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Abstract
We consider the problem of producing lower bounds on the optimal cost-to-go function of

a Markov decision problem. We present two approaches to this problem: one based on the
methodology of approximate linear programming (ALP) and another based on the so-called
martingale duality approach. We show that these two approaches are intimately connected.
Exploring this connection leads us to the problem of finding ‘optimal’ martingale penalties
within the martingale duality approach which we dub the pathwise optimization (PO) problem.
We show interesting cases where the PO problem admits a tractable solution and establish that
these solutions produce tighter approximations than the ALP approach.

1. Introduction

Markov decision processes (MDPs) provide a general framework for modeling sequential decision-
making under uncertainty. A large number of practical problems from diverse areas can be viewed
as MDPs and can, in principle, be solved via dynamic programming. However, for many problems
of interest, the state space of the corresponding dynamic program is intractably large. This phe-
nomenon, referred to as the curse of dimensionality, renders exact approaches to solving Markov
decision problems impractical.

Solving an MDP may be viewed as equivalent to the problem of computing an optimal cost-to-go
function. As such, approximation algorithms for solving MDPs whose state space is intractably
large frequently treat the task of computing an approximation to this optimal cost-to-go function
as the key algorithmic task; given such an approximation, the greedy policy with respect to the
approximation is a canonical candidate for an approximate policy. The collective research area
devoted to the development of such algorithms is frequently referred to as approximate dynamic
programming; see, Van Roy (2002) or Bertsekas (2007, Chap. 6) for brief surveys of this area of
research. Now consider a Markov decision problem wherein we wish to minimize expected costs,
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discounted over an infinite time horizon and consider the problem of producing upper and lower
bounds on the costs incurred under an optimal policy starting at a specific state (the ‘cost-to-go’
of that state). By simulating an arbitrary feasible policy starting at that state, we obtain an
upper bound on the cost-to-go of the state. Given a complementary lower bound on the cost-to-go
of this state, one may hope to construct a ‘confidence interval’ of sorts on the cost-to-go of the
state in question.1 The task of finding a lower bound on the cost-to-go of a state is not quite as
straightforward. Moreover, we are interested in good bounds. The literature offers us two seemingly
disparate alternatives to serve this end:

• Lower bounds via approximate linear programming (ALP). This approach was introduced
by Schweitzer and Seidmann (1985) and later developed and analyzed by de Farias and Van
Roy (2003, 2004). Given a set of ‘basis functions’, the ALP produces an approximation to
the optimal cost-to-go function spanned by these basis functions that is provably a pointwise
lower bound to the optimal cost-to-go function. The quality of the cost-to-go function approx-
imation produced by the ALP can be shown to compete, in an appropriate sense, with the
best possible approximation afforded by the basis function architecture. The ALP approach
is attractive for two reasons: First, from a practical standpoint, the availability of reliable
linear programming solvers allows the solution of large ADP problems. Second, the structure
of the linear program allows strong theoretical guarantees to be established.

• Lower bounds via martingale duality. A second approach to computing lower bounds, which
constitutes an active area of research, relies on ‘information relaxations’. As a trivial example,
consider giving the optimizer a priori knowledge of all randomness that will be realized over
time; clearly this might be used to compute a ‘clairvoyant’ lower bound on the optimal
cost-to-go. These approaches introduce, in the spirit of Lagrangian duality, a penalty for
relaxing the restrictions on information available to the controller. The penalty function is
itself a stochastic process and, frequently, is a martingale adapted to the natural filtration
of the MDP; hence the nomenclature martingale duality. An important application of these
approaches can be found in the context of pricing high dimensional American options following
the work of Rogers (2002) and Haugh and Kogan (2004). Generalizations of this approach to
control problems other than optimal stopping, have also been studied (see, e.g., Brown et al.,
2010; Rogers, 2008).

