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Abstract— Many practical systems perform load balancing.
The main aim of load balancing is to utilize the capacity of a
system of parallel processors efficiently and to reduce the delay
of processing jobs. This paper is concerned with load balancing,
or process migration, when there is a penalty associated with
migration.

We consider the following model: Jobs arrive at each of n
parallel servers. An arriving job can either be processed in a
unit of time, on average, at the server where it arrives, or it can
migrate to another server where it creates K ≥ 1 independent
jobs. When K = 1, migrating jobs impose no extra cost and
this problem is considered extensively in the literature. We are
interested in the situation K > 1. The problem is to decide
whether a job should migrate or not. On the one hand migration
leads to load balancing and hence reduces backlogs. However, it
also leads to the creation of extra work and, hence, to a potential
loss of throughput. We ask: Do there exist simple migration
policies that can reduce backlogs while providing the highest
throughput? Somewhat surprisingly, we find that policies like
“migrate to the least loaded server” are unstable: they cause a
loss of throughput. However, we find that a simple variant of this
rule is stable and leads to a reduction of backlogs.

I. INTRODUCTION

Consider a system consisting of n servers, each with an
associated queue. Jobs arrive according to a Poisson process
of rate λ at each queue, and service times are IID exponential
random variables with mean 1. In the canonical load balancing
problem, an allocator can choose to re-route an arriving job to
a queue different from the one it was intended for. An example
of such a policy— SQ(d)—is sampling d of the n queues and
moving the arriving job to the shortest of those queues. Using
such a policy dramatically reduces the average delay for a job
with no effect on throughput. Now, consider the case where
job migration incurs a penalty.

One way to formalize such a notion is converting a single
exp(1) job into K > 1 independent exp(1) jobs in the event
the job is transferred to a queue different from its original
destination (see Figure 1). Since load-balancing now adds
work to the system it is intuitive to expect that policies
that allow for too much migration might result in a loss of
throughput. In fact, we will show that the natural extension of
the SQ(d) policy, wherein in addition to picking the shortest
of d sampled queues, a job is transferred only if the shortest
sampled queue has at least K jobs less than the queue at the
point of arrival, entails a loss of throughput.

The question now is whether it is possible to achieve the
advantages of load balancing (viz. shorter delays) at no cost
to throughput. We demonstrate such an algorithm: a job is
transferred to the shortest of the d sampled queues only if

the shortest sampled queue has at least a factor α > 1 jobs
less than the queue at the point of arrival. Thus we show that
even though transferring jobs entails adding more work to the
system, we may still realize the benefits of load balancing
without sacrificing throughput.

Fig. 1. The model with n = 2.

exp(1)

K Jobs

exp(1)

Poisson(λ) Poisson(λ)

1 Job1 Job

Our model is a variant of the “supermarket” model consid-
ered in [1], [2], [3], [4], which corresponds to the case where
K = 1. [1] and [3] independently studied the performance of
SQ(d) in the large-n limit using mean field techniques wherein
the behavior of the system is described by an infinite system
of (deterministic) ODEs. [2] also uses mean-field analysis to
study a load balancing algorithm that involves, in addition
to sampling, the use of memory. The main thrust of the
work is in justifying the correctness of the mean-field analysis
which suggests that these algorithms offer drastic performance
improvements. The supermarket model itself applies to a broad
variety of interesting problems including dynamic resource
allocation, hashing, etc. as pointed out in [5]. The variant
we consider here lets us capture, in addition, the notion of
a preferred allocation. One well studied example of such a
problem is that of caching in multiprocessor systems wherein
each processor has a preferred cache[6].

II. MODEL

For this and the following section, we shall consider the
embedded discrete-time Markov chains corresponding to the
systems of interest. For integer time indexes t ≥ 0, qi(t) is
the amount of work (measured in the number of exp(1) job
equivalents) in the queue for the ith server immediately after
the tth event. We assume that the system starts empty. When
a job arrives to server i, the server must decide whether to
serve the job itself, in which case the job joins the server’s



queue, or to “bounce” the job and send K jobs to the queue
of another server. We will examine two routing strategies:
• ABOUNCE(C,d): This policy decides to share based on

an additive threshold.
When a job arrives at a server i at time t, the server
samples d other queues with replacement. Let i∗ be the
index of the shortest of these queues. If

qi(t− 1) > qi∗(t− 1) + C,

then the job is bounced to queue i∗. Otherwise, the job
joins the queue at server i. We require that C ≥ K.

