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A model of molecular diversity is presented. The model, termed “Quantized Surface Comple-
mentarity Diversity” (QSCD), defines molecular diversity by measuring molecular comple-
mentarity to a fully enumerated set of theoretical target surfaces. Molecular diversity space is
defined as the molecular complement to this set of enumerated surfaces. Using a set of known
test compounds, the model is shown to be biologically relevant, consistently scoring known
actives as similar. At the resolution of the model, which examines molecules “quantized” into
4.24 Å cubic units and treats four points of specific energetic complementarity, the minimum
number of compounds needed to fully cover molecular diversity space up to volume 1070 cubic
Å is estimated to be on the order of 24 million molecules. Most importantly, QSCD allows for
individual points in diversity space to be filled by direct modeling of molecular libraries into
detailed 3D templates of shape and functionality.

Introduction
Combinatorial chemistry allows the creation of un-

precedented numbers of organic compounds; what was
once unthinkable - the rational synthesis of millions
of small organic molecules - is now achievable in a
matter of days.1-6 With this newly acquired ability
comes a question which, prior to combinatorial chem-
istry, seemed foolish even to pose: How can one create
a set of molecules of such diversity as to contain at least
one potent binder to any given target of interest?

This question is central to drug discovery in the “post-
genomic era”, a scientific midpoint characterized by a
growing wealth of DNA sequence information and a
relative dearth of corresponding target structures and
their functions.7-9 Soon, there will be many more
putative targets than can be studied by X-ray crystal-
lography, multidimensional NMR, or other high-resolu-
tion biophysical techniques. Any attempt to generate
biologically active ligands to these targets of unknown
structure will require general screening libraries: li-
braries of molecules that cover a high percentage of so-
called “diversity space”.10-13

We define diversity as the measure, based on pre-
defined criteria, of the difference or similarity between
all members of a set. In a pharmaceutical setting, it
follows that molecular diversity can be defined as the
measure, based on biological criteria, of the difference
or similarity between small molecules. Largely due to
continuing advances in our understanding of the prin-
ciples of molecular recognition,14-24 there exist today
many methods of calculating biologically relevant di-
versity of small molecules.25,26 Each method defines
slightly different criteria for molecular comparison, and
each thereby presents a different configuration of
diversity space as a whole. Examples include low-
dimensional diversity space such as BCUT metrics,27-29

high-dimensional diversity space such as Chem-X/

ChemDiverse multiple-point pharmacophores,30-34 and
empirical biological diversity space such as affinity
fingerprinting.35-37

For the most part, current methods are able to
successfully identify compounds of the same pharma-
cological class as being similar and compounds of
different pharmacological classes as being different.25,38

Given a starting pharmacophore from known ligands
and/or the target site of a target crystal structure, such
methods interface well with the design of complemen-
tary combinatorial libraries.

The design of combinatorial libraries to cover all of
diversity space is a rather different problem, however.
In this case, it is not enough to be able to compare
existing molecules for differences or similarities. In
addition to being able to place molecules relative to one
another in diversity space, one must be able to point to
an absolute area of diversity space not yet covered and
from its coordinates design a novel set of compounds to
fill that uncovered space.

At present, there are no methods which can directly
facilitate the above process of filling empty diversity
space, because the transformations by which existing
models assign molecules to coordinates in diversity
space are irreversible: molecules can be mapped to
diversity coordinates, but diversity coordinates cannot
be mapped directly to molecular structures.

For example, in the well-known BCUT method used
to generate 4D to 6D diversity space, molecules are
broken down into matrices according to connectivity and
molecular interaction properties.25,27-29 Coordinates in
diversity space are assigned through the resulting
eigenvalues of these matrices, leading to highly useful
multidimensional plots of molecular diversity. However,
because the use of eigenvalues is an irreversible trans-
formation (different 3D shapes can map to the same
eigenvalues), it follows that an empty coordinate in
BCUT diversity space cannot be translated into a 3D
template of a “missing molecule”. Thus, while a model
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such as BCUT diversity is well-validated as a tool for
finding combinatorial matches to a lead compound or
pharmacophore, it cannot be directly used to populate
the entire diversity space which it defines.

Similarly, in the popular Chem-X/ChemDiverse di-
versity package,33 molecules are broken down into all
accessible three- or four-point pharmacophores of tri-
angular or tetrahedral functionality distances.30-32,34 If
the model is used to display molecular diversity, coor-
dinates in diversity space are assigned through the
resulting string of accessible three- or four-point phar-
macophores; this method has been shown to be highly
effective in classifying molecules by pharmacological
similarity. However, the mapping of complex 3D shapes
to a set of triangular or tetrahedral functionality
distances is an irreversible transformation; empty three-
or four-point pharmacophores in Chem-X-derived di-
versity space cannot be translated into a 3D template
of complex shape. Since a set of coordinates in Chem-X
is insufficient to define the shape of “missing molecules”,
Chem-X cannot be used to directly populate empty
molecular diversity space.

A final example of current diversity methods is
affinity fingerprinting, in which molecules are empiri-
cally assayed against a panel of 10-20 actual proteins
selected to be promiscuous in their ability to bind small
molecules.35,36 Position in molecular diversity space is
assigned through the resulting string of IC50 binding
values, and these affinity fingerprints provide unprec-
edented ability to group similarly active compounds in
diversity space. However, because the actual mode of
binding in any assay is not incorporated in the resulting
IC50 value, the mapping of molecules to the selected
protein panel is an irreversible transformation. Thus,
an empty coordinate in affinity fingerprinting diversity
space (an “unmatched” string of IC50s to a given protein
panel) cannot be back-translated into a 3D molecular
template. A similar affinity fingerprinting diversity
method has been put into practice using a panel of
computational protein surfaces and a modified form of
the DOCK program.37 While this method shows similar
promise in its ability to detect pharmacological similar-
ity, it is, like its real-world counterpart, an irreversible
mapping.

