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Abstract
This paper presents a novel, non-parametric approximate dynamic programming (ADP)

algorithm that enjoys dimension-independent approximation and sample complexity guaran-
tees. We obtain this algorithm by ‘kernelizing’ a recent mathematical program for ADP (the
‘smoothed approximate LP’) proposed by Desai et al. (2012). Loosely, our guarantees show
that we can exchange the importance of choosing a good approximation architecture a-priori
(as required by, for example, Desai et al., 2012; de Farias and Van Roy, 2004) with sampling
effort. We also present a simple active set algorithm for solving the resulting quadratic program,
and prove the correctness of this method. Via a computational study on a controlled queueing
network, we show that our approach is capable of outperforming parametric LP approaches
to ADP, as well as non-trivial, tailored heuristics for the same network, even when employing
generic, polynomial kernels.

1. Introduction

Problems of dynamic optimization in the face of uncertainty are frequently posed as Markov deci-
sion processes (MDPs). The central computational problem is then reduced to the computation of
an optimal ‘value’ or ‘cost-to-go’ function that encodes the value garnered under an optimal policy
starting from any given MDP state. MDPs for many problems of practical interest frequently have
intractably large state spaces precluding exact computation of the cost-to-go function. Approxi-
mate dynamic programming (ADP) is an umbrella term for algorithms designed to produce good
approximations to this function. Such approximations then imply a natural ‘greedy’ control policy.

ADP algorithms are often formulated in parametric settings. Here, the user specifies an ‘ap-
proximation architecture’ (i.e., a set of basis functions) and the algorithm then produces an ap-
proximation in the span of this basis. The strongest theoretical results available for such algorithms
typically share the following two features:

∗The third author was partially supported by by NSF Grant CMMI–1235023. A preliminary version of this work
appeared as Bhat et al. (2012).
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• The quality of the approximation produced is comparable with the best possible within the
basis (i.e., the parameterization or ‘approximation architecture’) specified.

• The sample complexity or computational effort required for these algorithms scales, typically
polynomially, with the dimension of the basis.

These results highlight the importance of selecting a ‘good’ approximation architecture, and
remain somewhat dissatisfying in that additional sampling or computational effort cannot remedy
a bad approximation architecture.

In contrast, an ideal non-parametric approach would, in principle, free the user from carefully
specifying a suitable low-dimensional approximation architecture. Instead, the user would have
the liberty of selecting a very rich architecture (whose specification is potentially implicit, such as
via a kernel). The quality of the approximation produced by the algorithm would then improve —
gracefully — with the extent of computational or sampling effort expended, ultimately becoming
exact. While they may fall short of the ideal notion of a non-parametric ADP algorithm, there are
several existing proposals for non-parametric ADP available:
Kernelizing Policy Evaluation. These are approaches that are motivated by approximate policy
iteration. The key computational step in approximate policy iteration methods is ‘policy evalua-
tion’. The aim of this step is to find the cost-to-go function for a given policy. This step involves
solving the projected Bellman equation, a linear stochastic fixed point equation. Due to the curse
of dimensionality, solving this exactly is infeasible and a portion of the ADP literature focuses on
approximately solving the policy evaluation step. This usually involves approximating the cost-to-
go function for a particular policy with a parametric approximation architecture. Non-parametric
approaches of this flavor attempt to make this step non-parametric. Bethke et al. (2008) study the
problem of minimizing Bellman errors from the point of view of kernel support vector regression
and Gaussian processes. Engel et al. (2003) consider a generative model for the cost-to-go function
which is based on Gaussian processes. Xu et al. (2007) introduce the non-parametric version of
the LSTD-(λ) method, a numerically stable approach to do policy evaluation. Farahmand et al.
(2009a) study regularized versions of some popular policy evaluation methods and perform the
sample complexity analysis for one policy evaluation step. It is difficult to provide convergence
guarantees for approximate policy iteration schemes in parametric settings, and these difficulties
remain in non-parametric variations. It is consequently difficult to characterize the computational
effort or sample complexity required to produce a good approximation with such approaches. In
practice, these theoretical shortcomings are often bypassed with heuristics such as stopping after
a fixed number of iterations. In contrast, the approach we study in this paper will admit sam-
ple complexity and approximation guarantees, but at the expense of assuming access to a certain
idealized sampling distribution over states.
Local averaging. Another approach to non-parametric ADP has been to use kernel-based local
averaging to approximate the solution of an MDP with that of a simpler variation on a sam-
pled state space (e.g., Ormoneit and Sen, 2002; Ormoneit and Glynn, 2002; Barreto et al., 2011).
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Convergence rates for these local averaging methods are exponential in the dimension of the prob-
lem state space. As in our setting, Dietterich and Wang (2002) construct kernel-based cost-to-go
function approximations.These are subsequently ‘plugged in’ to various ad hoc optimization-based
ADP formulations. This ‘plug in’ approach is inappropriate since it effectively translates to a
non-parametric regression approach with no regularization whatsoever. One cannot expect gener-
alization guarantees for the resulting function class, and indeed the authors are unable to provide
guarantees. Practically, the absence of regularization is also likely to hurt performance as is borne
out in our experiments. Similarly, Ernst et al. (2005) replace the local averaging procedure used
for regression by Ormoneit and Sen (2002) with non-parametric regression procedures such as
tree-based learning methods. This is done again without any theoretical justification. Pazis and
Parr (2011) discuss a non-parametric method that explicitly restricts the smoothness of the value
function. However, sample complexity results for this method are not provided and it appears
unsuitable for high-dimensional problems (such as, for instance, the queuing problem we consider
in our experiments).
Feature selection via `1-penalty (parametric). Closely related to our work, Kolter and Ng
(2009) and Petrik et al. (2010) consider modifying the approximate linear program with an `1-
regularization term to encourage sparse approximations in the span of a large, but necessarily
tractable set of features. In contrast to this line of work, our approach will allow for approxima-
tions in a potentially full-dimensional (i.e., of dimension equal to the cardinality of the state space)
approximation architecture, with a constraint on an appropriate `2-norm of the weight vector to
provide regularization.

In addition, there are still other non-parametric proposal that do not quite fall into the three
categories above. For example, Farahmand et al. (2009b) study what is effectively a kernelized
version of a specific approximate value iteration algorithm. Again, it is not possible to provide
performance guarantees of the type we present in this paper since doing so in the parametric case
for approximate value iteration is already hard; see De Farias and Van Roy (2000).

This paper presents what we believe is a practical, non-parametric ADP algorithm that en-
joys approximation and sample complexity guarantees that serve as natural counterparts to those
available for LP approaches to ADP. In greater detail, we make the following contributions:

• A new mathematical programming formulation. We rigorously develop a kernel-based vari-
ation of the ‘smoothed’ approximate LP (SALP) approach to ADP proposed by Desai et al.
(2012). The resulting mathematical program, which we dub the regularized smoothed approx-
imate LP (RSALP), is distinct from simply substituting the local averaging approximation
above in the SALP formulation. We develop a companion active set method that is capable
of solving this mathematical program rapidly and with limited memory requirements.

• Theoretical guarantees.1 Our algorithm can be interpreted as solving an approximate lin-
1These guarantees come under assumption of being able to sample from a certain idealized distribution. This is

a common requirement in the analysis of ADP algorithms that enjoy approximation guarantees for general MDPs
(de Farias and Van Roy, 2004; Van Roy, 2006; Desai et al., 2012). It is possible to enhance these guarantees by
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ear program in a (potentially infinite dimensional) Hilbert space. We provide a probabilistic
upper bound on the approximation error of the algorithm relative to the best possible approx-
imation one may compute in this space subject to a regularization constraint. We show that
the sample complexity of our algorithm grows polynomially as a function of a regularization
parameter. As this regularization parameter is allowed to grow, so does the set of permissible
approximations, eventually permitting the best approximation within the architecture which,
for some of the architectures we consider, is exact.

The sampling requirements for our method are independent of the dimension of the approx-
imation architecture. Instead, they grow with the allowed complexity of the approximation.
This result can be seen as the ‘right’ generalization of the prior parametric approximate LP
approaches of de Farias and Van Roy (2003, 2004); Desai et al. (2012), where, in contrast,
sample complexity grows with the dimension of the approximating architecture.

• A computational study. To study the efficacy of our approach, we consider an MDP arising
from a challenging queueing network scheduling problem. We demonstrate that our method
yields significant improvements over tailored heuristics and parametric ADP methods, all
while using a generic high-dimensional approximation architecture. In particular, these re-
sults suggest the possibility of solving a challenging high-dimensional MDP using an entirely
generic approach.

Relative to so-called ‘model free’ approaches to approximate DP based on simulation (such as
TD-learning), we note that the method we propose in the paper relies on the knowledge of the
transition probabilities of the MDP. Further we require the number of possible next states for
any state action pair to tractable. One can rely on sampling when this is not the case, but a
rigorous analysis of that approach is beyond the scope of this paper; see Haskell et al. (2016) for
a general analysis of so-called ‘empirical’ Bellman operators. These issues are germane to linear
programming-based ADP methods broadly.

