
space. Theorem 1 directly expresses the dynamic programming equations (A.4)–(A.5) in terms of
this representation. The proof follows by explicitly computing the expectations in Lemma 3.
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Theorem 1. Suppose {hi} satisfy, for 0 ≤ i < n− 1,

hi = max
ui

{
µ∆t

[
ui

(
Φ
(

ui

σ
√

∆t

)
− Φ

(
ui − δ
σ
√

∆t

))
+ σ
√

∆t
(
φ

(
ui

σ
√

∆t

)
− φ

(
ui − δ
σ
√

∆t

))]
+hi+1

[
(1− µ∆t)Φ

(
ui

σ
√

∆t

)
+ µ∆tΦ

(
ui − δ
σ
√

∆t

)]}
,

(A.9)

and

(A.10) hn−1 = 0.

Here, φ and Φ are, respectively, the p.d.f. and c.d.f. of the standard normal distribution. Then, {hi}
correspond to the continuation values under the optimal policy. In other words, the value functions
{Qi} defined by {hi} via (A.6) solve the dynamic programming equations (A.4)–(A.5).

Suppose further that, for 0 ≤ i < n − 1, u∗i is a maximizer of (A.9). Then, a policy which
chooses limit prices according to the premia defined by {u∗i }, i.e.,

`∗i = STi + u∗i , ∀ 0 ≤ i < n− 1,

is optimal.

Proof. Suppose that we are given {hi} that satisfy the hypotheses of the theorem. Define {Qi} by
setting, for 0 ≤ i ≤ n− 1,

(A.11) Qi(vi−1) , I{vi−1≤δ}
[
µ∆tvi−1 + (1− µ∆t)hi

]
+ I{vi−1>δ}hi,

and Qn , 0. We wish to show that {Qi} solve the dynamic programming equations (A.4)–(A.5).
Note that (A.5) holds by definition. For 0 ≤ i < n, we have that (A.4) is equivalent to (A.8).

Define Q̂i to be the right side of (A.8), i.e.,

Q̂i(vi−1) , µ∆tvi−1I{vi−1≤δ} +
(
1− µ∆tvi−1I{vi−1≤δ}

)
max
ui

E
[
I{Xi+1<ui}Qi+1(ui −Xi+1)

]
.

Comparing with (A.11), in order that the dynamic programming equation (A.8) hold (i.e., that
Q̂i = Qi), we must have that

(A.12) hi = max
ui

E
[
I{Xi+1<ui}Qi+1(ui −Xi+1)

]
Using the definition of Qi+1 from (A.11), this is equivalent to

hi

= max
ui

E
[
I{Xi+1<ui}

(
I{ui−Xi+1≤δ}

[
µ∆t(ui −Xi+1) + (1− µ∆t)hi+1

]
+ I{ui−Xi+1>δ}hi+1

)]
= max

ui
E
[
I{0<ui−Xi+1≤δ}µ∆t(ui −Xi+1) + I{Xi+1<ui}(1− µ∆t)hi+1 + I{ui−Xi+1>δ}µ∆thi+1

]
.
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For the first term in the expectation, we have

E
[
I{0<ui−Xi+1≤δ}µ∆t(ui −Xi+1)

]
= µ∆t

∫ ui

−∞
(ui − x)I{ui−x≤δ}

1
σ
√

∆t
φ

(
x

σ
√

∆t

)
dx

= µ∆t
∫ ui

ui−δ
(ui − x) 1

σ
√

∆t
φ

(
x

σ
√

∆t

)
dx

= µ∆t
[
ui

(
Φ
(

ui

σ
√

∆t

)
− Φ

(
ui − δ
σ
√

∆t

))
+
∫ ui

ui−δ

−x
σ
√

∆t
φ

(
x

σ
√

∆t

)
dx

]
= µ∆t

[
ui

(
Φ
(

ui

σ
√

∆t

)
− Φ

(
ui − δ
σ
√

∆t

))
+ σ
√

∆t
(
φ

(
ui

σ
√

∆t

)
− φ

(
ui − δ
σ
√

∆t

))]
.

For the second term in the expectation, we have

E
[
I{Xi+1<ui}(1− µ∆t)hi+1

]
= (1− µ∆t)hi+1Φ

(
ui

σ
√

∆t

)
.

finally, for the last term in the expectation, we have

E
[
I{ui−Xi+1>δ}µ∆thi+1

]
= µ∆thi+1Φ

(
ui − δ
σ
√

∆t

)
Combining all the terms, we obtain the desired recursion for hi.

The balance of the theorem involves establishing the optimality of the {u∗i } policy. This follows
from standard dynamic programming arguments (see, e.g., Chapter 3, Bertsekas and Shreve, 1978).

�

B. Proof of Theorem 2

We begin with a preliminary lemma.

Lemma 4. Suppose that {hi : 0 ≤ i < n} solves the dynamic programming recursion (10)–(11).
Then, for 0 ≤ i < n,

(B.1) 0 ≤ hi ≤ δ
(
1− (1− µ∆t)n

)
< δ.