To rationally and systematically fill diversity space,
an informationally reversible diversity model is needed.
This model must be formulated such that: (1) members
(in this case molecules) can be assigned to coordinates
for similarity/dissimilarity comparison and (2) empty
coordinates retain the information necessary to directly
generate coordinate membership.

The path of least resistance to such a model is to use
as coordinates the exact information that differentiates
one member from another, without intervening, ir-
reversible transformations. To apply this reasoning to
molecular diversity, it must first be asked: What are
the criteria by which diversity of compounds is to be
measured (what information differentiates one molecule
from another)? The most fundamental criterion in
molecular drug discovery is the extent to which two
molecules have similar or different binding affinities to
a given target surface. With the assumption that similar
binding affinity tracks with a molecule’s complementa-
rity to similar target surfaces,39,40 we have selected as

our criterion for diversity complementarity to a fully
enumerated set of theoretical target surfaces.

Given the above definition of molecular diversity, it
remains only to (a) provide a biologically relevant basis
set of enumerated theoretical target surfaces and (b)
quantify molecular complementarity to a given theoreti-
cal target surface at a level which is both in accordance
with known principles of molecular recognition and
computationally applicable to millions of compounds.
With a numerical determination of complementarity
and a biologically relevant basis set of surfaces, molec-
ular diversity space is thus absolutely established as
the molecular complement to a fully enumerated set of
theoretical target surfaces.

Methods

Theoretical Target Surfaces. The model of this
paper begins with a set of theoretical target surfaces
that approximates all possible binding pockets with
volume equal to or less than V. To generate a finite set
of these surfaces, we consider each theoretical surface
to be formed by successively carving cubic units out of
an initially flat surface. These cubic units represent
“negative space” that a potential ligand could occupy.
Given cubic units with sides of length R (the resolution
of the model), we use at most V/R3 negative space cubes
to describe each theoretical target surface. We note that
others have previously employed cubic units to success-
fully approximate complementarity between small mol-
ecules and individual protein surfaces.41

The size of a negative space cube is directly related
to the resolution and type of diversity data which the
user desires as output. In the current formulation of the
model, we wished to maximize negative space cube size
such that the difference of a single cube in a surface is
highly differentiating in terms of molecular recognition
(i.e. every surface is orthogonal to every other surface).
At the same time, we needed to retain information in
each negative space cube sufficient to predict shape and
functional complementarity at a ligand/surface inter-
face. The former constraint minimizes overlap of diver-
sity information while the latter constraint maximizes
precision of diversity information. Together, the compet-
ing constraints result in a basis unit for the enumera-
tion of theoretical target surfaces which minimizes the
number of negative space cubes needed to accurately
model diversity for a given volume V.

A resolution of 4.24 Å negative space cubes was found
by computer optimization of test molecules to provide
an upper limit of cube size while still maintaining an
acceptable level of molecular shape information (see
Experimental Section). Interestingly, 4.24 Å is the
approximate VDW “cross-section” of a (CH2)n chain; a
series of 4.24 Å units neatly encapsulates a (CH2)n chain
in its ground-state conformation (Figure 1).

In the study described herein, we use as a basis set
for diversity a set of theoretical target surfaces com-
prised of all possible shape combinations of 6-14
negative space cubes of resolution 4.24 Å (negative
volume between 460 and 1070 cubic Å) subject to the
following rules: (1) Surfaces are created by successively
“carving out” negative space cubes from a flat block of
infinite width and depth (the theoretical target). (2) All
negative space cubes of a given surface must share at
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least one face with another negative space cube of the
surface, and all must be part of a single, contiguous
negative surface. (3) No negative space cubes may be
occluded in the +Z axis of the infinite surface block; that
is, there may be no solid surface between any negative
space cube and the surface plane of the infinite block
(see Figure 2). (4) Surfaces duplicating a previous
surface with respect to rotation in the X-Y plane are
discarded.

In this study, rule (3) above was added as a compro-
mise between complete coverage of topological possibili-
ties and desire to maintain computational speed. This
compromise was made based on the topological assump-
tion that occlusions of 4.24 Å or more are infrequent in
small molecule/target interactions and that their omis-
sion would thus have only a small effect on predicting
diversity of binding affinities of small molecules.

The above rules generate 49 268 918 unique negative
surface shapes including chiral opposites. Covering a
negative volume between 460 and 1070 cubic Å, these
surface shapes are deemed sufficient to examine diver-
sity of most small molecules. For instance, examining
a previously published reference set of pharmaceutically
relevant compounds (a filtered Comprehensive Medici-
nal Chemistry, or CMC, database),42 5049 out of 5120
compounds (98.6%) have a volume of 1070 cubic Å or
less.

Within each of the 49 268 918 unique negative surface
shapes, each negative space cube is assigned a molec-
ular property characteristic Pm that represents the
dominant molecular environment which any atoms that
are placed within that negative space will experience.
Properties used are P1 hydrophobic, P2 polarizable
(includes aromatics), P3 H-bond acceptor, P4 H-bond
donor, P5 H-bond donor/acceptor, P6 potentially posi-
tively charged (basic), and P7 potentially negatively
charged (acidic). These seven types of molecular envi-
ronments are assumed to represent a minimal basis set
of factors that contributes to the electrostatic/VDW com-
plementarity of a ligand and a target surface.14,15,18 In
this study, four positions of particular molecular prop-
erty P1-7 are assigned, leading to 74*N!/((N - 4)!*4!)
surfaces for each surface shape of N negative space

cubes. All other (N - 4) cubes not assigned a particular
molecular property are given property P8, slightly
hydrophobic. The latter assignment is based on an
assumption that hydrophobic effects are, on average, the
largest single component contributing to ligand/target
interaction.17

In sum, the above process implies as a basis set for
molecular diversity 1.1 × 1014 theoretical target surfaces
of negative volume between 460 and 1070 cubic Å and
having four sites of specific molecular property charac-
teristics P1-7. The numerical breakdown of these 110
trillion surfaces is listed in Table 1. One such surface
is shown in Figure 3.