The organization of the paper is as follows: In Section 2, we formulate an infinite dimensional
LP for our problem, and present an effective approximate solution approach. Section 3 provides
theoretical guarantees for the quality of the approximations computed via our non-parametric
algorithm. Theorem 1 in that Section provides our main guarantee. In Section 4, we provide an
active set method that can be used to efficiently solve the required quadratic optimization problem
central to our approach while respecting practical memory constraints. We also establishing the
correctness of our active set approach. Section 5 describes a numerical study for a criss-cross
queueing system benchmarking our approach against approximate linear programming approaches
and tailor made heuristics. Section 6 concludes.
showing how they degrade when the sampling distribution one has access to differs from this idealized distribution;
we do not pursue this extension here.
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2. Formulation

2.1. Preliminaries

Consider a discrete time Markov decision process with finite state space S and finite action space
A. We denote by xt and at respectively, the state and action at time t. For notational simplicity,
and without loss of generality, we assume that all actions are permissible at any given state. We
assume time-homogeneous Markovian dynamics: conditioned on being at state x and taking action
a, the system transitions to state x′ with probability p(x, x′, a) independent of the past. A policy
is a map µ : S → A, so that

Jµ(x) , Ex,µ
[ ∞∑
t=0

αtgxt,at

]

represents the expected (discounted, infinite horizon) cost-to-go under policy µ starting at state
x, with the discount factor α ∈ (0, 1). Letting Π denote the set of all policies, our goal is to find
an optimal policy µ∗ such that µ∗ ∈ argmaxµ∈Π J

µ(x) for all x ∈ S (it is well known that such a
policy exists). We denote the optimal cost-to-go function by J∗ , Jµ

∗ . An optimal policy µ∗ can
be recovered as a ‘greedy’ policy with respect to J∗,

µ∗(x) ∈ argmin
a∈A

gx,a + αEx,a[J∗(X ′)],

where we define the expectation Ex,a[f(X ′)] ,
∑
x′∈S p(x, x′, a)f(x′), for all functions f : S → R

on the state space.
Since in practical applications the state space S is often intractably large, exact computation

of J∗ is untenable. ADP algorithms are principally tasked with computing approximations to
J∗ of the form J∗(x) ≈ z>Φ(x) , J̃(x), where Φ: S → Rm is referred to as an ‘approximation
architecture’ or a basis and must be provided as input to the ADP algorithm. The ADP algorithm
computes a ‘weight’ vector z ∈ Rm. One then employs a policy that is greedy with respect to the
corresponding approximation J̃ .

2.2. Primal Formulation

The approach we propose is based on the LP formulation of dynamic programming. It was observed
by Manne (1960) that the optimal cost-to-go J∗ can be obtained by solving the following linear
program:

maximize ν>J

subject to J(x) ≤ ga,x + αEx,a[J(X ′)], ∀ x ∈ S, a ∈ A,
J ∈ RS ,

(1)

for any strictly positive state-relevance weight vector ν ∈ RS+. Motivated by this, a series of ADP
algorithms (Schweitzer and Seidman, 1985; de Farias and Van Roy, 2003; Desai et al., 2012) have
been proposed that compute a weight vector z by solving an appropriate modification of (1). In
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particular, Desai et al. (2012) propose solving the following optimization problem:

maximize
∑
x∈S

νxz
>Φ(x)− κ

∑
x∈S

πxsx

subject to z>Φ(x) ≤ ga,x + αEx,a[z>Φ(X ′)] + sx, ∀ x ∈ S, a ∈ A,
z ∈ Rm, s ∈ RS+.

(2)

Here κ > 0 is a penalty parameter and π ∈ RS+ is a strictly positive distribution on S. In
considering the above program, notice that if one insisted that the slack variables s were precisely
0, the program (2) would be identical to (1), with the additional restriction to value function
approximations of the form J(x) = z>Φ(x). This case is known as the approximate linear program
(ALP), and was first proposed by Schweitzer and Seidman (1985). de Farias and Van Roy (2003)
provided a pioneering analysis that, stated loosely, showed

‖J∗ − z∗>Φ‖1,ν ≤
2

1− α inf
z
‖J∗ − z>Φ‖∞,

for an optimal solution z∗ to the ALP. Desai et al. (2012) showed that these bounds could be
improved upon by ‘smoothing’ the constraints of the ALP, i.e., permitting positive slacks. The
resulting program (2) is called the smoothed approximate linear program (SALP). The ALP con-
straints impose the restriction that TJ ≥ J , where T is the Bellman operator defined by

(TJ)(x) , min
a∈A

[
gx,a + αEx,a[J(X ′)]

]
, (3)

for all x ∈ S and J : S → R. This constraint ensures that the optimal solution lower bounds the
optimal value function at each state. But at the cost of providing a lower bound, the ALP might
do a poor job of approximating J∗ due to presence of constraints associated with certain states
that are rarely visited. The SALP prevents this by allowing violations of the Bellman constrains,
but weighting the violations in a way that they are strongly penalized at highly visited states. For
a more detailed interpretation of SALP, see Section 3 of Desai et al. (2012). In both the original
ALP, as well as the SALP, one can solve a ‘sampled’ version of the above program for problems
with large state-spaces.

Now, consider allowing Φ to map from S to a general (potentially infinite dimensional) Hilbert
space H. We use bold letters to denote elements in the Hilbert space H, e.g., the weight vector
is denoted by z ∈ H. We further suppress the dependence on Φ and denote the elements of
H corresponding to their counterparts in S by bold letters. Hence, for example, x , Φ(x) and
X , Φ(X). Denote the image of the state space under the map Φ by X , Φ(S); X ⊂ H. The
analogous value function approximation in this case would be given by

J̃z,b(x) , 〈x, z〉+ b = 〈Φ(x), z〉+ b, (4)
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where b is a scalar offset corresponding to a constant basis function.2 The following generalization
of (2) — which we dub the regularized SALP (RSALP) — then essentially suggests itself:

maximize
∑
x∈S

νx〈x, z〉+ b− κ
∑
x∈S

πxsx −
Γ
2 〈z, z〉

subject to 〈x, z〉+ b ≤ ga,x + αEx,a[〈X′, z〉+ b] + sx, ∀ x ∈ S, a ∈ A,
z ∈ H, b ∈ R, s ∈ RS+.

(5)

The only new ingredient in the program above is the fact that we regularize the weight vector z
using the parameter Γ > 0. Penalizing the objective of (5) according to the square of the norm
‖z‖H ,

√
〈z, z〉 anticipates that we will eventually resort to sampling in solving this program. In

a sampled setting, regularization is necessary to avoid over-fitting and, in particular, to construct
an approximation that generalizes well to unsampled states. This regularization, which plays a
crucial role both in theory and practice, is easily missed if one directly ‘plugs in’ a local averaging
approximation in place of z>Φ(x), as is the case in the earlier work of Dietterich and Wang (2002),
or a more general non-parametric approximation as in the work of Ernst et al. (2005).

Since the RSALP of (5) can be interpreted as a regularized stochastic optimization problem,
one may hope to solve it via its sample average approximation. To this end, define the likelihood
ratio wx , νx/πx, and let Ŝ ⊂ S be a set of N states sampled independently according to the
distribution π. The sample average approximation of (5) is then

maximize 1
N

∑
x∈Ŝ

wx〈x, z〉+ b− κ

N

∑
x∈Ŝ

sx −
Γ
2 〈z, z〉

subject to 〈x, z〉+ b ≤ ga,x + αEx,a[〈X′, z〉+ b] + sx, ∀ x ∈ Ŝ, a ∈ A,
z ∈ H, b ∈ R, s ∈ RŜ+.

(6)

We call this program the sampled RSALP. Even if |Ŝ| were small, it is still not clear that this
program can be solved effectively: if H were infinite dimensional this is a semi-infinite linear
program. We will, in fact, solve the dual to this problem.

2.3. Dual Formulation

We begin by establishing some notation. Let Nx,a , {x} ∪ {x′ ∈ S : p(x, x′, a) > 0} denote the
set of states that can be reached starting at a state x ∈ S given an action a ∈ A. For any states
x, x′ ∈ S and action a ∈ A, define qx,x′,a , 1{x=x′} − αp(x, x′, a). Now, define the symmetric
positive semi-definite matrix Q ∈ R(Ŝ×A)×(Ŝ×A) according to

Q(x, a, x′, a′) ,
∑

y∈Nx,a
y′∈Nx′,a′

qx,y,aqx′,y′,a′〈y,y′〉, (7)

2Separating the scalar offset b from the linear term parameterized by z will permit us to regularize these two
quantities differently in the sequel.
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the vector R ∈ RŜ×A according to

R(x, a) , Γgx,a −
1
N

∑
x′∈Ŝ
y∈Nx,a

wx′qx,y,a〈y,x′〉, (8)

and the scalar S as
S , −

∑
x∈Ŝ

∑
y∈Ŝ

wxwy〈x,y〉.

Notice that Q, R and S depend only on inner products in X (and other easily computable
quantities). The dual to (6) is then given by:

minimize 1
2λ
>Qλ+R>λ+ S

subject to
∑
a∈A

λx,a ≤
κ

N
, ∀ x ∈ Ŝ,∑

x∈Ŝ
a∈A

λx,a = 1
1− α,

λ ∈ RŜ×A+ .

(9)

Assuming that Q, R and S can be easily computed, this quadratic program, is tractable – its size
is polynomial in the number of sampled states. We may recover a primal solution (i.e., the weight
vector z∗) from an optimal dual solution:

Proposition 1. Programs (6) and (9) have equal (finite) optimal values. The optimal solution to
(9) is attained at some λ∗. The optimal solution to (6) is attained at some (z∗, s∗, b∗) with

z∗ = 1
Γ

 1
N

∑
x∈Ŝ

wxx−
∑

x∈Ŝ,a∈A

λ∗x,a

(
x− αEx,a[X′]

) . (10)

The proof of Proposition 1 is presented in Appendix A. Having solved this program, we may,
using Proposition 1, recover our approximate cost-to-go function J̃(x) = 〈z∗,x〉+ b∗ as3

J̃(x) = 1
Γ

[
−

∑
y∈Ŝ,a∈A

λ∗y,a
(
〈y,x〉 − αEy,a[〈X′,x〉]

)
+ 1
N

∑
y∈Ŝ

wy〈y,x〉
]

+ b∗. (11)

A policy greedy with respect to J̃ is not affected by constant translations, hence in (11), the value
of b∗ can be set to be zero arbitrarily. Again note that given λ∗, evaluation of J̃ only involves inner
products in X .