Proof. First, note that the result is trivially true for i = n−1, since hn−1 = 0. Now, if 0 ≤ i < n−1,
we can always choose ui = −∞, i.e., a market order, and this results in a continuation value of 0.
Thus, hi ≥ 0.

For the upper bound, consider the discrete model without latency described in Section 4.3.
Any strategy for the latency model is also feasible for the discrete model, since the trader can
simply delay the implementation of trading decisions by one period. Therefore, at time Ti (with
0 ≤ i < n − 1), a policy with latency cannot achieve more value than the optimal policy for the

5



discrete model without latency. At time Ti, there are n − i − 1 trading decisions remaining. This
corresponds to the initial time of a discrete model with a total time horizon of (n− i−1)∆t. Then,
with reference to Lemma 2, we have that

hi ≤ δ
(
1− (1− µ∆t)n−i−1).

The result immediately follows. �

Theorem 2. Fix α > 1. If ∆t is sufficiently small, then there exists a unique optimal solution {hi}
to the dynamic programming equations (10)–(11). Moreover, the corresponding optimal policy {u∗i }
is unique. For 0 ≤ i < n− 1, this strategy chooses limit prices in the range

`∗i ∈

Si + δ − σ

√
∆t log αL∆t , Si + δ − σ

√
∆t log R(∆t)

∆t ,

 ,
where

L ,
δ2

2πσ2 , R(∆t) , δ2(1− µ∆t)2n

2πσ2 .

Proof. Assume that, for some 0 ≤ i < n− 1, a solution {hj : i+ 1 ≤ j < n} exists to (10)–(11).
We will establish that, for ∆t sufficiently small (and not dependent on i), a solution hi also exists
and satisfies the conditions of the theorem. The result will follow by backward induction. Note
that the base case of our induction (i.e., the existence of hn−1) is trivial.

To this end, define the auxiliary function f by

f(u, h) , µ∆t
[
u
(
Φ(Au)− Φ(Bu)

)
+ σ
√

∆t
(
φ(Au)− φ(Bu)

)]
+ h

[
(1− µ∆t)Φ(Au) + µ∆tΦ(Bu)

]
,

(B.2)

where

Au ,
u

σ
√

∆t
, Bu ,

u− δ
σ
√

∆t
.(B.3)

Then, from Theorem 1, for 0 ≤ i < n− 1, the dynamic programming recursion is given by

(B.4) hi = max
ui

f(ui, hi+1),

and we can establish the present theorem by proving that, for ∆t sufficiently small, (B.4) has a
unique maximizer u∗i ∈ (ûL, ûR), where

ûL , δ − σ

√
∆t log αL∆t , ûR , δ − σ

√
∆t log R(∆t)

∆t .(B.5)
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Note that

(B.6) R(0) , lim
∆t→0

R(∆t) = lim
∆t→0

L(1− µ∆t)2T/dt = Le−2µT < αL.

Hence, there exists some ∆t > 0 so that if 0 < ∆t < ∆t, then

δ/2 < ûL < ûR < δ, and 0 < 1− µ∆t < 1.

For the balance of the theorem, we will assume that 0 < ∆t < ∆t, in addition to whatever other
assumptions are made regarding the magnitude of ∆t.

The first and second derivatives of f(·, h) are given by

fu(u, h) = µ∆t
[
Φ(Au)− Φ(Bu) +Au

(
φ(Au)− φ(Bu)

)
− uφ(Au) + (δ − u)φ(Bu)

σ
√

∆t

]
+ h

σ
√

∆t

[
(1− µ∆t)φ(Au) + µ∆tφ(Bu)

]
= (1− µ∆t)h

σ
√

∆t
φ(Au) + µ∆t

[
Φ(Au)− Φ(Bu)− δ

σ
√

∆t
φ(Bu)

]
+ hµ

√
∆t

σ
φ(Bu)

= (1− µ∆t)h
σ
√

∆t
φ(Au) + µ∆t

[
Φ(Au)− Φ(Bu)

]
+ µ
√

∆t
σ

φ(Bu)(h− δ),

fuu(u, h) = −u(1− µ∆t)h
σ3∆t

√
∆t

φ(Au) + µ
√

∆t
σ

[
φ(Au)− φ(Bu)

]
+ µ(δ − u)

σ3
√

∆t
φ(Bu)(h− δ)

= φ(Au)
[
µ
√

∆t
σ
− u(1− µ∆t)h

σ3∆t3/2

]
+ φ(Bu)

[
µ(δ − u)
σ3
√

∆t
(h− δ)− µ

√
∆t
σ

]
.

(B.7)

First, we will show that, for ∆t sufficiently small, f(·, hi+1) has a local maximum u∗i in the
interval (ûL, ûR), and that this is the unique maximizer over the larger interval (δ/2, δ). That is,
u ∈ (δ/2, δ) and u 6= u∗i , then

(B.8) f(u, hi+1) < f(u∗i , hi+1), for all u ∈ (δ/2, δ), u 6= u∗i .

This is implied by the following claims, which we will demonstrate hold for ∆t sufficiently small:

(i) fu(ûL, hi+1) > 0.

(ii) fu(ûR, hi+1) < 0.