Molecular Quantization. To measure complemen-
tarity of small molecules to the above basis set of
theoretical target surfaces, the small molecules to be
compared must be formatted in a similar frame of
reference. Thus, all molecules used in this study are
“quantized” into positive space cubes (“quanta”) of
resolution 4.24 Å according to the following algorithm
(see also Figure 4):

(1) To represent each molecule, a set of up to 100
minimized conformations within user-defined param-
eters is created. In this study, Tripos Multisearch
modeling was used and all conformations within 10 kcal
of the lowest energy conformation found were accepted
(see Experimental Section).

(2) For each conformation, a 4.24 Å 3D grid of cubes
(quanta) is aligned on top of the 3D structure using the

Figure 1. A (CH2)n chain encapsulated by 4.24 Å cubic units.

Figure 2. Example of surfaces allowed and disallowed by the
nonocclusion parameter in the theoretical target surface
generation algorithm of the text. Gray shading represents the
opening of the theoretical surface: (A) allowed and (B) disal-
lowed due to two occluded negative space cubes (marked X).

Table 1. Numerical Breakdown of the Total Number of
Theoretical Target Surfaces Created Using the Algorithm
Given in the Texta

vol (no. (N)
of negative

space cubes)

no. of
unique
surface
shapes

approx. no. of
functionally

different surfaces
per unique

surface shape:
74*N!/((N - 4)!*4!)

exact no. of
unique surfaces

6 212 36 015 7 163 338
7 885 84 035 73 271 443
8 3 959 168 070 655 324 488
9 17 747 302 526 5 350 917 208
10 81 407 504 210 40 912 578 322
11 375 897 792 330 297 622 676 624
12 1 753 218 1 188 495 2 082 225 979 379
13 8 224 443 1 716 715 14 116 888 070 845
14 38 811 150 2 403 401 93 264 917 290 356

total 6-14 49 268 918 109 808 653 272 003

a Surfaces consist of 6-14 negative space cubes and 4 sites of 7
possible molecular property characteristics. Number of functionally
different surfaces per surface shape varies for infrequent cases in
which a given shape has an axis of symmetry, so actual number
of unique surfaces is slightly less than (no. surface shapes)*74*N!/
((N - 4)!*4!).

Figure 3. Theoretical target surface of 13 negative space
cubes and 4 sites of specific molecular property interaction:
hydrophobic (white), polarizable (purple), H-bond accepting
(green), and H-bond donating (orange). Blue shading indicates
the opening of the theoretical surface.
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molecule’s principal axes of rotation (calculated with all
atoms having mass 1).

(3) To all 4.24 Å quanta which contain at least a user-
defined percentage of the VDW radius of any atom, a
dominant molecular property characteristic is assigned
based on connectivity rules (e.g. R-[CdO]-O-H yields
P7, R-O-H yields P5; see definitions of P1-P7 above).
Order of dominance is from P7 to P1, in order of
maximum complementarity score obtainable by a given
characteristic (see Table 2). Minimum percentage of
VDW radius parameter allows for a user-defined pro-
trusion beyond the surface of a quantum cube, adding
a measure of topological “flexibility” to the quantization
process. 32% was found optimal for this study (see
Experimental Section).

(4) The total number of 4.24 Å quanta that have been
assigned a property characteristic is counted.

(5) The grid alignment is shifted per user-defined
parameters and the process is repeated from step (2)
until all shift combinations have been searched.

(6) For each conformation in step (1), the “Q-file” (3D
configuration of property-assigned quanta) is saved
that: (a) has the lowest number of quanta in step (4)
and (b) is closest to the principal alignment in step (2).

Thus, an average molecule in this study is repre-
sented by 100 Q-files, each file consisting of N positive
space cubes or quanta of 4.24 Å resolution having an
assigned molecular property characteristic Pm (m )
1-7). A typical Q-file (molecule 6a) is shown in Figure
4, superimposed upon its corresponding conformation.
The process of optimization of quantization parameters
is described in the Experimental Section.

Mapping. Given molecules which have been rendered
into sets of Q-files, each quantized conformation can now
be mapped into the diversity space defined by the set
of 1.1 × 1014 theoretical target surfaces above. This is
accomplished through the following algorithm:

(1) For each quantized conformation of each molecule,
each of its 24 possible X/Y/Z rotations (6 faces * 4
rotations per face) is fit to each of the 49 268 918
available surface shapes.

(2) For a given conformation-to-surface shape fit, if
at least a user-defined minimum number of negative
and positive space cubes overlap (in this case either 9
quanta or N - 2 quanta of a conformation of N quanta;
see Experimental Section), and if no quanta of the
conformation extend beyond the bounds of the surface
shape except at the mouth of the surface shape, then
the complementarity of the quantized conformation to
all theoretical target surfaces of that shape is examined
in detail in step (3). If the above conditions are not met,
the next conformation is examined.