• MBOUNCE(α,d): This policy employs a multiplicative
threshold to decide when to share. This threshold has
been slightly modified so as not to bounce jobs to another
queue when that queue would subsequently have more
jobs than the original queue.
In this scheme, d queues are also sampled as above.
However, the job is only bounced to queue i∗ if

qi(t− 1) > max(αqi∗(t− 1), qi∗(t− 1) + K).

Here, we require α > 1.
The switching region under the ABOUNCE policy is far
greater than that under MBOUNCE (refer to the caricature
in Figure 2) in the following sense. The fraction of states in
which no migration occurs under the ABOUNCE policy goes
to 0 whereas it remains strictly positive under the MBOUNCE
policy. Intuitively, this suggests that the ABOUNCE policy
creates too much work and can therefore be unstable while
the MBOUNCE policy can be stable. One major purpose of
this paper is to rigorously prove these statements.

Note that in both strategies we allow for d = ∞; in which
case the shortest sampled queue is assumed to be the shortest
queue in the system.

Fig. 2. No-migration region (shaded) for n = 2 under ABOUNCE and
MBOUNCE respectively.
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III. STABILITY

In this section, we will examine the stability policies of
the various load balancing strategies. In particular, for each
strategy, we are concerned with establishing the set of arrival
rates λ such that the resulting system in positive recurrent.

First, consider the case where no sharing is performed. Here,
the system trivially splits into n independent M/M/1 queues

with arrival rate λ and service rate 1. Hence, the system is
positive recurrent if λ < 1. Ideally, the system with sharing
should not sacrifice throughput and, thus, we would hope for
the same stability region.

Additive Thresholds

For the ABOUNCE(C,d) strategy, by numerical simulation,
we can see that the stability region is strictly smaller than the
system with no sharing. For example, in Figure 3, we see two
sample paths for the ABOUNCE(2,10) system with K = 2
and n = 100. The system is clearly stable when λ = 0.77, but
unstable when λ = 0.79.

Fig. 3. Two sample paths for ABOUNCE(2, 10) with n = 100 that suggest
instability for λ ≥ 0.79.
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The ABOUNCE(C,d) policy, however, is dominated by a
system with no sharing where each job requires service time
which is the sum of K exp(1) random variables. Such a
system would be stable if λ < 1/K. By making this coupling
precise, we can establish the following theorem.

Theorem 1: If λ < 1/K, then the ABOUNCE(C,d) system
is positive recurrent.

Further, in the case of 2 queues and d = ∞, we can
theoretically establish shrinkage of the stability region.

Theorem 2: If n = 2, the ABOUNCE(C,∞) system is null
recurrent or transient if λ > λ∗, where λ∗ < 1 is defined by

λ∗ =
KC + 1 +

√
(KC + 1)2 + 4(K + 1)(C + 2)(C + 3)

2(K + 1)(C + 2)
.

Proof: For the λ > λ∗ case, we appeal to the variation
of Foster’s Criterion in Proposition 5.4 in [7]. In particular,
given a function V : Z2

+ → R, define the drift operator

(∆V )(q) = E [V (q(1))| q(0) = q]− V (q).

To establish that the system is null recurrent or transient, it
suffices to find a test function V and a finite set E0 ⊂ Z2

+

such that:

(I) For all q /∈ E0, ∆V (q) ≥ 0.
(II) There exists some q∗ /∈ E0 so that for all q ∈ E0,

V (q∗) > V (q).
(III) V is bounded below and for some constant A < ∞ and

all q ∈ E0,

E [ |V (q(1))− V (q(0))|| q(0) = q] < A.



Consider the test function

V (q) = q1 + q2 +
1− λ

1 + λ

C∑
`=0

||q1 − q2| − `|,

and set E0 = {(0, 0)}. This function clearly satisfies condi-
tions (II) and (III). Define the following sets, for 0 ≤ ` ≤ C,

A =
{
q ∈ Z2

+ − E0 : |q1 − q2| > C
}

,

B` =
{
q ∈ Z2

+ − E0 : |q1 − q2| = `, q1, q2 > 0
}

.