(iii) fuu(u, hi+1) < 0, for all u ∈ (δ/2, δ).
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Claim (i): Note that

fu(ûL, hi+1) = (1− µ∆t)hi+1

σ
√

∆t
φ(AûL

) + µ∆t
[
Φ(AûL

)− Φ(BûL
)
]

+ µ∆t
δ
√
α

(hi+1 − δ)

≥ µ∆t
[
Φ(AûL

)− Φ(BûL
)
]
− µ∆t√

α
,

(B.9)

where we use the fact that hi+1 ≥ 0 (cf. Lemma 4). In order to calculate a lower bound for
Φ(AûL

) − Φ(BûL
), we need the following standard bound on the tail probabilities of the normal

distribution (see, e.g., Durrett, 2004). Define Q to be the tail probability of a standard normal
distribution, i.e.,

Q(x) , 1− Φ(x) = 1√
2π

∫ ∞
x

e−
1
2u

2
du.

Then, for all x > 0,

(B.10) x2 − 1
x3
√

2π
e−

1
2x

2
≤ Q(x) ≤ 1

x
√

2π
e−

1
2x

2
.

Applying this to (B.9),

fu(ûL, hi+1) ≥ µ∆t
[
1−Q(AûL

)−Q(−BûL
)
]

+ µ∆t√
α

= µ∆t
(

1− 1√
α

)
− µ∆t

[
Q(AûL

) +Q(−BûL
)
]

> µ∆t
(

1− 1√
α

)
− 2µ∆tQ(−BûL

)

≥ µ∆t
(

1− 1√
α

)
− 2µ∆t3/2√

2παL log αL
∆t

> 0,

for sufficiently small ∆t. Here, we have used the fact that Q(−BûL
) > Q(AûL

).
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Claim (ii): Similarly, for the other endpoint of the interval, we have

fu(ûR, hi+1) = (1− µ∆t)hi+1

σ
√

∆t
φ(AûR

) + µ∆t
[
1−Q(AûR

)−Q(−BûR
)
]

+ µ∆t
δ(1− µ∆t)n (hi+1 − δ)

≤ (1− µ∆t)hi+1

σ
√

∆t
φ(AûR

) + µ∆t
[
1−Q(AûR

)−Q(−BûR
)
]

+ µ∆t
δ(1− µ∆t)n [δ (1− (1− µ∆t)n)− δ]

= (1− µ∆t)hi+1

σ
√

∆t
φ(AûR

) + µ∆t
[
1−Q(AûR

)−Q(−BûR
)
]
− µ∆t

= (1− µ∆t)hi+1

σ
√

∆t
φ(AûR

)− µ∆t
[
Q(AûR

) +Q(−BûR
)
]

≤ δ

σ
√

∆t
φ(AûR

)− µ∆tQ(−BûR
),

where we have used the upper bound on hi+1 from Lemma 4. Using (B.6), for sufficiently small
∆t, we have √

log R(∆t)
∆t <

δ

2σ
√

∆t
,

and thus
AûR

≥ δ

2σ
√

∆t
.

On the other hand, using (B.10),

Q(−BûR
) ≥

[(
log R(∆t)

∆t

)−1/2
−
(

log R(∆t)
∆t

)−3/2]√ ∆t
2πR(∆t) .

Thus,

fu(ûR, hi+1) ≤ δ

σ
√

2π∆t
exp

(
−δ2

8σ2∆t

)

− µ∆t
[(

log R(∆t)
∆t

)−1/2
−
(

log R(∆t)
∆t

)−3/2]√ ∆t
2πR(∆t)

< 0,

for sufficiently small ∆t.

Claim (iii): Note that, for u ∈ (δ/2, δ),

φ

(
δ

σ
√

∆t

)
< φ(Au) < φ

(
δ

2σ
√

∆t

)
< φ(Bu) < φ(0).
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Then, from (B.7), and using the fact that 0 ≤ hi+1 < δ (cf. Lemma 4), we have for ∆t sufficiently
small,

fuu(u, hi+1) ≤ φ(Au)µ
√

∆t
σ

+ φ(Bu)
[
µ(δ − u)
σ3
√

∆t
(hi+1 − δ)−

µ
√

∆t
σ

]

≤ φ(Bu)µ(δ − u)
σ3
√

∆t
(hi+1 − δ) < 0.

In order to complete the proof, it suffices to demonstrate that the local maximum u∗i ∈ (ûL, ûR)
is the unique global maximum. Since u∗i achieves a higher value than any other u ∈ (δ/2, δ), we
will analyze cases where u /∈ (δ/2, δ) as follows:

• u ∈ [0, δ/2].

Here,
φ

(
δ

σ
√

∆t

)
≤ φ(Bu) ≤ φ

(
δ

2σ
√

∆t

)
≤ φ(Au) ≤ φ(0).

Further, for ∆t sufficiently small,

Φ(Au)− Φ(Bu) ≥ Φ (0)− Φ
( −δ

2σ
√

∆t

)
≥ 1

4 .