(3) A score is generated for the complementarity of
the given conformation to each theoretical target surface
of a given shape from step (2) by employing user-defined
parameters. (The process of optimization of the comple-
mentarity parameters is described in the Experimental
Section.) Complementarity parameters used in the
model are as follows: (a) a negative parameter for each
rotatable bond of the conformation; (b) if conformational
energies are calculated, a negative parameter for the
energy of the conformation above the lowest energy
conformation from that molecule; (c) a positive param-
eter for the hydrophobic energy gained by removing
“water” from any hydrophobic (P1) or polarizable (P2)
surface face of either the conformation or the theoretical
surface; (d) a positive parameter for the hydrophobic
energy gained by removing “water” from any mildly
hydrophobic (P8) surface face of the theoretical surface;
(e) a positive or negative molecular property interaction
parameter for overlapping negative and positive space
cubes as depicted in Table 2.

(4) If and only if the score in step (3) meets a user-
defined minimum, then the conformation (and thus the
molecule it represents) is said to be complementary to
the given theoretical target surface.

The computational advantage inherent in the process
of molecule and surface quantization is realized in the
speed of complementarity checking. Whereas a tradi-
tional docking program must search a high-dimensional
configuration space, QSCD resolves the problem to a
framework bounded by 24 possible fitting orientations
and a finite number of translations. This approximation
allows 3D diversity computation on a scale that is
applicable to very large sets of molecules.

Results and Discussion

The above process results in a complementarity map
for any molecule that consists of a list of all theoretical
target surfaces to which at least one conformation of
the molecule is complementary. Comparison of these
maps provides a novel method for measuring diversity
of small molecules. We term the model on which this
process is based “Quantized Surface Complementarity
Diversity” (QSCD) because it calculates diversity by
measuring complementarity to a quantized representa-
tion of theoretical target surfaces.

To maintain a computationally efficient complemen-
tarity scoring system, QSCD makes many approxima-
tions of molecular recognition. These include cubic units
of 4.24 Å resolution, gross approximations of surface

Figure 4. “Quantized” representation (Q-file) of one confor-
mation of molecule 6a superimposed on its atomic structure
(ball-and-stick and space-filling model). Molecular property
characteristics of the Q-file are hydrophobic (white quanta),
polarizable (purple quanta), H-bond accepting (green quanta),
and negatively charged (red quanta).
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contact area, exactly four points of seven finite types of
molecular property characteristics, static theoretical
surfaces, and a limited set (up to 100) of low-energy
conformers. Thus, the final complementarity scores are
in no way presumed to give useful binding energies for
any individual match of conformation to target surface.
However, taken over all conformations of a molecule and
across an enumerated set of theoretical target surfaces,
the scoring system is proven to be statistically relevant.
This is demonstrated below.

Model Validation. To test the validity of the QSCD
model, we needed to prove that the method, at a
minimum, satisfies the central criterion that it was
designed to analyze: the extent to which two molecules
have similar or different binding affinities.

Thus, eight sets of test molecules were analyzed
(Figure 5), seven of which were known from the litera-
ture to have binding affinities to seven distinct targets
(in addition to a known overlap between sets 3 and 4).
An eighth set with no known binding affinities was
chosen with minor atomic and spatial changes to
examine the sensitivity of the model at 4.24 Å resolu-
tion. Known activities of the molecules in Figure 5 are
listed in Table 3 with references. The bulk of these
molecules have previously been used as part of an in-
depth study validating molecular descriptor approaches
for the prediction of molecular diversity within com-
pound classes.12 This is a more stringent discrimination
than the base criterion sought for our model, which
seeks at a minimum to show accurate diversity predic-
tion between compound classes.

As described above, conformations of all 20 test
molecules were “quantized” and then mapped onto the
basis set of 1.1 × 1014 theoretical surfaces. Complemen-
tary surfaces are tabulated for each molecule in Table
4. There are many ways to analyze the resulting set of
complementarity mappings; since in this case individual
molecule comparisons were desired, each of the 20
mappings was compared pairwise for a total of 190 data
points. Mappings were scored in similarity from 0 to
1000 based on a function of the number of theoretical
surfaces in common:

The first term in this equation gives a percentage
measure (0-100) of shape similarity between molecules
A and B, while the second term gives a measure from 0

to 10 of functional similarity per given shape overlap.
The complete scores are detailed in Table 5. Using this
scoring system, the maximum score obtainable by very
rigid, structurally similar molecules is 1000. However,
many molecules can only be sampled by an examination
of up to 100 low-energy conformations (an average mole-
cule w/5+ rotatable bonds will have at least 35 ) 243
conformations). Thus, for most molecules with more
than 100 accessible conformations, similarity scores be-
tween 0 and 100 are observed. The scoring constant Φ
in the equation above adjusts the influence of function-
ality on scoring. A value of 0.33 was found to be optimal
(see Experimental Section), meaning that shape is the
dominant criterion in our measure of diversity.

Figure 6 shows a plot of all 190 pairings ranked by
similarity score. Orange circles show “heterogeneous”
pairs of expected dissimilarity (e.g. 2a, 6b), while blue
squares show “homogeneous” pairs of expected similar-
ity (e.g. 2a, 2b). Clearly, the model ranks homogeneous
pairs almost exclusively higher than heterogeneous
pairs; all 15 pharmacologically similar pairs (blue) fell
within the top 20 scores out of 190. All homogeneous
scores were ranked above 25, while the median score
in this experiment was 2.8, showing good “signal-to-
noise”. QSCD is thus a valid predictor of target binding
similarity among these molecules.