3Note that the form of (11) is similar to what one might expect from the Representer Theorem; see for example
Theorem 4.2 in Scholkopf and Smola (2001).
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2.4. Kernels

As pointed out earlier, the sampled RSALP is potentially difficult to work with. Proposition 1
establishes that solving this program (via its dual) is a computation that scales polynomially
in N so that it can be solved efficiently provided inner products in H can be evaluated cheaply.
Alternatively, we may have arrived at a similar conclusion by observing that in any optimal solution
to (6), we must have that z∗ ∈ span

{
x : x ∈ Ŝ ∪ N (Ŝ)

}
, where N (Ŝ) denotes the set of states

that can be reached from the sampled states of Ŝ in a single transition. Then, one can restrict the
feasible region of (6) to this subspace. In either approach, we observe that one need not necessarily
have explicitly characterized the feature map Φ(·); knowing 〈Φ(x),Φ(y)〉 for all x, y ∈ S would
suffice and so the algorithm designer can focus on simply specifying these inner products. We
will see that when S ⊂ Rn these inner products are effectively cheap to compute for practically
interesting choices of Φ and H. This leads us to what is popularly referred to as the ‘kernel trick’
which we discuss next without the assumption that S is necessarily a finite set.

A kernel is a map K : S × S → R; we will call such a kernel positive definite if for any finite
collection of elements {xi}1≤i≤n in S, the Gram matrix G ∈ Rn×n defined by Gij , K(xi, xj)
is symmetric and positive semi-definite. Given such a kernel, we are assured of the existence
of a Hilbert space H and a map Φ: S → H such that4 〈Φ(x),Φ(y)〉 = K(x, y). The kernel
trick then allows us to implicitly work with this space H by replacing inner products of the form
〈x,y〉 , 〈Φ(x),Φ(y)〉 in (7), (8), and (11) by K(x, y). Of course, the quality of the approximation
one may produce depends on H and consequently on the kernel employed.

One case of special interest is where S is finite and the Gram matrix corresponding to this set
is positive definite. A kernel satisfying this condition is known as full-dimensional or full-rank. In
this case, we may take H to be the |S|-dimensional Euclidean space. Working with such a kernel
would imply working with an approximation architecture where any function J : S → R can be
exactly expressed in the form J(x) = 〈Φ(x), z〉, for some weight vector z ∈ H.

There are a number of kernels one can specify on the state space; we give two examples here
for the case where S ⊂ Rn. The polynomial kernel is defined according to

K(x, y) , (1 + x>y)d.

A corresponding Hilbert space H is given by the span of all monomials of degree up to d on Rn.
A Gaussian radial basis kernel is defined according to

K(x, y) , exp
(
−‖x− y‖

2

h

)
.

The Gaussian kernel is known to be full-dimensional (see, e.g., Theorem 2.18, Scholkopf and Smola,
2001), so that employing such a kernel in our setting would correspond to working with an infinite

4A canonical such space is the so-called ‘reproducing kernel’ Hilbert space, by the Moore-Aronszajn theorem. For
certain sets S, Mercer’s theorem provides another important construction of such a Hilbert space.

9



dimensional approximation architecture. A thorough exposition on this topic, along with many
more examples can be found in the text of Scholkopf and Smola (2001).

2.5. Overall Procedure

Our development thus far suggests the following non-parametric algorithm that requires as input a
kernelK, a state sampling distribution, π, and a distribution that allows us to weight approximation
across states, ν. Recall that we defined by w the likelihood ration between ν and π; wx = νx/πx.
Lastly recall that Nx,a denotes the set of states reachable with positive probability in one step
from state x, having taken action a. Our procedure requires that we set the parameters κ (which
we recall penalizes the one sided Bellman error across states) and Γ (which regularizes the set of
approximations allowed). Finally, we must specify the number of samples N .

1. Sample N states from a distribution π.

2. Solve (9) with
Q(x, a, x′, a′) ,

∑
y∈Nx,a

∑
y′∈Nx′,a′

qx,y,aqx′,y′,a′K(y, y′), (12)

and

R(x, a) ,

Γgx,a −
1
N

∑
y∈Ŝ

∑
x′∈Nx,a

wyqx,x′,aK(y, x′)

 . (13)

The value of S may be set to be zero.

3. Let λ∗ be the dual optimal. Define an approximate value function by

J̃(x) , 1
Γ

 1
N

∑
y∈Ŝ

wyK(x, y)−
∑

y∈Ŝ,a∈A

λ∗y,a(K(x, y)− αEy,a[K(X ′, x)])

 . (14)

In the next section we will develop theory to characterize the sample complexity of our procedure
and the approximation quality it provides. This theory will highlight the roles of the kernel K and
the sampling distributions used.

3. Approximation Guarantees

3.1. Overview

Recall that we are employing an approximation J̃z,b of the form

J̃z,b = 〈x, z〉+ b

parameterized by the weight vector z and the offset parameter b. For the purpose of establishing
theoretical guarantees, in this section, we will look at the following variation of the RSALP of (5):
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maximize
∑
x∈S

νx〈x, z〉+ b− κ
∑
x∈S

πxsx

subject to 〈x, z〉+ b ≤ ga,x + αEx,a[〈X′, z〉+ b] + sx, ∀ x ∈ S, a ∈ A,
‖z‖H ≤ C, |b| ≤ B,
z ∈ H, b ∈ R, s ∈ RS+.

(15)

Here, rather than regularizing by penalizing according to the weight vector z in the objective as in
(5), we regularize by restricting the size of the weight vector as a constraint. This regularization
constraint is parameterized by the scalar C ≥ 0. It is easy to see that (15) is equivalent to the
original problem (5), in the following sense: for any Γ > 0, there exists a C ≥ 0 so that for all B
sufficiently large, (5) and (15) have the same optimal solutions and value.5 Let C(Γ) be any such
value of C, corresponding to a particular Γ.

Now let
C
(
C(Γ), B

)
, {(z, b) ∈ H × R : ‖z‖H ≤ C(Γ), |b| ≤ B} .

The best approximation to J∗ within this set has `∞-approximation error

inf
(z,b)∈C

(
C(Γ),B

) ‖J∗ − J̃z,b‖∞. (16)

Now observe that if span {x : x ∈ S} ⊂ H has dimension |S| (i.e., if the kernel is full-dimensional),
there exists a z̃ ∈ H satisfying J̃z̃,0 = J∗. Consequently, for C(Γ) sufficiently large and any value
of B ≥ 0, we have that z̃ ∈ C

(
C(Γ), B

)
— the approximation error in (16) reduces to zero. More

generally, as C(Γ) and B grow large, we expect the approximation error in (16) to monotonically
decrease; the precise rate of this decrease will depend, of course, on the feature map Φ, which in
turn will depend on the kernel we employ.

Loosely speaking, in this section, we will demonstrate that:

1. For any given C(Γ) and B, exact solution of the RSALP (15) will produce an approximation
with `∞-error comparable to the optimal `∞-error possible for approximations J̃z,b with
‖z‖H ≤ C(Γ) and b ≤ B.

2. Under a certain set of idealized assumptions, solving a sampled variation of the RSALP
(15) with a number of samples N

(
C(Γ), B

)
that scales gracefully with C(Γ), B, and other

natural parameters, produces a near optimal solution to the RSALP with high probability.
These sample complexity bounds will not depend on the dimension of the approximation
architecture H.

5Note that the choice of C corresponding to a given Γ will be problem dependent and a precise conversion is
non-trivial. This does not pose an issue in practical applications, however, since Γ can easily be optimized via a
crude line-search. Moreover, the numerical results in Section 5 suggest that the method is insensitive to the choice
of Γ over several orders of magnitude.

Further, observe the the constraint |b| ≤ B has no counterpart in (5). As we shall see shortly, the value of B can
be chosen so that this contraint is not binding and the two formulations are equivalent. However, by introducing
this additional constraint, we obtain sharper sample complexity bounds.
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Since C(Γ) and B are parameters of the algorithm designer’s choosing, these results will effectively
show that with the ability to use a larger number of samples, the designer may choose larger
values of C(Γ) and B and consequently produce approximations of improving quality. Under mild
assumptions on the kernel, the approximation error can be made arbitrarily small in this fashion.

3.2. Preliminaries and an Idealized Program

Before proceeding with our analysis, we introduce some preliminary notation and define an idealized
sampling distribution. For a vector x ∈ Rn, and a ‘weight’ vector v ∈ Rn+, we denote by ‖x‖v ,∑n
i=1 vi|xi| the weighted 1-norm of x. We next define an idealized sampling distribution. Let ν be

an arbitrary distribution over S and denote by µ∗ and Pµ∗ an optimal policy and the transition
probability matrix corresponding to this policy, respectively. We define a distribution over S, πµ∗,ν
according to

π>µ∗,ν , (1− α)ν>(I − αPµ∗)−1 = (1− α)
∞∑
t=0

αtν>P tµ∗ . (17)

This idealized distribution will play the role of the sampling distribution π in the sequel.
As before, let Ŝ be a set of N states drawn independently at random from S; here we pick a

specific sampling distribution π = πµ∗,ν . Given the definition of J̃z,b in (4), the ‘idealized’ sampled
program we consider is:

maximize ν>J̃z,b −
2

1− α
1
N

∑
x∈Ŝ

sx

subject to J̃z,b(x) ≤ T J̃z,b(x) + sx, ∀ x ∈ Ŝ,
‖z‖H ≤ C, |b| ≤ B,
z ∈ H, b ∈ R, s ∈ RŜ+.