Then, for ∆t sufficiently small,

fu(u, hi+1) ≥ (1− µ∆t)hi+1

σ
√

∆t
φ

(
δ

2σ
√

∆t

)
+ µ∆t

[
Φ (0)− Φ

( −δ
2σ
√

∆t

)]
+ µ
√

∆t
σ

φ

(
δ

2σ
√

∆t

)
(hi+1 − δ)

≥ hi+1

σ
√

∆t
φ

(
δ

2σ
√

∆t

)
+ µ∆t

[
Φ (0)− Φ

( −δ
2σ
√

∆t

)]
− δµ

√
∆t

σ
φ

(
δ

2σ
√

∆t

)
≥ µ∆t

4 − µδ
√

∆t√
2πσ

exp
(
−δ2

8σ2∆t

)
> 0.

(B.11)

Here, we have used the fact that hi+1 ≥ 0. Using (B.8) and the fact that f(·, hi+1) is
continuous, this implies that

(B.12) sup
u∈[0,δ/2]

f(u, hi+1) ≤ f(δ/2, hi+1) < f(u∗i , hi+1).

• u ∈ (−∞, 0).
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In this case, since hi+1 ≥ 0 and Bu < Au < 0,

fu(u, hi+1) ≥ µ∆t [Φ(Au)− Φ(Bu)]− δµ
√

∆t
σ

φ(Bu)

= µ∆t
∫ Au

Bu

φ(z) dz − δµ
√

∆t
σ

φ(Bu)

> µ∆t(Au −Bu)φ(Bu)− δµ
√

∆t
σ

φ(Bu) = 0.

In conjunction with (B.12), this implies that

(B.13) sup
u∈(−∞,0)

f(u, hi+1) ≤ f(0, hi+1) < f(u∗i , hi+1).

• u ∈ [δ,∞).

In this case, using the upper bound on hi+1 from Lemma 4,

fu(u, hi+1) ≤ δ

σ
√

∆t
φ(Au) + µ∆t [Φ(Au)− Φ(Bu)]

− µδ(1− µ∆t)n
√

∆t
σ

φ(Bu).
(B.14)

Consider two cases. First, assume that u > δ +
√

∆t. Then, applying (B.10),

fu(u, hi+1) ≤ δ

σ
√

∆t
φ(Au) + µ∆tQ(Bu)− µδ(1− µ∆t)n

√
∆t

σ
φ(Bu)

≤ δ

σ
√

∆t
φ(Au) + µσ∆t3/2

u− δ
φ(Bu)− µδ(1− µ∆t)n

√
∆t

σ
φ(Bu)

≤ φ(Bu)
[

δ

σ
√

∆t
exp

(
−δ2

2σ2∆t

)
+ µσ∆t− µδ(1− µ∆t)n

√
∆t

σ

]
.

Note that (1− µ∆t)n → e−µT as ∆t→ 0. Then, for ∆t sufficiently small,

(B.15) 1
2e
−µT < (1− µ∆t)n.

Hence, for ∆t sufficiently small,

fu(u, hi+1) ≤ φ(Bu)
[

δ

σ
√

∆t
exp

(
−δ2

2σ2∆t

)
+ µσ∆t− µδe−µT

√
∆t

2σ

]
< 0.

On the other hand, suppose that u ∈ [δ, δ +
√

∆t]. Then, from (B.14), (B.15), and since

11



0 < Bu < Au, we have for ∆t sufficiently small,

fu(u, hi+1) ≤ δ

σ
√

∆t
φ(Au) + µ∆t

2 − µδ(1− µ∆t)n
√

∆t
σ

φ(Bu)

≤ δ

σ
√

∆t
φ(Au) + µ∆t

2 − µδe−µT
√

∆t
2σ φ(Bu)

≤ δ

σ
√

2π∆t
exp

(
− δ2

2σ2∆t

)
+ µ∆t

2 − µδe−µT
√

∆t
2σ
√

2π
exp

(
− 1

2σ2

)
< 0.

The above discussion, combined with (B.8) and the fact that f(·, hi+1) is continuous, implies
that

(B.16) sup
u∈[δ,∞)

f(u, hi+1) ≤ f(δ, hi+1) < f(u∗i , hi+1).

�

C. Proof of Theorem 3

We will establish Theorem 3 via a sequence of lemmas. First, recall the function f(u, h) defined in
(B.2) and the quantities ûL and ûR defined in (B.5).

Lemma 5. (i) As ∆t→ 0,

max
u∈[ûL,ûR]
0≤i<n−1

|fuu(u, hi+1)| = O

(√
∆t log 1

∆t

)
.

(ii) For all h ∈ R and ∆t sufficiently small,

0 ≤ fh(ûR, h) ≤ 1.

Proof. We begin with (i). Recall Au and Bu from (B.3). Let u be in the interval [ûL, ûR]. Then,
for 0 ≤ i < n− 1, from (B.7),

|fuu(u, hi+1)| ≤
∣∣∣∣∣φ(Au)

[
µ
√

∆t
σ
− u(1− µ∆t)hi+1

σ3∆t3/2

]
+ φ(Bu)

[
µ(δ − u)
σ3
√

∆t
(hi+1 − δ)−

µ
√

∆t
σ

]∣∣∣∣∣
≤ φ(Au)µ

√
∆t
σ

+ φ(Au) δ2

σ3∆t3/2
+ φ

(
δ − u
σ
√

∆t

)[
δµ(δ − u)
σ3
√

∆t
+ µ
√

∆t
σ

]
.