By separately considering the drift (∆V )(q) in each of these
sets, it can be verified that for λ > λ∗, condition (I) also holds.

In a system with n = 2 and K = 2 under the
ABOUNCE(2,∞) policy, for example, Theorems 1 and 2
indicate stability when λ < 0.5 and instability when λ > 0.89.

Multiplicative Thresholds
The MBOUNCE(α,d) strategy, on the other hand, intuitively

bounces less and less as the system gets more and more loaded
(see Figure 2). To see this, consider the n = 2 case. If one
queue is more loaded than the other, bounces will occur and
the queues will be equalized. As the levels of the queues
increase, it takes more and more time for them to become
unequal by a constant fraction again, and hence bouncing
decreases. The following theorem establishes that, because of
this behavior, MBOUNCE(α,d) maintains the same stability
region as not sharing. The proof is deferred until the appendix.

Theorem 3: MBOUNCE(α,d) is stable for all λ < 1.

IV. DELAY - FORMAL MEAN FIELD ANALYSIS

We now turn our attention to queuing delay. We approach
this in two ways. We will present simulation results in the next
section. Here we will present a formal mean-field analysis.
Such an analysis permits us to answer questions about rare
events in large systems (which is difficult to do via simulation).
In particular, we study tail behavior for systems with n
large. In this section we revert to considering continuous-time
Markov processes as opposed to the embedded chains of the
previous section.

Multiplicative Thresholds
Consider the Markov chain corresponding for a system of n

queues under the MBOUNCE(d,α) policy. Let mi(τ) denote
the number of queues with at least i jobs at time τ and observe
that the sequence (mi)i≥0 suffices to describe the state of the
chain at time τ . For ease of exposition we make the assumption
that α is integral. It then follows that for i > K and ∆τ small,

E[mi(τ + ∆τ)−mi(τ)|mi(τ)] ≈
(λ∆τ) (mi−1(τ)−mi(τ)) (mbi/αc+1(τ)/n)d

+ (λ∆τ)
K−1∑
m=0

mα(i−K+m)(τ)
[
(mi−K+m(τ)/n)d−

(mi−K+m+1(τ)/n)d
]
− (∆τ) (mi(τ)−mi+1(τ)) ,

where the first term in the summation corresponds to arrivals
at a queue with i − 1 jobs, the second term corresponds to
jobs that are bounced to queues with between i−K and i−1
jobs, whereas the last term corresponds to departures from a
queue with i jobs. Setting ∆τ = 1/n, we have:

E[mi(τ + ∆τ)/n−mi(τ)/n|mi(τ)]
∆τ

≈

(λ∆τ) (mi−1(τ)/n−mi(τ)/n) (mbi/αc+1(τ)/n)d

+ (λ∆τ)
K−1∑
m=0

mα(i−K+m)(τ)/n
[
(mi−K+m(τ)/n)d−

(mi−K+m+1(τ)/n)d
]
− (∆τ) (mi(τ)/n−mi+1(τ)/n) .

Letting limn→∞ E[mi(τ)/n] = si(τ), and noting that by
the Law of Large Numbers, limn→∞mi(τ)/n → si(τ), we
(formally) have that for large n, the MBOUNCE(d, α) system
is described by the following system of ODEs:

ṡi(τ) =

λ (si−1(τ)− si(τ)) sd
bi/αc+1(τ)

+ λ
K−1∑
m=0

sα(i−K+m)(τ)
(
sd

i−K+m(τ)− sd
i−K+m+1(τ)

)
− (si(τ)− si+1(τ)) , ∀ i > K, τ > 0,

ṡi(τ) = λ (si−1(τ)− si(τ))

+ λ

i−1∑
m=0

smax(m+K,αm)(τ)
(
sd

m(τ)− sd
m+1(τ)

)
− (si(τ)− si+1(τ)) , ∀ 0 < i ≤ K, τ > 0,

ṡ0(τ) = 0, ∀ τ > 0,

s0(0) = 1,

si(0) = 0, ∀ i > 0.

(1)

Fixed points of this system of ODEs have the following
property which suggests that for large n, the MBOUNCE(d,
α) system has far lighter tails than a system with no sharing.

Lemma 1: Any fixed point of the system of equations (1),
satisfying

∑∞
i=0 si < ∞ and si ≥ 0 ∀i must also satisfy:

si = O

(
(λ(1 + ε))

ilogα(d+1)−1
d

)
.

for arbitrary ε > 0.