A closer look at the pairings reveals further valida-
tion. As might be expected from their relative rigidity
(low number of accessible conformations) and structural
similarity, the highest scoring pairs are 2a/2b, 8a/8b,
and 8d/8e. Furthermore, examination of the pairings
of 8c with 8a,b,d,e (yellow triangles in Figure 6, yellow
in Table 5) yields scores that are within the top 20% of
the pairing experiment but which are generally lower
that the “homogeneous” pairs. This makes sense from
a target-binding point of view, considering that one face
of 8c contains a large molecular difference (an extra
phenyl substituent). To the extent that this face is not
involved in complementarity to a target surface, the
molecules are similar; to the extent that this face must
be complementary for binding to occur, the molecules
are quite different. Figure 7 shows one such case of a
surface common to both 8a and 8c; the protruding
phenyl substituent plays no role in complementarity.

As a rule, we have found close similarity of shape and
functionality for molecules which score 25 or higher. In
addition to the pairings that one would expect, several
other pairs scored between 25 and 35. When these
molecules were examined by molecular modeling, sig-
nificant overlaps were found, suggesting that these high
scores are not just “noise” in the QSCD model. Figure 8

Table 2. Relative Magnitudes of Parameters Used in Calculating Molecular Property Interactions between Negative Space Cubes
(theoretical target surfaces) and Positive Space Cubes (quantized molecules)a

quantized molecule propertiestheoretical target
surface properties P7 neg P6 pos P5 H-bond don/acc P4 H-bond don P3 H-bond acc P2 polarizable P1 hydrophobic

P7 neg charged - - - +++ 0 + - - - - -
P6 pos charged +++ - - - 0 - + 0 - -
P5 H-bond don/acc 0 0 ++ + + - - -
P4 H-bond don + - + - - ++ - - -
P3 H-bond acc - + + ++ - - - - -
P2 polarizable - - 0 - - - ++ 0
P1 hydrophobic - - - - - - - - - - 0 +
P8 (surface only) - - 0 - - 0 0

a Magnitudes (listed from highest to lowest): +++, ++, +, 0, -, - -, - - -.
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depicts one such case between 1a and 5a; conformations
of 1a and 5a are displayed that were found in QSCD to

be complementary to the same surface (Figure 8A,B).
3D overlays (Figure 8C) confirm correlation of general

Figure 5. Test molecules used in this study.
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shape and four points of functionality, although they
also make clear the limits of resolution of complemen-
tarity information using 4.24 Å units. As can be seen
from Figure 8, the surface in question can detect general

shape and functional similarity, but by no means
provides a basis to predict atom-for-atom overlap be-
tween molecules.

A final result of note comes from examination of the
QSCD rankings of sets 3 and 4. While set 4 is known to
bind exclusively to the AT1 subtype of the angiotensin
II receptor, set 3 is known to bind to both the AT1
subtype and the AT2 subtype. While QSCD found high
similarity within sets 3 (score ) 27) and 4 (av score )
54), it found an average similarity of 6.9 between 3a
and set 4 and an average similarity of 3.3 between 3b
and set 4 (green diamonds in Figure 6, green Table 5).
On the basis of the model, one would therefore conclude
that while sets 3 and 4 share a limited number of
complementary theoretical surfaces, they are dissimilar
with respect to the majority of theoretical target sur-
faces. This is in fact the case with the AT2 subtype of
the angiotensin II receptor, to which 4c binds 50 000
times more poorly than 3a (see Table 3).

Fundamental Advantages. Having validated the
basis set used for QSCD in the classification of molec-
ular diversity, it must be noted that many other models
may do as well or better in detecting target binding
similarity/dissimilarity between molecules.12,29,37,39,43

For instance, Figure 9 and Table 6 show the same set
of 20 molecules ranked by Tanimoto similarity39 of
standard 2D UNITY fingerprints (see Experimental
Section). The data demonstrate that the 2D model is
equally capable of predicting pharmacologically similar
pairs; UNITY ranks similarity between AT1 and AT2
subtype binders much higher than QSCD, although it
finds unusually high similarity between 8a and 8c. In
general, such 2D fingerprint descriptors have been
found highly effective in clustering pharmacologically
similar compounds and are widely used in determining
molecular diversity of existing structures.25

The great advantage of QSCD, however, lies in the
value of its negative information: QSCD determines not
only diversity of existing structures, but also structure
of nonexisting diversity. Given theoretical surface shapes
for which no complements exist in a general screening
library, QSCD allows the design of molecules to fill the
given diversity void.

As stipulated in its formulation, the QSCD basis set
is created through a reversible process; information
resolution may be lost in fixing the parameters of a
cube’s size and functional scope, but information content
is retained in either direction. Just as a single molecular
conformation and orientation corresponds to a defined
pattern in QSCD space, likewise, a single point in QSCD
space (within the limits of volume V, resolution R, and
N sites of functionality Pm) corresponds to a unique 3D
shape with a defined 3D array of functionality. Given
any starting set of molecules, unoccupied points in
QSCD space directly define the molecular shapes and
functionalities which those molecules do not cover. Thus,
a set of detailed 3D molecular templates (at the resolu-
tion of the QSCD model used) is immediately available
for the creation of novel molecules.