(18)

Here, T is the Bellman operator defined in (3).
This program is a sampled variant of (15) and is closely related to the sampled RSALP (6)

introduced in the last section. Before proceeding with an analysis of the quality of approximation
afforded by solving this program, we discuss its connection with the sampled RSALP (6) of the
previous section:

1. The distributions ν and π: We allow for an arbitrary distribution ν, but given this distribution
require that π = πµ∗,ν . In particular, the distribution ν might be chosen as the empirical
distribution corresponding to N independent draws from S under some measure; one would
then draw N independent samples under π = πµ∗,ν to construct the second term in the
objective. In a sense, this is the only ‘serious’ idealized assumption we make here. Given
the broad nature of the class of problems considered it is hard to expect meaningful results
without an assumption of this sort, and indeed much of the antecedent literature considering
parametric LP based approaches makes such an assumption. When the sampling distribution
π is a close approximation to πµ∗,ν (say, the likelihood ratio between the two distributions
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is bounded), then it is possible to provide natural extensions to our results that account for
how close the sampling distribution used is to the idealized sampling distribution.

2. Regularization: We regularize the weight vector z with an explicit constraint on ‖z‖H; this
permits a transparent analysis and is equivalent to placing the ‘soft’ regularization term
Γ
2 ‖z‖

2
H in the objective. In particular, the notation C(Γ) makes this equivalence explicit.

In addition, we place a separate upper bound on the offset term B. This constraint is not
binding if B > 2C maxx∈S ‖x‖H + ‖g‖∞/(1 − α) but again, permits a transparent analysis
of the dependence of the sample complexity of solving our idealized program on the offset
permitted by the approximation architecture.

3. The choice of κ: The smoothing parameter κ can be interpreted as yet another regularization
parameter, here on the (one-sided) Bellman error permitted for our approximation. Our
idealized program chooses a specific value for this smoothing parameter, in line with that
chosen by Desai et al. (2012).

3.3. The Approximation Guarantee

Let (ẑ, b̂) be an optimal solution to the idealized sampled program (18) and let K , maxx∈S ‖x‖H.
Further define,

Ξ(C,B,K, δ) ,
(

4CK(1 + α) + 4B(1− α) + 2‖g‖∞
)(

1 +
√

2 ln(1/δ)
)
.

Notice that Ξ(C,B,K, δ)2 scales as the square of C, K, and B and further is O(ln 1/δ). The
following result will constitute our main approximation guarantee:

Theorem 1. For any ε, δ > 0, let N ≥ Ξ(C,B,K, δ)2/ε2. If (ẑ, b̂) is an optimal solution to (18),
then with probability at least 1− δ − δ4,

∥∥∥J∗ − J̃ẑ,b̂

∥∥∥
1,ν
≤ 3 + α

1− α inf
‖z‖H≤C, |b|≤B

‖J∗ − J̃z,b‖∞ + 4ε
1− α. (19)

The result is proved Appendix B. There we prove a more refined result, replacing the max-
norm in the bound above with an ‘optimally weighted’ variant which can provide a substantially
stronger guarantee (Desai et al., 2012). The remainder of this section is dedicated to parsing and
interpreting this guarantee:

1. Optimal approximation error: Ignoring the ε-dependent error term in the guarantee, we see
that the quality of approximation provided by (ẑ, b̂) is essentially within a constant multiple
(at most (3+α)/(1−α)) of the optimal (in the sense of `∞-error) approximation to J∗ possible
using a weight vector z and offsets b permitted by the regularization constraints. This is a
‘structural’ error term that will persist even if one were permitted to draw an arbitrarily large
number of samples. It is analogous to the approximation results produced in parametric
settings with the important distinction that one allows comparisons to approximations in
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potentially full-dimensional sets which might, as we have argued earlier, be substantially
superior.

2. Dimension independent sampling error: In addition to the structural error above, one incurs
an additional additive ‘sampling’ error that scales like 4ε/(1 − α). The result demonstrates
that

ε = O

(
(CK +B)

√
ln 1/δ√

N

)
This is an important contrast with existing parametric sample complexity guarantees. In
particular, existing guarantees typically depend on the dimension of the space spanned by
the basis function architecture {x : x ∈ S}. Here, this space may be full-dimensional,
so that such a dependence would translate to a vacuous guarantee. Instead we see that the
dependence on the approximation architecture is through the constants C, K and B. Of these
K can, for many interesting kernels be upper bounded by a constant that is independent of
|S|, while C and B are user-selected regularization bounds. Put another way, the guarantee
allows for arbitrary ‘simple’ (in the sense of ‖z‖H being small) approximations in a rich feature
space as opposed to restricting us to some a priori fixed, low-dimensional feature space. This
yields some intuition for why we expect the approach to perform well even with a relatively
general choice of kernel. While the dependence on C, K and B in the bound above is likely
loose, the guarantees above shows that for a fixed approximation architecture — i.e., choice
of kernel, C and B — the sampling error ε improves with the number of samples. We see in
our experiments that keeping other parameters fixed, policy performance improves with the
number of samples, N .

3. A non-parametric interpretation: As we have argued earlier, in the event that span {x : x ∈
S} is full-dimensional, there exists a choice of C and B for which the optimal approximation
error is, in fact, zero. A large number of kernels would guarantee such feature maps. More
generally, as C and B grow large, inf‖z‖H≤C, |b|≤B ‖J

∗ − J̃z,b‖∞ will decrease. In order to
maintain the (bound on) sampling error constant, one would then need to increase N at
a rate that is roughly Ω((CK + B)2). In summary, by increasing the number of samples
in the sampled program, we can (by increasing C and B appropriately) hope to compute
approximations of increasing quality, approaching an exact approximation. While the rate
at which the ‘structural’ error term goes to zero with B remains unclear, this is a substan-
tially weaker requirement than choosing a low-dimensional approximation architecture that
provides a small approximation error.

4. Numerical Scheme

This section outlines an efficient numerical scheme we use to solve the regularized SALP. In par-
ticular, we would like to solve the sampled dual problem (9), introduced in Section 2.3, in order
to find an approximation to the optimal cost-to-go function. This approach requires solving a
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quadratic program (QP) with N × A variables, where N , |Ŝ| is the number of sampled states
and A , |A| is the number of possible actions. Furthermore, constructing the coefficient matrices
Q and R for (9) requires O(N2A2H2) arithmetic operations, where H is the maximum number of
states that can be reached from an arbitrary state-action pair, i.e.,

H , max
(x,a)∈S×A

∣∣{x′ ∈ S : p(x, x′, a) > 0}
∣∣.

These computationally expensive steps may prevent scaling up solution of the QP to a large number
of samples. Also, an off-the-shelf QP solver will typically store the matrix Q in memory, so that
the memory required to solve our QP with an off-the-shelf solver effectively scales like O(N2A2).

In this section, we develop an iterative scheme to solve the program (9) that, by exploiting
problem structure, enjoys low computational complexity per iteration and attractive memory re-
quirements. Our scheme is an active set method in the vein of the approaches used by Osuna et al.
(1997) and Joachims (1999), among others, for solving large SVM problems. The broad steps of
the scheme are as follows:

1. At the tth iteration, a subset B ⊂ Ŝ × A of the decision variables of (9) – the ‘active set’
– is chosen. Only variables in this set may be changed in a given iteration; these changes
must preserve feasibility of the new solution that results. Our algorithm will limit the size of
the active set to two variables, i.e., |B| = 2. The methodology for choosing this active set is
crucial and will be described in the sequel.

2. Given the subset B, we solve (9) for λ(t), where all variables except those in B must remain
unchanged. In other words, λ(t)

x,a , λ
(t−1)
x,a for all (x, a) /∈ B. This entails the solution of a QP

with only |B| decision variables. In our case, we will be able to solve this problem in closed
form.

3. Finally, if the prior step does not result in a decrease in objective value we conclude that we
are at an optimal solution; Proposition 2 establishes that this is, in fact, a correct termination
criterion.

In the following section, we will establish an approach for selecting the active set at each
iteration and show how Step 2 above can be solved while maintaining feasibility at each iteration.
We will establish that steps one and two together need no more that O(NA logNA) arithmetic
operations and comparisons, and moreover that the memory requirement for our procedure scales
like O(NA). Finally, we will establish that our termination criterion is correct: in particular, if
no descent direction of cardinality at most two exists at a given feasible point, we must be at an
optimal solution.

4.1. Subset Selection

The first step in the active set method is to choose the subset B ⊂ Ŝ × A of decision variables
to optimize over. Given the convex objective in (9), if the prior iteration of the algorithm is at a
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sub-optimal point λ , λ(t−1), then there exists a direction d ∈ RŜ×A such that λ + εd is feasible
with a lower objective value for ε > 0 sufficiently small. To select a subset to optimize over, we
look for such a descent direction d of low cardinality ‖d0‖0 ≤ q, i.e., a vector d that is zero on all
but at most q components. If such a direction can be found, then we can use the set of non-zero
indices of d as our set B.

This problem of finding a ‘sparse’ descent direction d can be posed as

minimize h(λ)>d

subject to
∑
a∈A

dx,a ≤ 0, ∀ x ∈ Ŝ with
∑
x∈A

λx,a = κ

N
,

dx,a ≥ 0, ∀ (x, a) ∈ Ŝ × A with λx,a = 0,∑
x∈Ŝ
a∈A

dx,a = 0,

||d||0 ≤ q,
||d||∞ ≤ 1,
d ∈ RŜ×A.

(20)

Here, h(λ) , Qλ+R is the gradient of the objective of (9) at a feasible point λ, thus the objective
h(λ)>d seeks to find a direction d of steepest descent. The first three constraints ensure that d is
a feasible direction. The constraint ‖d‖0 ≤ q is added to ensure that the direction is of cardinality
at most q. Finally, the constraint ‖d‖∞ ≤ 1 is added to ensure that the program is bounded, and
may be viewed as normalizing the scale of the direction d.