The two approaches above are, at least superficially, fairly distinct from each other. Computing
a good cost-to-go function approximation via the ALP relies on finding a good set of basis functions.
The martingale duality approach on the other hand requires that we identify a suitable martingale

1Equivalently, in problems where reward is maximized, the quantity of interest is the value of rewards achieved
under an optimal policy, starting from a specific state. Lower bounds are available from the simulation of suboptimal
policies, and one might seek complimentary upper bounds. We will choose between the objectives of cost minimization
and reward maximization in this chapter, according to what is most natural to the immediate setting.
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to serve as the penalty process. The purpose of this chapter is to present a simple unified view
of the two approaches through the lens of, what we call, the pathwise optimization (PO) method.
This method was introduced in the context of high-dimensional optimal stopping problems by Desai
et al. (2010) and later extended to a larger class of problems (optimizing convex cost functionals
subject to linear system dynamics) in Desai et al. (2011).

We will shortly present a brief literature review. Following that, the remainder of the chapter
is organized as follows: In Section 2, we formulate our problem and state the Bellman equation.
Sections 3 and 4 introduce the ALP and martingale duality approaches, respectively, for the prob-
lem. The PO approach is described in Section 5 and its applications to optimal stopping and linear
convex systems are described in Section 6.

1.1. Related Literature

The landscape of ADP algorithms is rich and varied; we only highlight some of the literature
related to ALP. Bertsekas and Tsitsiklis (1996) and Powell (2007) are more detailed references
on the topic. The ALP approach was introduced by Schweitzer and Seidmann (1985) and further
developed by de Farias and Van Roy (2003, 2004) who established approximation guarantees for this
approach. This method has seen a number of applications, which includes scheduling in queueing
networks (Moallemi et al., 2008; Morrison and Kumar, 1999; Veatch, 2005), revenue management
(Adelman, 2007; Farias and Van Roy, 2007; Zhang and Adelman, 2008), portfolio management
(Han, 2005), inventory problems (Adelman, 2004; Adelman and Klabjan, 2009), and algorithms for
solving stochastic games (Farias et al., 2011), among others.

Martingale duality methods for the pricing of American and Bermudan options, which rely
on Doob’s decomposition to generate the penalty process, were introduced by Rogers (2002) and
Haugh and Kogan (2004). Andersen and Broadie (2004) show how to compute martingale penalties
using stopping rules and are able to obtain tight bounds. An alternative ‘multiplicative’ approach
to duality was introduced by Jamshidian (2003) and its connections with the above ‘additive’
duality approaches was explored in Chen and Glasserman (2007). Beyond stopping problems,
these methods are applicable for general control problems as discussed in Rogers (2008) and Brown
et al. (2010). Further, Brown et al. (2010) consider a broader class of information relaxations than
the typical case of a perfect information relaxation. Applications of these methods were considered
in portfolio optimization (Brown and Smith, 2010) and valuation of natural gas storage (Lai et al.,
2010a,b), among others.
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2. Problem Formulation

Consider a discounted, infinite horizon problem with state space X and action set A. At time t,
given state xt and action at, the per stage cost is given by g(xt, at). The state evolves according to

xt+1 = h(xt, at, wt),

where {wt} are independent and identically distributed random variables taking values in the set
W. Let F , {Ft} be the natural filtration generated by the process {wt}, i.e., for each time t,
Ft , σ(w0, w1, . . . , wt). So as to avoid discussion of technicalities which are not central to our main
ideas, for ease of exposition, we assume finite state and control spaces.

A stationary policy µ : X → A maps the state space X to the set of actions A. In other words,
given a state xt, the action taken at that state under policy µ is at = µ(xt). The cost-to-go function
Jµ associated with a stationary policy µ is given by

Jµ(x) = E
[ ∞∑
t=0

αtg(xt, µ(xt))
∣∣∣∣∣x0 = x

]
,

where α is the discount factor.
We define the Bellman operator associated with policy µ according to

(TµJ)(x) , g(x, µ(x)) + αE[J(h(x, µ(x), w))].

Given this defintion, Jµ is given as the unique solution to the Bellman’s equation TµJ = J . We
further define the optimal cost-to-go function J∗ according to J∗(x) = minµ Jµ(x), ∀ x ∈ X . J∗

may be computed as the unique solution to Bellman’s equation. In particular, define the Bellman
operator T : R|X | → R|X | according to TJ = minµ TµJ . Bellman’s equation is simply the fixed
point equation TJ = J .