As an example, Figure 10 shows a plot of all of the
theoretical surface shapes covered by all of the confor-
mations of all of the molecules used in this study (see
Figure 5). The total volume of the cube in Figure 10
encompasses all 49 268 918 theoretical surface shapes

Table 3. Pharmacological Activities of the Molecules Used in
This Study (see Figure 5)

compd assay
IC50 or
Ki (nM) ref

1a binding to endothelin A receptor 400 a
1b binding to endothelin A receptor 170 a
2a inhibition of DNA fragmentation

by topoisomerase I
28 b

2b inhibition of DNA fragmentation
by topoisomerase I

143 b

3a binding to AT2 subtype of
angiotensin II receptor

17 (0.45)h c

3b binding to AT2 subtype of
angiotensin II receptor

173 (31)h c

4a binding to AT1 subtype of
angiotensin II receptor

0.85 d

4b binding to AT1 subtype of
angiotensin II receptor

1.4 d

4c binding to AT1 subtype of
angiotensin II receptor

1.2 (23 000)i d

5a inhibition of prolylendopeptidase
protease activity

5 e

5b inhibition of prolylendopeptidase
protease activity

10.3 e

6a binding to leukotriene B4 receptor 320 f
6b binding to leukotriene B4 receptor 3.2 f
7a binding to A2A type adenosine

receptor
6.3 g

7b binding to A2A type adenosine
receptor

41.3 g

8a none
8b none
8c none
8d none
8e none
a Doherty et al. J. Med. Chem. 1995, 38, 1259-1263. b Uehling

et al. J. Med. Chem. 1995, 38, 1106-1118. c Chang et al. J. Med.
Chem. 1994, 37, 4464-4478. d Chang et al. J. Med. Chem. 1993,
36, 2558-2568. e Tsutsumi et al. J. Med. Chem. 1994, 37, 3492-
3502. f Penning et al. J. Med. Chem. 1995, 38, 858-868. g Cristalli
et al. J. Med. Chem. 1995, 38, 1462-1472. h Numbers in paren-
theses indicate IC50 in AT1 subtype assay of series 4. i Numbers
in parentheses indicate IC50 in AT2 subtype assay of series 3.

Table 4. Tabulation of Surface Shapes and Total Number of
Theoretical Target Surfaces Complementary to Each Molecule
in Figure 5

compd
complementary
surface shapes

complementary surfaces
(shape plus functionality)

1a 376 16 127 687
1b 379 9 086 768
2a 27 545 584
2b 27 416 210
3a 414 4 970 816
3b 315 813 024
4a 487 4 542 463
4b 479 12 388 826
4c 482 7 595 982
5a 337 2 080 523
5b 374 1 966 837
6a 220 192 067
6b 186 153 436
7a 362 298 927
7b 269 22 367
8a 45 5 561 654
8b 41 3 959 678
8c 333 17 324 247
8d 64 2 059 546
8e 87 1 343 811

average 265 4 572 523
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Table 5. Ranking of Molecules in Figure 5 by QSCD Diversity Scorea

a Color code: blue ) homogeneous pairs, yellow ) +phenyl pairs (8c), green ) AT1 and AT2 pairs (3, 4).
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as listed in Table 1. As can be seen from the plot and
two expanded points, there are many theoretical surface
shapes which are “unfilled” by the set of compounds
shown in Figure 5. Thus, in searching for molecules or
libraries to enhance the diversity of the given set of
compounds, the chemist is presented with a set of actual
3D templates into which new compound libraries may
be designed. In comparison, mapping the same set of
compounds in a “nonreversible” diversity space would
also display a set of coordinates to which the molecules
map, but there would be no way to visualize the 3D
shape of any point that was not filled by one of the
compounds in the set. Using BCUT values27-29 for
example (Figure 11), the coordinates specified for an
unfilled point leave the chemist with a set of normalized
eigenvalues. While these may give an idea of relative

abundance of a given functionality (e.g. H-bond donor)
at this point in diversity space, the coordinates give no
hint of what shape or class of molecules might fill that
diversity void.

The above example shows how QSCD is a reversible
diversity model with respect to molecular shape. Within
a given surface shape in QSCD, there are many com-
binations of functionality, leading to many different
theoretical surfaces. If a given library fills only a portion
of theoretical surfaces of a given surface shape, by
following the same process outlined above and in Figure
10, unfilled surfaces of specific shape and functionality
may be identified and filled with complementary librar-
ies. By using data-mining algorithms to analyze and

Figure 6. Ranking of molecules in Figure 5 by QSCD
similarity scores.

Figure 7. Examination of a theoretical target surface common
to molecules 8c (top) and 8a (bottom). Blue shading indicates
opening of the theoretical surface. Specific points of comple-
mentarity on the theoretical target surface are hydrophobic
(white), polarizable (purple), and H-bond donating (orange).
Superimposition of the original molecular conformations onto
the theoretical target surface demonstrates that the extra
phenyl substituent of 8c protrudes from the opening of the
theoretical surface and is not involved in complementarity to
the surface.

Figure 8. Examination of a theoretical target surface common
to molecules 1a (A) and 5a (B). Blue shading indicates opening
of the theoretical surface. Specific points of surface comple-
mentarity found by QSCD are hydrophobic (white), polarizable
(purple), and H-bond donating/accepting (yellow). Overlay plot
(C) of the non-hydrogen backbones of 1a (orange) and 5a
(green) indicates similar features. Aromatic/hydrophobic over-
laps are shown in purple; H-bond donating oxygens are in red.
Overlay generated with Sybyl version 6.5 (Tripos Inc., 1699
S. Hanley Rd., St. Louis, MO 63144).
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intersect the shape and functionality of unfilled sur-
faces, a minimal set of “missing” 3D combinatorial temp-
lates can be deduced from the QSCD mapping of a given
set of general screening compounds. These templates
represent the smallest number of combinatorial syn-
theses which need to be executed in order to fill out the
diversity of the set of screening compounds. One such
template is depicted in Figure 12. In conjunction with
the efficiency of core-based combinatorial chem-
istry,1-4,44,45 QSCD makes possible the contemplation
of a “complete” library of screening molecules at a given
resolution. The model thus offers a theoretical and prac-
tical answer to the problem of generating lead structures
for genomic targets of unknown structure and function.
Specific uses of the model in combinatorial library
design will be the subject of further correspondence.