Here, we have used the fact that 0 ≤ u ≤ δ and 0 ≤ hi+1 < δ (cf. Lemma 4). Note that, for ∆t
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sufficiently small, ûL ≥ δ/2. Then,

max
u∈[ûL,ûR]

φ(Au) ≤ φ(Aδ/2) = 1√
2π

exp
(
− δ2

8σ2∆t

)
≤ c0∆t2,

for an appropriately chosen constant c0. Thus,

|fuu(u, hi+1)| ≤ c0µ

σ
∆t5/4 + c0δ

2

σ3

√
∆t+ φ

(
δ − u
σ
√

∆t

)[
δµ(δ − u)
σ3
√

∆t
+ µ
√

∆t
σ

]

≤ c0µ

σ
∆t5/4 + c0δ

2

σ3

√
∆t+ φ

(
δ − ûR
σ
√

∆t

)[
δµ(δ − ûL)
σ3
√

∆t
+ µ
√

∆t
σ

]

= c0µ

σ
∆t5/4 + c0δ

2

σ3

√
∆t+

√
∆t

2πR(∆t)

δµ
σ2

√
log αL∆t + µ

√
∆t
σ


≤ c0µ

σ
∆t5/4 + c0δ

2

σ3

√
∆t+ µ∆t

σ
√

2πR(∆t)
+ δµ

σ2
√

2πR(∆t)

√
∆t log αL∆t .

Since R(∆t)→ Le−2µT as ∆t→ 0, the last term asymptotically dominates and (i) follows.
For (ii), note that Φ(AûR

),Φ(BûR
) ∈ (0, 1), so if ∆t < 1/µ, then for all h,

fh(ûR, h) = (1− µ∆t)Φ(AûR
) + µ∆tΦ(BûR

) ∈ (0, 1).

�

Lemma 6. As ∆t→ 0,

ûR − ûL = O

(√
∆t

log 1
∆t

)
.

Proof. Note that

ûR − ûL = σ
√

∆t

√log αL∆t −

√
log R(∆t)

∆t

 = σ
√

∆t
[
g(αL)− g

(
R(∆t)

)]
,

where g(x) ,
√

log x
∆t . Then, by mean value theorem, for some z ∈

[
R(∆t), αL

]
,

ûR − ûL = σ
√

∆tg′(z)
[
αL−R(∆t)

]
= σ

2z
[
αL−R(∆t)

]√ ∆t
log z

∆t
≤ σαL

2R(∆t)

√√√√ ∆t
log R(∆t)

∆t
.

The result follows since R(∆t)→ R(0) , Le−2µT as ∆t→ 0. �

Let {hi : 0 ≤ i < n − 1} be the optimal solution to the dynamic programming recursion
(10)–(11), and let {u∗i : 0 ≤ i < n− 1} define the corresponding optimal policy. Define {ĥi : 0 ≤
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i ≤ n− 1} by the recursion

ĥi ,

f(ûR, ĥi+1) if 0 ≤ i < n− 1,

0 if i = n− 1.

Note that ĥi is the continuation value of the suboptimal policy that always chooses ui = ûR, for
0 ≤ i < n− 1. We are interested in quantifying its difference to the optimal continuation value.

Lemma 7. As ∆t→ 0,

0 ≤ h0 − ĥ0 = O

(√
∆t

log 1
∆t

)
.

Proof. For 0 ≤ i < n− 1, define ∆i , hi − ĥi. Clearly, ∆i ≥ 0.
Using the mean value theorem,

∆i = f(u∗i , hi+1)− f(ûR, ĥi+1)

=
[
f(u∗i , hi+1)− f(ûR, hi+1)

]
+
[
f(ûR, hi+1)− f(ûR, ĥi+1)

]
= −1

2fuu(ū, hi+1)(ûR − u∗i )2 + fh(ûR, h̄)∆i+1.

where ū is some point on the interval (u∗i , ûR) and h̄ is some point on the interval (ĥi+1, hi+1). Here,
we have used the fact that the optimal solution u∗i satisfies the first order condition fu(u∗i , hi+1) = 0.

Using Lemmas 5 and 6, for ∆t sufficiently small, there exist constants c1 and c2 so that

max
u∈[ûL,ûR]
0≤i<n−1

|fuu(u, hi+1)| ≤ c1

√
∆t log 1

∆t , ûR − ûL ≤ c2

√
∆t

log 1
∆t
.

Also, from Lemma 5, note that 0 ≤ fh(ûR, h̄) ≤ 1. Then, we obtain that, for ∆t sufficiently small,

∆i ≤
c1(ûR − u∗i )2

2

√
∆t log 1

∆t + ∆i+1 ≤
c1c2

2
∆t3/2√
log 1

∆t

+ ∆i+1.