The program (20) is, in general, a challenging mixed integer program because of the cardinality
constraint. Joachims (1999) discusses an algorithm to solve a similar problem of finding a low
cardinality descent direction in an SVM classification setting. Their problem can be easily solved
provided that the cardinality q is even, however no such solution seems to exist for our case.
However, in our case, when q = 2, there is a tractable way to solve (20). We will restrict attention
to this special case, i.e., consider only descent directions of cardinality two. In Section D, we will
establish that this is, in fact, sufficient: if the prior iterate λ is sub-optimal, then there will exist
a direction of descent of cardinality two.

To begin, define the sets

P1 ,

{
(x, a) ∈ Ŝ × A : λa,x = 0

}
, P2 ,

{
x ∈ Ŝ :

∑
a∈A

λx,a = κ

N

}
.

Consider the following procedure:

1. Sort the set of indices Ŝ×A according to their corresponding component values in the gradient
vector h(λ). Call this sorted list L1.

2. Denote by (x1, a1) the largest element of L1 such that (x1, a1) /∈ P1, and denote by (x2, a2)
the smallest element of L1 such that x2 /∈ P2. Add the tuple (x1, a1, x2, a2) to the list L2.
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3. Consider all x ∈ P2. For each such x, denote by (x, a1) the largest element of L1 such that
(x, a1) /∈ P1, and denote by (x, a2) the smallest element of L1. Add each tuple (x, a1, x, a2)
to L2.

4. Choose the element (x∗1, a∗1, x∗2, a∗2) of L2 that optimizes

min
(x1,a1,x2,a2)∈L2

h(λ)x2,a2 − h(λ)x1,a1 . (21)

Set dx∗1,a∗1 = −1, dx∗2,a∗2 = 1, and all other components of d to zero..

This procedure finds a direction of maximum descent of cardinality two by examining candidate
index pairs (x1, a1, x2, a2) for which h(λ)x2,a1 − h(λ)x1,a1 is minimal. Instead of considering all
N2A2 such pairs, the routine selectively checks only pairs which describe feasible directions with
respect to the constraints of (20). Step 2 considers all feasible pairs with different states x, while
Step 3 considers all pairs with the same state. It is thus easy to see that the output of this procedure
is an optimal solution to (20), i.e., a direction of steepest descent of cardinality two. Further, if the
value of the minimal objective (21) determined by this procedure is non-negative, then no descent
direction of cardinality two exists, and the algorithm terminates.

In terms of computational complexity, this subset selection step requires us to first compute the
gradient of the objective function h(λ) , Qλ + R. If the gradient is known at the first iteration,
then we can update it at each step by generating two columns of Q, since λ only changes at two
co-ordinates. Hence, the gradient calculation can be performed in O(NA) time, and with O(NA)
storage (since it is not necessary to store Q). For Step 1 of the subset selection procedure, the
component indices must be sorted in the order given by the gradient h(λ). This operation requires
computational effort of the order O(NA logNA). With the sorted indices, the effort required in
the remaining steps to find the steepest direction is via the outlined procedure is O(NA). Thus,
our subset selection step requires a total of O(NA logNA) arithmetic operations and comparisons.

The initialization of the gradient requires O(N2A2) effort. In the cases where such a com-
putation is prohibitive, one can think of many approaches to approximately evaluate the initial
gradient. For example, if we use the Gaussian kernel, the matrix Q will have most of its large
entries close to the diagonal. In this case, instead of the expensive evaluation of Q, we can only
evaluate the entries Q(x, a, x′, a′) where x = x′ and set the rest of them to zero. This block diagonal
approximation might be used to initialize the gradient. Another approach is to sample from the
distribution induced by λ to approximately evaluate Qλ. As the algorithm makes progress it eval-
uates new columns of Q. With a bit of book-keeping one could get rid of the errors associated with
the gradient initialization. The convergence properties of the active set method with approximate
initialization is an issue not tackled in this paper.
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4.2. QP Sub-problem

Given a prior iterate λ(t−1), and a subset B , {(x1, a1), (x2, a2)} of decision variable components
of cardinality two as computed in Section 4.1, we have the restricted optimization problem

minimize
∑

(x,a)∈B

∑
(x′,a′)∈B

λx′,a′Q(x, a, x′, a′)λx,a

+
∑

(x,a)∈B
λx,a

R(x, a) + 2
∑

(x′,a′)/∈B
Q(x, a, x′, a′)λ(t−1)

x′,a′


subject to

∑
a: (x,a)∈B

λx,a ≤
κ

N
−

∑
a: (x,a)/∈B

λ(t−1)
x,a , ∀ x ∈ {x1, x2}

∑
(x,a)∈B

λx,a = 1
1− α −

∑
(x,a)/∈B

λ(t−1)
x,a ,

λ ∈ RB+.

(22)

This sub-problem has small dimension. In fact, the equality constraint implies that λx1,a1 + λx2,a2

is constant, hence, the problem is in fact a one-dimensional QP that can be solved in closed form.
Further, to construct this QP, two columns of Q are required to be generated. This requires
computation effort of order O(NA).

Note that the subset B is chosen so that it is guaranteed to contain a descent direction, according
to the procedure in Section 4.1. Then, the solution of (20) will produce an iterate λ(t) that is feasible
for the original problem (22) and has lower objective value than the prior iterate λ(t−1).

Finally, we state a proposition establishing the correctness of our active set method: if the prior
iterate λ , λ(t−1) is sub-optimal, then there must exist a direction of descent of cardinality two.
Our iterative procedure will therefore improve the solution, and will only terminate when global
optimality is achieved.

Proposition 2. If λ ∈ RŜ×A is feasible but sub-optimal for (9), then there exists a descent direction
of cardinality two.

This result is proved in Appendix D.

5. Case Study: A Queueing Network

This section considers the problem of controlling the so-called ‘Rybko-Stolyar’ queuing network
illustrated in Figure 1, with the objective of minimizing long run average delay. There are two
‘flows’ in this network: the first through server 1 followed by server 2 (with buffering at queues 1 and
2, respectively), and the second through server 2 followed by server 1 (with buffering at queues 4
and 3, respectively). Here, all inter-arrival and service times are exponential with rate parameters
summarized in Figure 1.

This specific network has been studied by de Farias and Van Roy (2003); Chen and Meyn
(1998); Kumar and Seidman (1990), for example, and closely related networks have been studied
by Harrison and Wein (1989); Kushner and Martins (1996); Martins et al. (1996); Kumar and
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Figure 1: The queueing network example.

Muthuraman (2004). It is widely considered to be a challenging control problem. As such, a lot
of thought has been invested in designing scheduling policies with networks of this type in mind.
Our goal in this section will be two fold. First, we will show that the RSALP, used ‘out-of-the-box’
with a generic kernel, can match or surpass the performance of tailor made heuristics and state of
the art parametric ADP methods. Second, we will show that the RSALP can be solved efficiently.

5.1. MDP Formulation

Although the control problem at hand is nominally a continuous time problem, it is routinely
converted into a discrete time problem via a standard uniformization device; see Moallemi et al.
(2008), for instance, for an explicit example. In the equivalent discrete time problem, at most a
single event can occur in a given epoch, corresponding either to the arrival of a job at queues 1
or 4, or the arrival of a service token for one of the four queues with probability proportional to
the corresponding rates. The state of the system is described by the number of jobs in each of the
four queues, so that S , Z4

+, whereas the action space A consists of four potential actions each
corresponding to a matching between servers and queues. We take the single period cost as the
total number of jobs in the system, so that gx,a = ‖x‖1. Finally, we take α , 0.9 as our discount
factor.

5.2. Approaches

The following scheduling approaches were considered for the queueing problem:

RSALP (this paper). We solve (9) using the active set method outlined in Section 4, taking as our
kernel the standard Gaussian kernel K(x, y) , exp

(
−‖x− y‖22/h

)
, with the bandwidth parameter6

h , 100. Note that this implicitly corresponds to an full-dimensional basis function architecture.
Since the idealized sampling distribution, πµ∗,ν is unavailable to us, we use in its place the geometric
distribution

π(x) , (1− ζ)4ζ‖x‖1 , (23)
6The sensitivity of our results to this bandwidth parameter appears minimal.
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with the sampling parameter ζ set at 0.9. This choice mimics that of de Farias and Van Roy (2003).
The regularization parameter Γ was chosen via a line-search;7 we report results for Γ , 10−6. In
accordance with the theory we set the constraint violation parameter κ , 2/(1− α), as suggested
by the analysis of Section 3, as well as by Desai et al. (2012) for the SALP.

SALP (Desai et al., 2012). The SALP formulation (2), is, as discussed earlier, the parametric
counterpart to the RSALP. It may be viewed as a generalization of the ALP approach proposed
by de Farias and Van Roy (2003) and has been demonstrated to provide substantial performance
benefits relative to the ALP approach. Our choice of parameters for the SALP mirrors those for
the RSALP to the extent possible, so as to allow for an ‘apples-to-apples’ comparison. Thus,
as earlier, we solve the sample average approximation of this program using the same sampling
distribution π as in (23), and we set κ , 2/(1 − α). Being a parametric approach, one needs
to specify an appropriate approximation architecture. Approximation architectures that span (at
least quadratic) polynomials are known to work well for queueing problem. We use the basis
functions used by de Farias and Van Roy (2003) for a similar problem modeled directly in discrete
time. In particular, we use all monomials with degree at most 3, which we will call the cubic basis,
as our approximation architectures.

Longest Queue First (generic). This is a simple heuristic approach: at any given time, a server
chooses to work on the longest queue from among those it can service.

Max-Weight (Tassiulas and Ephremides, 1992). Max-Weight is a well known scheduling heuristic
for queueing networks. The policy is obtained as the greedy policy with respect to a value function
approximation of the form

J̃MW (x) ,
4∑
i=1
|xi|1+ε,

given a parameter ε > 0. This policy has been extensively studied and shown to have a number
of good properties, for example, being throughput optimal (Dai and Lin, 2005) and offering good
performance for critically loaded settings (Stolyar, 2004). Via a line-search we chose to use ε , 1.5
as the exponent for our experiments.