Extensions of the Model. As has been noted previ-
ously,25,46 an obvious extension of any diversity model
based on an absolute frame of reference is that the same
basis set may be used to classify actual proteins. By
mapping onto the QSCD basis set all surfaces of volume
V of a known protein, actual proteins can be compared
and classified by their 3D binding sites. In addition to
providing a rough diversity map of known protein
binding sites, the theoretical surfaces of QSCD may thus
be used to correlate protein classes to complementary
molecular core structures. Comparison of known co-
crystal structures to QSCD ligand-derived complemen-
tary surfaces will give solid benchmarks of the precision
and predictive scope provided by a given set of QSCD
parameters. An extension of the QSCD model to scan
the known protein database is currently underway.

As described under the section on theoretical protein
surfaces above, a 4.24 Å cube was found to be the largest
predictive unit size of diversity measure for our criteria
of designing general screening libraries. For example,
both 4.48 and 4.00 Å units gave poorer prediction of
homogeneous/heterogeneous pairs than the pairings of
Figure 6 (4.24 Å units). This is likely due to the fact
that most organic small molecules are themselves
quantized by a limited basis set: the VDW radii of H,
C, N, O, and a few other atoms (see, for example, Figure
1). If there is no constraint on size of cubic units,
however (i.e. if there is no attempt to maximize orthogo-
nality of theoretical target surfaces), other unit mea-
sures of diversity can be found. Most obviously, a unit

of 2.12 Å should also provide effective diversity informa-
tion but at a much higher resolution. Such a “high-
resolution” adaptation of QSCD brings with it numerical
(and thus computational) challenges. 112 negative space
cubes (14 × 8) are now required at the upper limit of
theoretical target surface size, translating to exponen-
tially greater numbers of theoretical target surfaces and,
depending on the stringency of fitting parameters,
correspondingly greater numbers of surface fits per
molecule as in Table 4. At this resolution, the assump-
tion of no occlusions in theoretical target surfaces
becomes far less valid, and removal of this assumption
increases computational complexity further. A full
analysis of whether the use of “high-resolution” QSCD
is practical as a diversity tool compared to other high-
resolution methods (e.g. ref 43) is a subject of current
research.

A final corollary of any absolute diversity model is a
prediction of the total “size” of diversity space in terms
of unique molecular points. In other words, what is the
minimum set of molecules needed to fully cover a given
diversity space. This calculation is dependent on two
factors: the resolution stipulated in the model (e.g. what
amount of molecular change is recognized as different)
and the maximum values of each dimension of the
model’s basis axes. In the model of QSCD used herein,
resolution is fixed by cubic units of 4.24 Å, and maxi-
mum values are fixed at 14 units (molecular volume of
1070 cubic Å) and four points of seven types of molecular
property characteristics. As describe above, the result
is a set of 1.1 × 1014 unique molecular points. Since,
using the parameters of this study, an average molecule
covers 4.6 million of the unique molecular points
bounded by QSCD space (Table 4), the model predicts
a minimum of (1.1 × 1014)/(4.6 × 106) ) 24 million
molecules would be necessary to completely cover
diversity space.

We estimate that an average complementary molecule
in the context of the QSCD model used herein has a
∆G of complementarity on the order of -11 kcal (Table
7).14 In other words, the resolution used to calculate
diversity in this study translates roughly to nanomolar
binding conditions for an average molecule/target sur-
face pair. Given that some 24 million molecules are
needed to completely cover diversity space under these
conditions, a general screening library guaranteed to
contain at least one nanomolar binder to any given target
of interest would thus number at least 24 million
molecules. This is a large number and will be attenuated
by the fact that some molecules have significantly more
than 100 conformations available to them. However, the
QSCD model suggests that if, in the near future,
combinatorial chemistry and high-throughput screening
are to generate initial hits primarily in the nanomolar
rather than micromolar range, then we must continue
to focus our efforts on the development of numerically
competent synthesis and screening technologies.1-4,47,48

Conclusions

Like many other diversity models, QSCD is based on
accepted tenets of molecular recognition, and its ability
to group compounds that bind similar targets is one
more piece of evidence that we are slowly progressing
in our understanding of small molecule/target interac-

Figure 9. Ranking of molecules in Figure 5 by Tanimoto
similarity score of 2D UNITY fingerprints.
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Table 6. Ranking of Molecules in Figure 5 by Tanimoto Similarity Score of 2D UNITY Fingerprintsa

a Color code: blue ) homogeneous pairs, yellow ) +phenyl pairs (8c), green ) AT1 and AT2 pairs (3, 4).
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tions. QSCD’s singular advantage is that it is con-
structed on a basis set that allows for the reversible flow

of diversity information: by defining molecular diversity
through a fixed reference frame of spatially and func-
tionally enumerated 3D surfaces, the model determines
not only diversity of existing structures but also struc-
tures of nonexisting diversity. In addition to numerically
defining the absolute percentage of diversity space
covered by any given set of screening molecules, QSCD
allows for the rational and systematic population of the
remaining, unfilled diversity space.

The model suggests that in order to ensure nanomolar
ligands to any given target, a library of at least 24

Figure 10. QSCD plot of all of the theoretical surface shapes
covered by all of the conformations of all of the molecules
shown in Figure 5 (blue dots). The total volume of the cube
encompasses all 49 268 918 theoretical surface shapes as listed
in Table 1. Red dots show two exemplary theoretical surface
shapes (a, b) not covered by any of the molecules in Figure 5.
Axes used are functions of opening area, opening length/width,
and depth per opening quantum.