Additive Thresholds

Similar reasoning as the multiplicative case suggests the
following system of differential equations for the tails of an
ABOUNCE(d) system with n large:

ṡi(τ) = λ (si−1(τ)− si(τ)) sd
i−K+1(τ)

+
K−1∑
m=0

λsi+m(τ)
(
sd

i−K+m(τ)− sd
i−K+m+1(τ)

)
− (si(τ)− si+1(τ)) , ∀ i > K, τ > 0,



ṡi(τ) = λ (si−1(τ)− si(τ))

+
i−1∑
m=0

λsm+K(τ)
(
sd

m(τ)− sd
m+1(τ)

)
− (si(τ)− si+1(τ)) , ∀ 0 < i ≤ K, τ > 0,

ṡ0(τ) = 0, ∀ τ > 0,

s0(0) = 1,

si(0) = 0, ∀ i > 0.

(2)

Fixed points of this system of ODEs have the following
property which suggests that for large n, the ABOUNCE(d)
system has lighter tails than both the system with no sharing
as well as the MBOUNCE(d, α) system for large n. Of
course, we also know from the previous section that such an
improvement in tail behavior comes at a cost to throughput.

Lemma 2: Any fixed point of the system of equations (2),
satisfying

∑∞
i=0 si < ∞ and si ≥ 0 ∀i must also satisfy:

si = O

(
(λ(1 + ε))

(d+1)bi/2(K+1)c−1
d

)
.

for arbitrary ε > 0.

V. DELAY - NUMERICAL RESULTS

In Figures 4 and 5, we can see empirical queue size
tails for the ABOUNCE(C,d) and MBOUNCE(α,d) policies
as compared with no sharing. In both cases, a significant

Fig. 4. Queue-size tails for ABOUNCE(10, C) vs. tails under no sharing.
(n = 100, λ = 0.75, K = 2)
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Fig. 5. Queue-size tails for MBOUNCE(10, α) vs. tails under no sharing.
(n = 100, λ = 0.75, K = 2)
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improvement is seen versus the policy of not sharing. Further,
the multiplicative threshold policies offer better performance
than additive policies for this system.

Fig. 6. Empirical expected delay for MBOUNCE(α,10) policy with varying
α versus no sharing. (n = 100, K = 2)

1 1.5 2 2.5 3 3.5 4 4.5 5
1

2

3

4

5

6

7

8

9

10

11

α

E
xp

ec
te

d 
D

el
ay

λ = 0.70 (MBOUNCE)
λ = 0.75 (MBOUNCE)
λ = 0.80 (MBOUNCE)
λ = 0.85 (MBOUNCE)
λ = 0.70 (No Sharing)
λ = 0.75 (No Sharing)
λ = 0.80 (No Sharing)
λ = 0.85 (No Sharing)

VI. CONCLUSION

We have presented two algorithms for load balancing when
there is a cost to transferring jobs. The use of the MBOUNCE
algorithm provably entails no loss in throughput. Simulation
results, as well as a formal mean-field analysis strongly
suggest that this algorithm affords improvements in waiting
time as well as lighter queue-tails than the no-sharing case.
Several issues remain:

1) Can the mean field analysis of section IV be made
rigorous? The large deviations techniques used in [2]
do not appear to extend.

2) Is there an ‘optimal’ decision boundary to decide be-
tween sharing and not-sharing a job?
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APPENDIX: PROOF OF THEOREM 3

We use the Lyapunov function V (q) = V1(q)+V2(q) where,

V1(q) =
n∑

i=1

q2
i ,

and

V2(q) =
1

α− 1

n∑
i=1

n∑
j=i+1

(qi − qj)
2
.

To prove positive recurrence (i.e. stability) for the MBOUNCE
Markov chain (see Proposition 5.3 in [7]), it will suffice to
show for some ε > 0 that (∆V )(q) ≤ −ε for all q /∈ K where
K is some compact set.

For ease of exposition, we will assume for the balance of
this proof that α = 2. The same technique can be applied for
other α. We also assume, without loss of generality, that the
queues are numbered so that at time 0, qi ≥ qj for i ≤ j; in
the event of ties we assign the queue with a higher number
prior to re-numbering, the higher number. In particular, after
renumbering q1 is the longest queue, while qn is the shortest.
We define the event En = {q1 < 2qn}∪ {q1− qn < K}. That
is, En is the event that no transfer or arriving jobs is possible
at the next epoch.