Then, since ∆n−1 = 0, we have that

∆0 ≤
(
T

∆t

)
c1c2

2
∆t3/2√
log 1

∆t

= c1c2T

2

√
∆t

log 1
∆t
.

�

Define the sequence {β̂i : 0 ≤ i ≤ n− 1} by the linear recursion

(C.1) β̂i ,

µ∆t(ûR − β̂i+1) + β̂i+1 if 0 ≤ i < n− 1,

0 if i = n− 1.
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Here, β̂i is an approximation to the value ĥi. The next lemma bounds the approximation error.

Lemma 8. As ∆t→ 0,

|ĥ0 − β̂0| = O

(√
∆t

log 1
∆t

)
.

Proof. For 0 ≤ i < n − 1, define εi , ĥi − β̂i. Recall the following definition from the proof of
Theorem 2,

AûR
,

ûR

σ
√

∆t
, BûR

,
ûR − δ
σ
√

∆t
= −

√
log R(∆t)

∆t .

Then, by the recursive definitions of ĥi and β̂i, 0 ≤ i < n− 1,

εi = (1− µ∆t)εi+1 − µ∆tûR
[
1− Φ(AûR

) + Φ(BûR
)
]

+ µσ∆t3/2
[
φ(AûR

)− φ(BûR
)
]

− (1− µ∆t)ĥi+1

[
1− Φ(AûR

)− µ∆t
1− µ∆tΦ(BûR

)
]
.

Since µ̂R is not the optimal policy, we have ĥi+1 ≤ hi+1 < δ (cf. Lemma 4). Further, for ∆t
sufficiently small, 0 < φ(AûR

) ≤ φ(BûR
). This implies that

|εi| ≤ (1− µ∆t)|εi+1|+ δµ∆t
[
1− Φ(AûR

) + Φ(BûR
)
]

+ µσ∆t3/2φ(BûR
)

+ δ

[
1− Φ(AûR

) + µ∆t
1− µ∆tΦ(BûR

)
]
.

Note that, except for the first term, there is no dependence on i in the right side of this equality.
Then, we can define

C(∆t) , δµ∆t
[
1− Φ(AûR

) + Φ(BûR
)
]

+ µσ∆t3/2φ(BûR
)

+ δ

[
1− Φ(AûR

) + µ∆t
1− µ∆tΦ(BûR

)
]
,

and we have that
|εi| ≤ (1− µ∆t)|εi+1|+ C(∆t).

Since εn−1 = 0, it is easy to verify by backward induction on i that

|εi| ≤
1− (1− µ∆t)n−i−1

µ∆t C(∆t).
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Therefore,

|ε0| ≤
1− (1− µ∆t)n−1

µ∆t C(∆t) ≤ C(∆t)
µ∆t

= δ
[
1− Φ(AûR

) + Φ(BûR
)
]

+ µσ
√

∆tφ(BûR
) + δ

µ∆t

[
1− Φ(AûR

) + µ∆t
1− µ∆tΦ(BûR

)
]

= δ
[
Q(AûR

) +Q(−BûR
)
]

+ µσ
√

∆tφ(BûR
) + δ

µ∆t

[
Q(AûR

) + µ∆t
1− µ∆tQ(−BûR

)
]
.

(C.2)

From (B.10), however,

Q(AûR
) ≤ σ

ûR

√
∆t
2π exp

(
− û2

R

2σ∆t

)
.

Since ûR → δ as ∆t→ 0, for ∆t sufficiently small, there exists constants a1 and a2, with 0 < a2 <

δ2/2σ, so that
Q(AûR

) ≤ a1
√

∆t exp
(
− a2

∆t

)
.

Also by (B.10),

Q(−BûR
) ≤

√√√√ ∆t
2πR(∆t) log R(∆t)

∆t
.

Since and R(∆t)→ R(0) , Le−2µT as ∆t→ 0, for ∆t sufficiently small, there exists a constant a3

so that

Q(−BûR
) ≤ a3

√
∆t

log 1
∆t
.

Finally,

φ(BûR
) =

√
∆t

2πR(∆t) ,

so for ∆t sufficiently small, there exists a constant a4 with

φ(BûR
) ≤ a4

√
∆t.

Applying these bounds to (C.2), the result follows. �

Lemma 9. As ∆t→ 0,
β̂0 = ûR

(
1− e−µT

)
+O(∆t).

Proof. Note that the recurrence (C.1) can be explicitly solved to obtain

β̂0 =
n−2∑
i=0

(1− µ∆t)iµ∆t ûR = ûR
(
1− (1− µ∆t)n−1

)
= ûR

(
1− (1− µ∆t)T/∆t−1

)
.

The result follows since (1− µ∆t)T/∆t = e−µT +O(∆t) as ∆t→ 0. �
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We are now ready to prove Theorem 3.

Theorem 3. As ∆t→ 0,

h0(∆t) = h̄0

1− σ

δ

√
∆t log δ2

2πσ2∆t

+ o
(√

∆t
)
,

where
h̄0 = δ

(
1− e−µT

)
is the optimal value for the stylized model without latency, i.e., the value defined by (5).