5.3. Results

Policies were evaluated using a common set of arrival process sample paths. The performance
metric we report for each control policy is the long run average number of jobs in the system under
that policy,

1
T

T∑
t=1
‖xt‖1,

where we set T , 10,000. We further average this random quantity over an ensemble of 300 sample
paths. The performance measure we report here is the average cost associated with a particular
policy; the RSALP is optimizing over the discounted infinite horizon cost.

7Specifically, we tried values of the form Γ = 10k, for k between −12 and 2.
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policy performance

Longest Queue 8.09
Max-Weight 6.55

sample size 1000 3000 5000 10000 15000

SALP, cubic basis 7.19 (1.76) 7.89 (1.76) 6.94 (1.15) 6.63 (0.92) 6.58 (1.12)
RSALP, Gaussian kernel 6.72 (0.39) 6.31 (0.11) 6.13 (0.08) 6.04 (0.05) 6.02 (0.06)

Table 1: Performance results in the queueing example. For the SALP and RSALP methods, the number
in the parenthesis gives the standard deviation across sample sets.

Further, in order to generate SALP and RSALP policies, state sampling is required. To under-
stand the effect of the sample size on the resulting policy performance, the different sample sizes
listed in Table 1 were used. Since the policies generated involve randomness to the sampled states,
we further average performance over 10 sets of sampled states. The results are reported in Table 1
and have the following salient features:

1. RSALP outperforms established policies: Approaches such as the Max-Weight or ‘parametric’
ADP with basis spanning polynomials have been previously shown to work well for the prob-
lem of interest. We see that the RSALP with more than 3000 samples achieves performance
that is superior to these extant schemes.

2. Sampling improves performance: This is expected from the theory in Section 3. Ideally, as
the sample size is increased one should relax the regularization. However, for our experiments
we noticed that the performance is quite insensitive to the parameter Γ. Nonetheless, it is
clear that larger sample sets yield a significant performance improvement.

3. RSALP is less sensitive to state sampling: We notice from the standard deviation values in
Table 1 that our approach gives policies whose performance varies significantly less across
different sample sets of the same size.

In Figure 2, we see how performance varies for the RSALP method, as a function of the discount
factor α and the regularization parameter Γ.

First, consider the choice of regularizer Γ. From Figure 2, we see that performance degrades for
large choices of the parameter (presumably since this restricts the richness of the approximation
architecture) as well as for very small choices of the parameter (presumably due to poor gener-
alization). While there is degradation in performance for small values of Γ, this degradation is
meaningful but limited in our experiments (average cost is ∼ 20% worse for small choice than the
optimal choice).

Now, consider the choice of discount factor α. Note that we are concerned with (and report)
average cost performance, but solve a discounted problem formulation. While this may appear
to be inconsistent at first glance, note that the average cost criterion can be seen as a weighted
average, across states, of the discounted cost incurred starting at those states. The weights in this
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Figure 2: Performance results in the queueing example, for the RSALP method with 15,000 samples,
for varying values of the discount factor α and the regularization parameter Γ.

average correspond to the steady state-distribution induced by the policy in question. This is in
keeping with Desai et al. (2012) and de Farias and Van Roy (2003), for example.

Moreover, we view the choice of α as an algorithmic tuning parameter that implicitly regularizes
a bias-variance tradeoff in the learning algorithm. Specifically, if α is too low, there is ‘bias’
introduced through the misalignment of discounted and average cost objectives. On the other
hand, if α is too large, the sample complexity degrades and many more samples are needed. This
is consistent with the approximation guarantees we have developed, and also consistent with the
results in Figure 2: values of α closer to 1 result in degraded average cost performance. This is in
keeping with the view of the discount factor as a regularizer in the broader reinforcement learning
literature (e.g., Dewanto and Gallagher, 2021; Jiang et al., 2015; Amit et al., 2020).

In summary, we view these results as indicative of the possibility that the RSALP may serve
as a practical and viable alternative to state-of-the-art parametric ADP techniques.

6. Conclusions

This paper set out to present a practical non-parametric algorithm for approximate dynamic pro-
gramming building upon the success of linear programming based methods that require the user
to specify an approximation architecture. We believe that the RSALP, presented and studied here,
is such an algorithm. In particular, the theoretical guarantees presented here establish the ‘non-
parametric’ nature of the algorithm by showing that increased sampling effort leads to improved
approximations. On the empirical front, we have shown that our essentially ‘generic’ procedure
was able to match the performance of tailor made heuristics as well as ADP approaches using
pre-specified approximation architectures. Nevertheless, several interesting directions for future
work are evident at this juncture:

22



• The choice of kernel: The choice of kernel matters in so much as the feature map it encodes
allows for approximations with small Hilbert norm (i.e., small C). Thus, a good choice
of kernel would require fewer samples to achieve a fixed approximation accuracy than a
poor choice of kernel. That said, picking a useful kernel is an apparently easier task than
picking a low-dimensional architecture — there are many full-dimensional kernels possible,
and with sufficient sampling, they will achieve arbitrarily good value function approximations.
Nevertheless, it would be valuable to understand the interplay between the choice of kernel
and the corresponding value of C for specific problem classes (asking for anything more
general appears rather difficult).

• The active set method: In future work, we would like to fine tune/ build more extensible
software implementing our active set method for wider use. Given the generic nature of the
approach here, we anticipate that this can be a technology for high-dimensional MDPs that
can be used ‘out of the box’.
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A. Duality of the Sampled RSALP

Proof of Proposition 1. We begin with a few observations about the primal program, (6):

1. Because the objective function is coercive,8 weight vector z can be restricted without loss of
generality to some finite ball in H. The optimal value of the primal is consequently finite.

2. The primal has a feasible interior point: consider setting

z , 0, b , 0, sx , max(−min
a
gx,a, ε),

for some ε > 0.

3. The optimal value of the primal is achieved. To see this, we note that it suffices to restrict z to
the finite dimensional space spanned by the vectors

{
x : x ∈ Ŝ∪N (Ŝ)

}
, where N (Ŝ) denotes

the set of states that can be reached from the sampled states of Ŝ in a single transition. Then,
the feasible region of the primal can be restricted, without loss of optimality, to a compact
subset of H×RŜ ×R. Since the objective function of the primal is continuous, we know that
its optimal value must be achieved by the Weierstrass theorem.

We next derive the dual to (6). As in Luenberger (1997, Chapter 8), we define the Lagrangian:

L(z, b, s, λ) ,
〈
− 1
N

∑
x∈Ŝ

wxx +
∑

(x,a)∈Ŝ×A

λx,a
(
x− αEx,a[X′]

)
, z
〉

+ Γ
2 ||z||

2
H

+
∑
x∈Ŝ

sx

 κ

N
−
∑
a∈A)

λx,a

− b
1− (1− α)

∑
(x,a)∈Ŝ×A

λx,a

− ∑
(x,a)∈P̂

gx,aλx,a.

8As ‖z‖H →∞, the objective value goes to −∞.
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and define the dual functionG(λ) , inf(z,b,s)∈D L(z, b, s, λ) where we denote by D the feasible region
of the primal problem. Now, observe that for any given λ, L(z, b, s, λ) is (uniquely) minimized at

z∗(λ) = 1
Γ

 1
N

∑
x∈Ŝ

wxx−
∑

x∈Ŝ,a∈A

λx,a

(
x− αEx,a[X′]

) , (24)

for any finite b, s. This follows from the fact that z can be optimizied separately from (b, s) since
there are no croess terms, and the observation that for any z ∈ H, 〈z, z〉 − 〈z̄, z〉 is minimized at
−1

2z by the Cauchy-Schwartz inequality. Minimizing over sx ≥ 0 yields that, for the dual function
to be finite, the constraint ∑

a∈A)
λx,a ≤

κ

N

must be satisfied for all x ∈ Ŝ. Similarly, minimizing over b ∈ R yields that, for the dual function
to be finite, the constraint ∑

(x,a)∈Ŝ×A

λx,a = 1
1− α

must be satisfied.
It follows immediately that on the set defining the feasible region of the program (9), we must

have that
G(λ) = 1

2λ
>Qλ+R>λ+ S

and moreover that G(λ) = +∞ outside that set. This suffices to establish that the dual problem
infλ≥0G(λ) is precisely program (9).

The first conclusion of Luenberger (1997, Theorem 1, pp. 224–225) and the first and second
observations we made at the outset of our proof then suffice to establish that programs (6) and (9)
have equal optimal values (i.e. strong duality holds) and that the optimal value of the dual program
is achieved at some λ∗. Our third observation, (24), and the second conclusion of Luenberger (1997,
Theorem 1, pp. 224–225) then suffice to establish our second claim. �

B. Proof of Theorem 1

Here we state and prove a refined version of Theorem 1; specifically Theorem 1 is implied by
Theorem 2 below. First, however, we introduce a certain ‘weighted’ max norm, and the notion of
a Lyapunov function: Let Ψ , {ψ ∈ RS : ψ ≥ 1}, be the set of all functions on the state space
bounded from below by 1. For any ψ ∈ Ψ, let us define the weighted ∞-norm ‖ · ‖∞,1/ψ by

||J ||∞,1/ψ , max
x∈S

|J(x)|/ψ(x).
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Our use of such weighted norms will allow us to emphasize approximation error differently across
the state space. Further, we define

β(ψ) , max
x∈X , a∈A

∑
x′ p(x, x′, a)ψ(x′)

ψ(x) .

For a given ψ, β(ψ) gives us the worst-case expected gain of the Lyapunov function ψ for any state
action pair (x, a).