It is then straightforward to check that for q ∈ En,

(∆V )(q) =
2
N

λ− 1
λ + 1

n∑
i=1

qi + C1, (3)

where C1 is a constant depending on n, λ.
Now, for m ∈ {1, . . . , n−1}, define Em = {qm ≥ 2qn, qm−

qn ≥ K} ∪ {qm+1 < 2qn} ∪ {qm+1 − qn < K}. Essentially,
Em is the event wherein a transfer of job is possible and the
shortest queue from which a transfer is possible is qm. Further,
define,

pj,m = P

(
argmin

i∈S
qi = j

∣∣∣∣ Em

)
,

where S is the set of indexes of the d queues sampled in
the event of an arrival. Thus pj,m is the probability that the
shortest of the d queues sampled is queue j (breaking ties in
favor of the higher numbered queue). An elementary argument
then gives pj,m ≤ pj+1,m. Also, let pB =

∑n
j=m+1 pj,m. It

is readily checked that for q ∈ Em:

(∆V1)(q) ≤
n∑

i=m+1

1
n

λ− 1
λ + 1

qi

+
m∑

i=1

[ λ/n

λ + 1
[ n∑
j=m+1

2pj,mKqj + 2(1− pB)qi

]
− 1/n

λ + 1
2qi

]
+ C1,m.

(4)

We now consider (∆V2)(q). In evaluating (∆V2)(q) for q ∈
Em, we make the following observations:

(I) It is straightforward to check that departures from qi, 1 ≤
i ≤ n or arrivals to qi,m + 1 ≤ i ≤ n contribute at most a
constant to the expectation.

(II) Consider an arrival to qi, 1 ≤ i ≤ m. We get the
following positive contribution to the expectation for when
it is unsuccessful in transferring its job:

(1− pB)
n∑

j=i+1

λ/n

λ + 1
2(qi(0)− qj(0)).

However, this contribution is negated by arrivals to queues
numbered j > i,

−2(1− pB)λ
n(λ + 1)

[ m∑
j=i+1

(qi(0)− qj(0))−
n∑

j=m+1

(qi(0)− qj(0))
]

Now, consider the situation where i is successful at transferring
its job to some queue. This transfer reduces the difference in
lengths between i and the queue it transfers its job to, which
results in the following negative contribution

− λ/n

λ + 1

n∑
j=m+1

2pj,mKqj(0).

The difference in queue lengths between the queue to which
i transferred its job and the queues below it increases, which
contributes the following positive term to the expectation:

λ/n

λ + 1

n∑
j=m+1

pj,m

n∑
`=j+1

2K(qj(0)− q`(0)). (5)

This term is negated since transfers from i reduce the differ-
ence in queue lengths between queues receiving a transfer and
larger queues in {m + 1, . . . , n} contributing:

−λ/n

λ + 1

n∑
j=m+1

pj,m

j−1∑
`=m+1

2K(qj(0)− q`(0)). (6)

(We conclude (5) + (6) ≤ 0 using pj,m ≤ pj+1,m.)
Putting these observations together, we have that an arrival

to qi, 1 ≤ i ≤ m contributes to the expectation, a term upper
bounded by:

−

 λ/n

λ + 1

n∑
j=m+1

2pj,mKqj(0)

 + C.

Putting our observations together yields that for q ∈ Em

(∆V2)(q) ≤ −

 m∑
i=1

λ/n

λ + 1

n∑
j=m+1

2pj,mKqj

 + C2,m. (7)

From (4) and (7), we have that for q ∈ Em,

(∆V )(q) ≤
n∑

i=m+1

1
n

λ− 1
λ + 1

qi +
m∑

i=1

[
−pB/n

λ + 1
2qi

]
+ C1,m + C2,m.

(8)

Of course, (8) holds for all m, 1 ≤ m ≤ n−1, and so together
with (3) we have

(∆V )(q) ≤ −ε,

for
∑n

i=1 qi sufficiently large ({
∑n

i=1 qi ≥ Nε}, say). Since
the complement of this set is compact, we are done.