Figure 11. Map of the 20 compounds in Figure 5 (blue dots)
in a representative BCUT three-axis diversity space.27-29

BCUT axes used are, respectively: (1) BCUT HACCEPT S
INVDIST 050 R H, (2) BCUT HDONOR S INVDIST 030 R H,
and (3) BCUT TABPOLAR S INVDIST 300 R L. Red dot shows
an unfilled coordinate of diversity space, at (7.54, 7.25, 6.82).
The information contained in this BCUT coordinate does not
reveal information about the shape of a molecule which might
be able to fill this position in diversity space.

Figure 12. Use of QSCD to design complementary combina-
torial libraries to unmatched theoretical target surfaces. Note
that many conceivable libraries of a given shape and func-
tionality may be designed to fill a given unmet diversity need.

Table 7. Summation of Binding Energies for an Interaction of
an Average Complementary Molecule/Theoretical Target
Surface Pair in the Context of the QSCD Model Used Hereina

energetic contribution
av ∆G

(kcal/mol)

translational/vibrational entropic loss (constant) +9
constant +0.7 kcal/mol (RT ln 3) per rotatable

bond; assume rigid theoretical target surface
+7

∆∆G conformation from ground state +2
constant -0.03 kcal/mol/Å2 nonpolar buried

surface ) -0.54 kcal/mol/4.24 Å2 nonpolar
buried face; total 21 molecular faces + 21
theoretical surface faces

-23

total interaction from Table 2 (four
complementary points)

-6.0

sum of binding energies -11
binding affinity to nearest integer (÷1.363) 10-8 ) 10 nM

a An average molecule is assumed to have a buried volume of
12 cubic quanta ()915 cubic Å at 4.24 Å resolution), 36 exposed
faces (4.24 Å2), 21 nonpolar exposed faces (60%), 10 rotatable
bonds, 4 points of complementary electrostatic/VDW potential, and
a conformational energy within 2 kcal/mol of ground state. An
average complementary theoretical target surface is also assumed
to have 60% nonpolar exposed faces. Constants used in the table
are taken from Ajay and Murcko.14
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million molecules will be required. While there is much
computational and synthetic effort that stands between
current combinatorial libraries and a general screening
library of 20+ million molecules, the ever increasing
speed of computer processors and the present ability to
synthesize million-member libraries leave little doubt
that such a feat can be achieved. Combined with the
rapid miniaturization and efficiency of screening tech-
niques, diversity models such as QSCD should help to
bridge the gap between the myriad achievements of
genomics and the next generation of small molecule
therapeutics.

Experimental Section
Molecular conformations were generated with Multisearch

in Sybyl (version 6.5; Tripos Inc., 1699 S. Hanley Rd., St. Louis,
MO 63144) on an R10000 Silicon Graphics workstation.
Conformations were subsequently sorted by energy and con-
formations within 10 kcal of the lowest energy were accepted.
Overlay plots of molecules (Figure 8B) were also generated
using Sybyl. UNITY 2D fingerprints (Unity 4.0; Tripos Inc.,
1699 S. Hanley Rd., St. Louis, MO 63144) were generated on
an R10000 Silicon Graphics workstation. Pairwise Tanimoto
coefficients were computed as described by Dixon and Koe-
hler.39 QSCD software for molecule quantization, mapping of
Q-files, and surface complementarity display was developed
using the Java programming language (JDK 1.2) and the
Java3D graphics API (version 1.1) on Intel-based workstations.
Theoretical target surfaces were stored and indexed using an
Oracle 7.3.3 database. Parameters for theoretical target
surface generation/molecular quantization and parameters for
complementarity mapping/scoring were alternately optimized
in three successive rounds as below.

The parameters used for theoretical target surface genera-
tion and the closely related parameters for quantization of
small molecules into quantized files (Q-files) were optimized
in the context of the algorithms stated in the text. Parameters
were iteratively optimized by varying a given parameter and
then quantizing training molecules other than those in Figure
5. Training molecules used were taken from in house struc-
tures and two published SAR sets.49,50 Concomitant with
molecular quantization, an enumerated set of theoretical
target surfaces was created with corresponding parameters.
Using the current optimized complementarity/scoring param-
eters, molecules were then mapped to theoretical target
surfaces and all diversity pairing scores generated as described
in the text. Parameters were chosen which accurately pre-
dicted known homogeneous/heterogeneous pairs and which
maximized “signal-to-noise” of homogeneous scores over het-
erogeneous scores.

The parameters used for mapping/scoring molecular con-
formations to theoretical target surfaces were optimized in the
context of the algorithm stated in the text. Parameters were
iteratively optimized by varying a given parameter and then
mapping a constant set of training molecules (see above) to a
constant set of theoretical target surfaces, using the most
current surface generation and quantization parameters.
Diversity pairing scores were generated for all training
molecules, and parameters were chosen which accurately
predicted known homogeneous/heterogeneous pairs and which
maximized “signal-to-noise” of homogeneous scores over het-
erogeneous scores.

As mentioned in the text, for a given conformation-to-surface
shape fit to be accepted, the minimum overlap requirement
was set to either 9 quanta or N - 2 quanta of a conformation
of N quanta. This range allows large conformations to fit
partially into a theoretical surface (protruding volume must
be at the mouth of the surface) while also allowing smaller
conformations to be considered for complementarity. It ex-
cludes large conformations which do not overlap at least 9
quanta.

Approximate computational speeds of typical QSCD opera-
tions are as follows on a single Pentium III 500 MHz worksta-

tion: generation of the basis set of theoretical target surface
used in the study required 17 min; these data were stored for
access by subsequent QSCD functions. Quantization of 100
conformations of a given molecule into 100 Q-files required
250 s. Complementarity mapping of 100 Q-files onto the basis
set of theoretical target surfaces used in the study required
40 s.
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