Proof. First, define

γ̂0 ,
(
1− e−µT

)δ − σ
√

∆t log δ2

2πσ2∆t

 .
Then, ∣∣∣∣∣∣h0 − h̄0

1− σ

δ

√
∆t log δ2

2πσ2∆t

∣∣∣∣∣∣ = |h0 − γ̂0|

≤ |h0 − ĥ0|+ |ĥ0 − β̂0|+ |β̂0 − γ̂0|.

(C.3)

We will bound each of the terms in the right side of (C.3). First, by Lemma 7,

(C.4) |h0 − ĥ0| = O

(√
∆t

log 1
∆t

)
.

Next, by Lemma 8,

(C.5) |ĥ0 − β̂0| = O

(√
∆t

log 1
∆t

)
.

Finally, by Lemma 9, for ∆t sufficiently small, there exists a constant c1 so that

|β̂0 − γ̂0| ≤ σ
(
1− e−µT

)ûR − δ +

√
∆t log L

∆t

+ c1∆t

≤ σ
(
1− e−µT

)ûR − δ +

√
∆t log αL∆t

+ c1∆t,

= σ
(
1− e−µT

)
(ûR − ûL) + c1∆t,
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where α > 1 and L are defined by Theorem 2. Applying Lemma 6, we have that

(C.6) |β̂0 − γ̂0| = O

(√
∆t

log 1
∆t

)
.

By applying (C.4)–(C.6) to (C.3), we have that∣∣∣∣∣∣h0 − h̄0

1− σ

δ

√
∆t log δ2

2πσ2∆t

∣∣∣∣∣∣ = O

(√
∆t

log 1
∆t

)
,

which implies the desired result. �

D. Price Dynamics with Jumps

At a high level, our goal has been to understand and build intuition as to the impact of a latency
friction introduced by the lack of contemporaneous information. The spirit of our model it to con-
sider an investor who wants to trade, but at a price that depends on an informational process that
evolves stochastically and must be monitored continuously. While we have principally interpreted
the informational process to be the bid price process, our model can alternatively be interpreted
(as discussed in Section 2.1) in terms of a fundamental value process.

Thus far, we have employed a diffusive model to describe informational innovations over a
short time horizon. There is significant empirical evidence that this is insufficient, particularly
when modeling price processes, and that it is important to also allow for the instantaneous arrival
of information, i.e., jumps. For example, Barndorff-Nielsen et al. (2010) propose the following
compound Poisson process for high frequency price dynamics:

St = S0 +
Mt∑
i=1

Yi,

where Nt is a Poisson process counting the number of trades up to time t and Yi is the potential
jump movement at the ith trade time, having a distribution G.

On a short time horizon, innovations to fundamental value can be both instantaneous or dif-
fusive.2 In a recent empirical study, Aït-Sahalia and Jacod (2010) construct two formal statistical
tests to deduce whether there is a need for a Brownian motion in modeling high-frequency data.
Using individual high-frequency stock data, they conclude that both tests suggest the necessity of
including a continuous component driven by Brownian motion.

Motivated by these studies, we will generalize the price dynamics of Section 2 by including both
2As an example, note that an instantaneous innovation may result from a news event. On the other hand, the

value of a stock will have a component that is driven by the market factor, i.e., an average of returns across all stocks.
Innovations to the market factor can have a diffusive component even if all individual stock prices are discrete, by
virtue of cross-sectional averaging.
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a continuous component (Brownian motion) and a jump component (governed by a compound
Poisson process). In particular, consider a price process that evolves according to

(D.1) St = S0 + σBt +
Mt∑
i=1

Yi,

where the process (Bt)t∈[0,T ] is a standard Brownian motion, σ > 0 is an (additive) volatility
parameter, and (Mt)t∈[0,T ] is a Poisson process with intensity λ. For now, we will further assume
that each jump Yi has an i.i.d. Gaussian distribution with zero mean and variance ν2 — we revisit
the assumption of Gaussian jump sizes at the end of this section.

In the context of the latency model of Section 3, we define the price incrementXi+1 , STi+1−STi

by the discrete time analog of (D.1),

(D.2) Xi+1 ∼

N(0, σ2∆t) with probability (1− λ∆t) ,

N(0, σ2∆t+ ν2) with probability λ∆t.

With this definition, the dynamic programming decomposition outlined in Lemma 3 holds exactly
as before. Incorporating jumps, we then obtain the following analog of Theorem 1, that expresses
dynamic programming equations (A.4)–(A.5) in terms of the continuation values {hi}. The proof
of this theorem follows steps identical to the proof of Theorem 1, and is omitted.

Theorem 4. Define v2(∆t) , σ2∆t+ ν2. Suppose {hi} satisfy, for 0 ≤ i < n− 1,

hi = max
ui

{
(1− λ∆t)

(
µ∆t

[
ui

(
Φ
(

ui

σ
√

∆t

)
− Φ

(
ui − δ
σ
√

∆t

))
+σ
√

∆t
(
φ

(
ui

σ
√

∆t

)
− φ

(
ui − δ
σ
√

∆t

))]
+hi+1

[
(1− µ∆t)Φ

(
ui

σ
√

∆t

)
+ µ∆tΦ

(
ui − δ
σ
√

∆t

)])
+λ∆t

(
µ∆t

[
ui

(
Φ
(

ui
v(∆t)

)
− Φ

(
ui − δ
v(∆t)

))
+ v(∆t)

(
φ

(
ui

v(∆t)

)
− φ

(
ui − δ
v(∆t)

))]
+hi+1

[
(1− µ∆t)Φ

(
ui

v(∆t)

)
+ µ∆tΦ

(
ui − δ
v(∆t)

)])}
,

(D.3)

and

(D.4) hn−1 = 0.