Recall that we let (ẑ, b̂) be an optimal solution to the idealized sampled program (18) and let
K , maxx∈S ‖x‖H. Further we defined,

Ξ(C,B,K, δ) ,
(

4CK(1 + α) + 4B(1− α) + 2‖g‖∞
)(

1 +
√

2 ln(1/δ)
)
.

The following result will constitute our main approximation guarantee:

Theorem 2. For any ε, δ > 0, let N ≥ Ξ(C,B,K, δ)2/ε2. If (ẑ, b̂) is an optimal solution to (18),
then with probability at least 1− δ − δ4,

∥∥∥J∗ − J̃ẑ,b̂

∥∥∥
1,ν
≤ inf
‖z‖H≤C, |b|≤B, ψ∈Ψ

‖J∗ − J̃z,b‖∞,1/ψ

(
ν>ψ +

2(π>µ∗,νψ)(αβ(ψ) + 1)
1− α

)

+ 4ε
1− α.

(25)

Note that this result implies Theorem 1 by choosing Ψ to be the vector of all ones. The proof
will broadly proceed in two steps. First we prove a uniform concentration guarantee that allows us
to show that the one sided expected Bellman error minimized by the RSALP is well approximated
in its sampled counterpart. The main part of the proof then essentially leverages the structure of
the feasible region of the RSALP, and properties of the Bellman operator to establish the result.

B.1. Uniform Concentration Bounds

We begin with defining the empirical Rademacher complexity of a class of functions F from S to
R as

R̂n(F) = E
[

sup
f∈F

2
n

n∑
i=1

σif(Xi)
∣∣∣∣∣X1, X2, . . . , Xn

]
,

where σi are i.i.d. random variable that take value 1 with probability 1/2 and −1 with probability
1/2. The Xi are i.i.d. S-valued random variables drawn with the distribution π. We denote by
Rn(F) , ER̂n(F) the Rademacher complexity of F .

We begin with the following abstract sample complexity result: let F be a class of functions
mapping S to R that are uniformly bounded by some constant B. Moreover denote for any function
f ∈ F , the empirical expectation Ênf(X) , 1

n

∑n
i=1 f(Xi), where the Xi are i.i.d. random draws

from S as above. We then have the following sample complexity result:

28



Lemma 1.

P

sup
f∈F

Ef(X)− Ênf(X) ≥ Rn(F) +

√
2B2 ln(1/δ)

n

 ≤ δ.
This result is standard9; for completeness, the proof may be found in Appendix C. Next, we

establish the Rademacher complexity of a specific class of functions. Fixing a policy µ, consider
then the set of functions mapping S to R defined according to:

FS,µ ,
{
x 7→ 〈x, z〉 − αEx,µ(x)[〈X′, z〉] : ‖z‖H ≤ C

}
.

We have:

Lemma 2. For any policy µ,
Rn (FS,µ) ≤ 2CK(1 + α)√

n
.

Proof. Observe that, due to triangle inequality

‖x− αEx,µ(x)[X′]‖H ≤ ‖x‖H + αEx,µ(x)[‖X′‖H] ≤ K(1 + α),

for all x ∈ S. Now, let Xi be i.i.d. samples in S and Xi be the corresponding elements in H,

R̂n (FS,µ) = 2
n

E
[

sup
z: ‖z‖H≤C

〈∑
i

σi
(
Xi − αEXi,µ(Xi)[X

′]
)
, z

〉 ∣∣∣∣X1, . . . , Xn

]

≤ 2
n

E
[

sup
z: ‖z‖H≤C

∥∥∥∥∥∑
i

σi
(
Xi − αEXi,µ(Xi)[X

′]
)∥∥∥∥∥
H

‖z‖H
∣∣∣∣X1, . . . , Xn

]

= 2C
n

E
[∥∥∥∥∥∑

i

σi
(
Xi − αEXi,µ(Xi)[X

′]
)∥∥∥∥∥
H

∣∣∣∣X1, . . . , Xn

]

≤ 2C
n

√∑
i

‖Xi − αEXi,µ(Xi)[X′]‖2H

≤ 2CK(1 + α)√
n

.

�

Now, consider the class of functions mapping S to R, defined according to:

FS,µ ,
{
x 7→

(
J̃z,b(x)− (TµJ̃z,b)(x)

)+
: ‖z‖H ≤ C, |b| ≤ B

}
.

Now, FS,µ = φ (FS,µ + (1− α)FB − gµ), where φ , (·)+ and FB , {x 7→ b : |b| ≤ B}. It is
easy to show that Rn(FB) ≤ 2B/

√
n, so that with the previous lemma, the results of Bartlett and

Mendelson (2002, Theorem 12, parts 4 and 5) allow us to conclude
9Indeed, the calculations in Lemmas 1 and 2 are routine; see Bartlett and Mendelson (2002)
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Corollary 1.

Rn(FS,µ) ≤ 4CK(1 + α) + 4B(1− α) + 2‖g‖∞√
n

,
C√
n
.

Now, define
FS ,

{
x 7→

(
J̃z,b(x)− (T J̃z,b)(x)

)+
: ‖z‖H ≤ C, |b| ≤ B

}
.

We have:

Lemma 3. For every f ∈ FS and every f ∈ FS,µwe have that ‖f‖∞ ≤ C/2. Moreover,

P
(
ÊNf(X)− Ef(X) ≥ ε

)
≤ δ4,

provided N ≥ Ξ(C,B,K, δ)2/ε2.

Proof. For the first claim, observe that

max
x,z,b

(
J̃z,b(x)− (T J̃z,b)(x)

)+
≤ max

x,z
〈x, z〉+ αmax

x,z
〈x, z〉+ (1− α)B + ‖g‖∞

≤ KC(1 + α) + (1− α)B + ‖g‖∞
≤ C/2

For the second claim, Hoeffding’s inequality applied now to the sum of independent random vari-
ables, each in [−C/2, C/2] yields

P
(
ÊNf(X)− Ef(X) ≥ ε

)
≤ exp

(
−2Nε2

C
2

)
≤ δ4

�

Corollary 1, Lemma 1, and the first part of Lemma 3 yields the following sample complexity
result:

Theorem 3. Provided N ≥ Ξ(C,B,K, δ)2/ε2 , we have

P

 sup
f∈F̄S,µ

Ef(X)− ÊNf(X) ≥ ε

 ≤ δ.
Proof. By the first part of Lemma 3, we have for any f ∈ F̄S,µ that ‖f‖∞ ≤ C/2. Recall also that
by Corollary 1, Rn(FS,µ) ≤ C√

n
. Consequently, by Lemma 1,

P

 sup
f∈FS,µ

Ef(X)− ÊNf(X) ≥ C√
N

+

√
2C2 ln(1/δ)

4N


≤ P

 sup
f∈FS,µ

Ef(X)− ÊNf(X) ≥ RN (FS,µ) +

√
2B2 ln(1/δ)

N

 ≤ δ
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But, when
N ≥ Ξ(C,B,K, δ)2/ε2 = C

2(1 +
√

2 ln(1/δ))2/ε2,

we have
C√
N

+

√
2C2 ln(1/δ)

4N ≤ ε.

This completes the proof. �

Theorem 3 will constitute a crucial sample complexity bound for our main result; we now
proceed with the proof of Theorem 1.

B.2. Proof of Theorem 1

Let (ẑ, b̂, ŝ) be the optimal solution to the sampled program (18). Define

ŝµ∗ , (J̃ẑ,b̂ − Tµ∗ J̃ẑ,b̂)
+.

Observe that we may assume, without loss of generality, that

ŝ = (J̃ẑ,b̂ − T J̃ẑ,b̂)
+,

so that ŝ ≥ ŝµ∗ . Now, by definition, J̃ẑ,b̂ ≤ Tµ∗ J̃ẑ,b̂+ ŝµ∗ , so that by Lemma 2 of Desai et al. (2012),
we have that

J̃ẑ,b̂ ≤ J
∗ + ∆∗ŝµ∗ ,

where ∆∗ = (I − αPµ∗)−1. Let π̂µ∗,ν be the empirical distribution obtained by sampling N states
according to πµ∗,ν . Now let z, b satisfying ‖z‖H ≤ C, |b| ≤ B be given, and define sz,b , (T J̃z,b −
J̃z,b)+. Then, (z, b, sz,b) constitute a feasible solution to (18). Finally, let ψ ∈ Ψ be arbitrary. We
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then have with probability at least 1− δ − δ4,

‖J∗ − J̃ẑ,b̂‖1,ν = ‖J∗ − J̃ẑ,b̂ + ∆∗ŝµ∗ −∆∗ŝµ∗‖1,ν

≤ ‖J∗ − J̃ẑ,b̂ + ∆∗ŝµ∗‖1,ν + ‖∆∗ŝµ∗‖1,ν

= ν>
(
J∗ − J̃ẑ,b̂

)
+ 2ν>∆∗ŝµ∗

= ν>
(
J∗ − J̃ẑ,b̂

)
+ 2

1− απ
>
µ∗,ν ŝµ∗

≤ ν>
(
J∗ − J̃ẑ,b̂

)
+ 2

1− απ̂
>
µ∗,ν ŝµ∗ + 2ε

1− α

≤ ν>
(
J∗ − J̃ẑ,b̂

)
+ 2

1− απ̂
>
µ∗,ν ŝ+ 2ε

1− α

≤ ν>
(
J∗ − J̃z,b

)
+ 2

1− απ̂
>
µ∗,νsz,b + 2ε

1− α

≤ ν>
(
J∗ − J̃z,b

)
+ 2

1− απ
>
µ∗,νsz,b + 4ε

1− α

≤ (ν>ψ)‖J∗ − J̃z,b‖∞,1/ψ + 2
1− α(π>µ∗,νψ)‖T J̃z,b − J̃z,b‖∞,1/ψ + 4ε

1− α.