Given the optimal cost-to-go function, the optimal policy is obtained by acting greedily with
respect to the optimal cost-to-go function, i.e.,

(1) µ∗(x) ∈ argmin
a

g(x, a) + αE[J∗(h(x, a, w))].

The Problem: Computing J∗ is in general intractable for state spaces X that are intractably
large. As such our goal in this paper will be to compute lower bounds to the optimal cost-to-go
function of a specific state x, J∗(x). We will particularly be interested in issues of tractability and
the tightness of the resulting bounds.
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3. The Linear Programming Approach

This section describes an approximate dynamic programming approach (dubbed approximate linear
programming) to solving the above problem. The approach relies on solving a linear program
motivated largely by a certain ‘exact’ linear program for the exact solution of Bellman’s equation.
We begin by describing the exact linear program.

3.1. The Exact Linear Program

Given any vector ν ∈ R|X | with positive components, the exact linear program, credited to Manne
(1960), is given by:

(2)
maximize

J
ν>J

subject to J ≤ TJ.

Although the Bellman operator T is nonlinear, this program can be easily transformed into a
linear program. Consider a state x ∈ X , the constraint J(x) ≤ (TJ)(x) is equivalent to |A| linear
constraints given by

J(x) ≤ g(x, a) + αE[J(h(x, a, w))], ∀ a ∈ A.

Using this transformation, the exact linear program has as many variables as the state space size
|X | and as many constraints as |X × A|.

We recall the following basic properties of the Bellman operator T . The interested reader is
referred to Bertsekas (2006) for details of the proof.

Proposition 1. Let J, J ′ ∈ R|X |.

1. (Monotonicity) If J ≥ J ′, then TJ ≥ TJ ′.

2. (Max-norm contraction) ‖TJ − TJ ′‖∞ ≤ α‖J − J ′‖∞.

The following theorem establishes that the program (2) yields, as its unique optimal solution,
the optimal cost to go J∗. We provide a proof of this fact for completeness.

Theorem 1.

1. For all J ∈ R|X | such that J ≤ TJ , we have J ≤ J∗.

2. J∗ is the unique optimal solution to the exact linear program (2).

Proof. Now by the monotonicity of T , for any J satisfying J ≤ TJ , we must also have J ≤ TJ ≤
. . . ≤ T kJ , for any integer k ≥ 1. Since T is a contraction mapping, however, we have that, as
k → ∞, T kJ → J∗, the unique fixed point of the operator T . It follows that any feasible solution
to (2), J , satisfies J ≤ J∗. This is the first part of the theorem. Further, since J∗ is itself a
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feasible solution, and since the components of ν are strictly positive, we have the second part of
the theorem. �

Of course, the exact linear program has |X | variables and |X × A| constraints and, as such,
we must still contend with the curse of dimensionality. This motivates an effort to reduce the
dimensionality of the problem by permitting approximations to the cost-to-go function.

3.2. Cost-To-Go Function Approximation

Cost-to-go function approximations address the curse of dimensionality through the use of param-
eterized function approximations. In particular, it is common to focus on linear parameterizations.
Consider a collection of basis functions {φ1, . . . , φK} where each φi : X → R is a real-valued function
on the state space. ADP algorithms seek to find linear combinations of the basis functions that
provide good approximations to the optimal cost-to-go function. In particular, we seek a vector of
weights r ∈ RK so that

Φr(x) ,
K∑
`=1

φ`(x)r` ≈ J∗(x).

Here, we define Φ , [φ1 φ2 . . . φK ] to be a matrix with columns consisting of the basis functions.
Given such an approximation to the cost-to-go function, a natural policy to consider is simply the
policy that acts greedily with respect to the cost-to-go function approximation. Such a policy is
given by:

(3) µr(x) ∈ argmin
a∈A

g(x, a) + E[Φr(h(x, a, w)].

Notice that such a policy is eminently implementable. In contrast with the optimal policy
which would generally require a lookup table for the optimal cost-to-go function (and consequently,
storage space on the order of the size of the state space), the policy µr simply requires that we
store K numbers corresponding to the weights r and have access to an oracle that for a given state
x computes the basis functions at that state. The approximations to the cost-to-go function can
then be computed online, as and when needed.