Suppose further that, for 0 ≤ i < n − 1, u∗i is a maximizer of (D.3). Then, a policy which
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chooses limit prices according to the premia defined by {u∗i }, i.e.,

`∗i = STi + u∗i , ∀ 0 ≤ i < n− 1,

is optimal.

The following theorem provides an analog of Theorem 2 that characterizes the optimal solution
for the dynamic programming equation in the low latency regime, with the presence of jumps. The
proof is similar to that of Theorem 2, and is again omitted.

Theorem 5. Fix α > 1 and define
κ , 1 + λδ

νµ
√

2π
.

If ∆t is sufficiently small, then there exists a unique optimal solution {hi} to the dynamic pro-
gramming equations (D.3)–(D.4). Moreover, the corresponding optimal policy {u∗i } is unique. For
0 ≤ i < n− 1, this strategy chooses limit prices in the range

`∗i ∈

Si + δ − σ

√
∆t log αL∆t , Si + δ − σ

√
∆t log R(∆t)

∆t

 ,
where

L ,
δ2

2πσ2 , R(∆t) , δ2(1− µ∆t)2n

2πσ2κ2 .

Note that, when compared to Theorem 2, the addition of jump component in Theorem 5 causes
R(∆t) to decrease by a constant multiple. Thus, the range containing the optimal solution is gets
larger. However, the upper bound of the range is of the same order asymptotically (as ∆t→ 0) as
before. Hence, we can again provide a asymptotic closed-form expression for h0(∆t), as is done by
the following theorem, which is an analog of Theorem 3 and Corollary 1. (As before, we omit the
proof.)

Theorem 6. As ∆t→ 0,

h0(∆t) = h̄0

1− σ

δ

√
∆t log δ2

2πσ2∆t

+ o
(√

∆t
)
,

where

(D.5) h̄0 ,
δµ

µ+ λp

(
1− e−(µ+λp)T

)
,
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is the zero latency limit of h0(∆t), and

p , 1− Φ
(
δ

ν

)
,

the probability of a jump size greater than δ.
Furthermore, latency cost is unchanged with the introduction of the jump components in the bid

price dynamics, i.e., as ∆t→ 0,

LC(∆t) = σ
√

∆t
δ

√
log δ2

2πσ2∆t + o
(√

∆t
)
.

Our analysis with the jump-diffusion model can be interpreted as follows. Theorem 6 illustrates
that, when there is a jump component (i.e., λ > 0), the zero latency limit h̄0 has a lower value than
in the absence of jumps, (i.e., λ = 0), all else being equal. In other words, the presence of jumps is
detrimental even in the absence of latency. To see why, note that jumps are zero mean innovations
in the price process. In our model, an investor only earns excess value by waiting for an impatient
buyer. Jumps may cause the bid price to cross the investor’s limit order price and execute his share
without giving him the chance to revise his order. Thus, jumps reduce the probability of trading
with an impatient buyer.

This intuition can be made precise by interpreting the zero latency limit in (D.5). Observe
that µ+ λp is the combined arrival rate of impatient buyers asking for an immediate execution, or
positive jumps in the price of the stock that are larger than the bid-offer spread and would result
in trade execution. The quantity

µ

µ+ λp

(
1− e−(µ+λp)T

)
is the probability that there at least one such arrival, and that the first such arrival is that of an
impatient buyer. In this case, the trader earns a relative spread of δ. In all other cases (i.e., no
arrivals, or the case where the first arrival is a large positive jump), the trade occurs at the bid
price and the trader earns no spread. These two cases yield the expression for h̄0.

Now, comparing with our earlier results, jumps also negatively impact the investor in the
presence of latency, for similar reasons as in the zero latency case. However, when measured
relative to the zero latency case, i.e., in term of latency cost, jumps create no additional impact.
That is, the latency cost expressions in Theorem 6 and Corollary 1 are identical. Intuitively, in
our model, jumps are instantaneous, and the investor cannot react to them even in the absence of
latency. Hence, latency cost, measured relatively, only depends on the diffusive innovations.

Note that we have thus far assumed Gaussian jump sizes. In Theorem 6, the only place that this
distribution or its parameter ν arises explicitly is the quantity p. This is the probability that the
jump will be larger than the prevailing bid-offer spread, δ, and hence will cross with the limit order
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places by the investor. This leads us to conjecture (without proof) the result in the non-Gaussian
case: if the jump size Yi in (D.1) is an i.i.d. zero mean random variable that has a cumulative
distribution function G, then Theorem 6 holds with p , 1−G(δ).
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