(26)

The second equality follows by our observation that J̃ẑ,b̂ ≤ J∗ + ∆∗ŝµ∗ and since ∆∗ŝµ∗ ≥ 0. The
second inequality above holds with probability at least 1− δ by virtue of Theorem 3 and the fact
that ŝµ∗ ∈ FS,µ∗ . The subsequent inequality follows from our observation that ŝ ≥ ŝµ∗ . The fourth
inequality follows from the assumed optimality of (ẑ, b̂, ŝ) for the sampled program (18) and the
feasibility of (z, b, sz,b) for the same. The fifth inequality holds with probability 1− δ4 and follows
from the Hoeffding bound in Lemma 3 since sz,b ∈ FS . The final in equality follows from the
observation that for any s ∈ RS , ψ ∈ Ψ, and probability vector ν, ν>s ≤ (ν>ψ)‖s‖∞,1/ψ.

Now the proof of Theorem 2 of Desai et al. (2012) establishes that for any ψ ∈ Ψ and J ∈ RS ,
we have,

‖TJ − J‖∞,1/ψ ≤ (1 + αβ(ψ))‖J∗ − J‖∞,1/ψ.

Applied to (26), this yields

‖J∗ − J̃ẑ,b̂‖1,ν ≤ ‖J
∗ − J̃z,b‖∞,1/ψ

(
ν>ψ +

2(π>µ∗,νψ)(αβ(ψ) + 1)
1− α

)
+ 4ε

1− α.

Since our choice of z, b was arbitrary (beyond satisfying ‖z‖H ≤ C, |b| ≤ B), the result follows.

B.3. A Remark on Non-Idealized Sampling Distributions

Say πapprox is an approximation to the idealized sampling distribution πµ∗,ν , and let ẑ, b̂, ŝ minimize
the RSALP using this sampling distribution. Then the expression in the fourth inequality in (26)
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in the proof of Theorem 2 could instead be replaced by the expression

ν>
(
J∗ − J̃z,b

)
+ 2

1− απ̂
>
approxsz,b + 2ε

1− α + 2
1− α(π̂>µ∗,ν − π̂approx)>ŝ

≤ ν>
(
J∗ − J̃z,b

)
+ 2

1− απ̂
>
approxsz,b + 2ε

1− α + 1
1− αTV(π̂>µ∗,ν , π̂approx)‖ŝ‖∞

where TV(·, ·) is the total variation distance between distributions. Noting that we may minimize
this expression over (z, b), the first three terms would yield an upper bound identical to that in the
current proof with πµ∗,ν replaced instead by πapprox. The last term represents the additional error
introduced by non-idealized sampling. Whereas it is clear that this term goes to zero as πapprox

approaches πµ∗,ν , we can in general only get crude control on this rate since an upper bound on
‖ŝ‖∞ will in general depend on the diameter of the feasible region.

Alternatively if instead we had finer control on the approximation πapprox provides to πµ∗,ν

(say, πµ∗,ν(s)/πapprox(s) ≤ K + 1 for all s) then the additional error term permits a computable
bound, since we would have (through an appropriate coupling of the the sample under πµ∗,ν and
πapprox) that

(π̂>µ∗,ν − π̂approx)>ŝ ≤ Kπ̂>approxŝ,

w.h.p., where the latter quantity is directly computable from the optimal solution to the RSALP.

C. Proof of Lemma 1

Proof of Lemma 1. We begin with some preliminaries: Define

Z(X1, X2, . . . , Xn) , sup
f∈F

Ef(X)− Ênf(X).

Notice that ∣∣Z(X1, X2, . . . , Xi, . . . , Xn)− Z(X1, X2, . . . , X
′
i, . . . , Xn)

∣∣ ≤ 2B
n
.

McDiarmid’s inequality (or equivalently, Azuma’s inequality) then implies:

P

Z − EZ ≥

√
2B2 ln(1/δ)

n

 ≤ δ. (27)
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Now,

EZ = E
[

sup
f∈F

Ef(X)− Ênf(X)
]

= E
[

sup
f∈F

EÊnf(X)− Ênf(X)
]

≤ E
[

sup
f∈F

Ênf(X ′)− Ênf(X)
]

= E
[

sup
f∈F

1
n

n∑
i=1

σi
(
f(X ′i)− f(Xi)

)]

≤ E
[

sup
f∈F

2
n

n∑
i=1

σi (f(Xi))
]

= Rn(F)

With (27), this immediately yields the result. �

D. Correctness of Termination Condition

The proof of Proposition 2 requires the following lemma:

Lemma 4. Suppose x, y ∈ Rn are vectors such that 1>x = 0 and x>y < 0. Then there exist
coordinates {i, j}, such that yi < yj, xi > 0, and xj < 0.

Proof. Define the index sets S+ , {i : xi > 0} and S− , {i : xi < 0}. Under the given
hypotheses, both sets are non-empty. Using the fact that 1>x = 0, define

Z ,
∑
i∈S+

xi =
∑
i∈S−

(xi)−,

where (xi)− , −min(xi, 0) is the negative part of the scalar xi. Observe that Z > 0. Further,
since x>y < 0,

1
Z

∑
i∈S+

xiyi <
1
Z

∑
i∈S−

(xi)−yi.

Since the weighted average of y over S− is more than its weighted average over S+, we can pick
an element in S+, i and an element of S−, j such that yi < yj . �

Proof of Proposition 2. If λ is sub-optimal, since (9) is a convex quadratic program, there will
exist some vector d ∈ RŜ×A is a feasible descent direction at λ. Let g , h(λ) be the gradient at
that point. We must have that g>d < 0, so that it is a descent direction, and that d satisfies the
first three constraints of (20), so that it is a feasible direction.
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Define

T ,
{
x ∈ Ŝ :

∑
a∈A

λx,a = κ

N
, max
a∈A

dx,a > 0, min
a∈A

dx,a < 0
}
, Px , {a ∈ A : dx,a 6= 0}.

First, consider the case of T = ∅. In this case, for all x such that
∑
a∈A λx,a = κ/N , we have

dx,a ≤ 0. Since d is a descent direction, we have g>d < 0. Lemma 4 can be applied to get a pair
(x1, a1) and (x2, a2) such that dx1,a1 > 0 and dx2,a2 < 0, with gx1,a1 < gx2,a2 . Further x1 is such
that

∑
a∈A λx1,a < κ/N and (x2, a2) is such that λx2,a2 > 0. These conditions ensure that if (x1, a1)

and (x2, a2) are increased and decreased respectively in the same amount, then the objective is
decreased. And hence we obtain a descent direction of cardinality 2. By assuming that T = ∅, we
have avoided the corner case of not being able to increase dx1,a1 due to

∑
a∈A λx1,a = κ/N .

For T 6= ∅, without loss of generality, assume that |Px| = 2 for each x ∈ T , i.e., d has exactly
two non-zero components corresponding to the state x. This is justified at the end of the proof.
Denote these indices by (x, a+) and (x, a−), so that dx,a+ > 0 and dx,a− < 0. From the first
constraint of (20), we must have that dx,a+ ≤ (dx,a−)−.

There are two cases:

(i) Suppose gx,a+ < gx,a− , for some x ∈ T .

Then, we can define a descent direction d̃ ∈ RŜ×A of cardinality two by setting d̃x,a+ = 1,
d̃x,a− = −1, and all other components of d̃ to zero.

(ii) Suppose that gx,a+ ≥ gx,a− , for all x ∈ T .

For all x ∈ T , define d̂x , (dx,a−)− − dx,a+ ≥ 0. Then, the fact that
∑
x,a dx,a = 0 implies

that ∑
x/∈T
a∈A

dx,a −
∑
x∈T

d̂x = 0. (28)

At the same time, for all x ∈ T , we have that

dx,a+gx,a+ + dx,a−gx,a− = −d̂xgx,a− + dx,a+(gx,a+ − gx,a−) ≥ −d̂xgx,a− .

Then, since d is a descent direction, we have that

∑
x/∈T
a∈A

dx,agx,a −
∑
x∈T

d̂xgx,a− < 0. (29)

Now, define the vector d̃ ∈ RŜ×A by

d̃x,a =


dx,a if x /∈ T ,

−d̂x if x ∈ T and (x, a) = (x, a−),

0 otherwise.
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Applying Lemma 4 to (28) and (29), there must be a pair of indices (x1, a1) and (x2, a2)
such that d̃x1,a1 > 0, d̃x2,a2 < 0 and gx1,a1 < gx2,a2 . For such (x1, a1) and (x2, a2) we have
a descent direction where we can increase λx1,a1 and decrease λx2,a2 by the same amount
and get a decrease in the objective. Note that since d̃x1,a1 > 0, we have that dx1,a1 > 0 and
x1 /∈ T , hence

∑
a λx1,a < κ/N . Also, by construction, (x2, a2) is chosen such that dx2,a2 < 0,

implying that λx2,a2 > 0. Thus the specified direction is also feasible, and we have a feasible
descent direction of cardinality two.

Finally, to complete the proof, consider the case where there are some x ∈ T with |Px| > 2, i.e.,
d has more than two non-zero components corresponding to the state x. For each x ∈ T , define

A+
x , {a ∈ A : dx,a > 0}, A−x , {a ∈ A : dx,a < 0},

a1 ∈ argmin
a∈A+

x

gx,a, a2 ∈ argmax
a∈A−x

gx,a.

Define a new direction d̃ ∈ RŜ×A by

d̃x,a =


∑
a′∈A+

x
dx,a′ if x ∈ T and (x, a) = (x, a1),∑

a′∈A−x dx,a
′ if x ∈ T and (x, a) = (x, a2),

dx,a otherwise.

It is easy to verify that d̃ is also a feasible descent direction. Furthermore, d̃ has only two non-zero
components corresponding to each start x ∈ T . �
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