3.3. The Approximate Linear Program

In light of the approximation described above, a natural idea would be to restrict attention to
solutions of the exact linear program that lie in the lower dimensional space spanned by the basis
functions (i.e, span(Φ)). The Approximate Linear Program (ALP) does exactly this:

(4)
maximize

r
ν>Φr

subject to Φr ≤ TΦr.
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Notice that the above program continues to have a large number of constraints but a substantially
smaller number of variables, K.

For any feasible solution r to this program, we must have, by Theorem 1, that the approximation
implied by r provides a lower bound to the optimal cost-to-go. That is, Φr ≤ J∗. This observation
also allows us to rewrite ALP as

(5)
minimize

r
‖J∗ − Φr‖1,ν

subject to Φr ≤ TΦr,

where the weighted 1-norm in the objective is defined by

‖J∗ − Φr‖1,ν ,
∑
x∈X

ν(x)|J∗(x)− Φr(x)|.

This representation of the ALP makes it clear that ν can be used to emphasize regions of the
state space where we would like a good approximation and consequently, the components of ν are
referred to as the state-relevance weights.

Now, for a fixed state x ∈ X , the best lower bound to J∗(x) we might compute using this
approach simply calls for us to choose the state-relevance weights such that ν(x) is large. Moreover,
if J∗ is in the linear span of Φ, then it is clear from (5) that the approximation error would be zero.
Apart from obtaining lower bounds, the cost-to-go function approximation obtained by solving the
ALP can be used to generate policies, simply by acting greedily with respect to the approximation
as shown in (3).

4. The Martingale Duality Approach

Every feasible solution to the ALP constitues a lower bound to the optimal cost-to-go function; the
quality of this bound is determined largely by our choice of basis functions. A different approach
to obtaining lower bounds is via an information relaxation. The idea is to allow policies to have
knowledge of all future randomness and ‘penalize’ this relaxation in the spirit of Lagrangian duality.
The penalties are themselves stochastic processes, and typically martingales. We describe this
approach next.

Let P be the space of real-valued functions defined on X . Intuitively, one can think of this as
the space of cost-to-go functions. Let us begin with defining the martingale difference operator ∆
that maps a function J ∈ P to a real-valued function ∆J on X × X ×A according to

(∆J)(xt+1, xt, at) , J(xt+1)− E[J(xt+1)|xt, at].

We are interested in computing lower bounds by considering a perfect information relaxation.
Let A∞ be the set of infinite sequences of elements of A. For an arbitrary sequence of actions
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a ∈ A∞, define the process Ma
t (J) by

Ma
0 (J) , 0, Ma

t (J) ,
t∑

s=1
αs∆J(xs, xs−1, as−1), ∀ t ≥ 1.

Clearly Ma
t (J) is adapted to the filtration F . Further, if actions are chosen according to a, then

Ma
t (J) is a martingale. Using the fact that the state space X and action space A are finite, there

exists a constant CJ such that

|∆J(xs, xs−1, as−1)| < CJ , ∀ (xs, xs−1, as−1) ∈ X × X ×A.

It then follows from the orthogonality of martingale increments that

E
[
Ma
t (J)2

]
=

t∑
s=1

α2sE
[
|∆J(xs, xs−1, as−1)|2

]
<

C2
Jα

2

1− α2 .

Thus, Ma
t (J) is a L2-martingale. By the martingale convergence theorem, the limit

(6) Ma
∞(J) ,

∞∑
s=1

αs∆J(xs, xs−1, as−1)

is well-defined.
We now define the martingale duality operator F : P → P according to:

(7) (FJ)(x) , E
[

inf
a∈A∞

∞∑
t=0

αtg(xt, at)−Ma
∞(J)

∣∣∣∣∣x0 = x

]
,

where the expectation is with respect the infinite sequence of disturbances (w0, w1, . . .). The de-
terministic minimization problem embedded inside the expectation will be referred to as the inner
problem.

Given any J ∈ P, FJ(x) can be used to obtain lower bounds on the optimal cost-to-go function
J∗(x). Moreover, there exists J ∈ P for which the lower bounds are tight, and one such choice of
J is the optimal cost-to-go function J∗. The following theorem justifies these claims.

Theorem 2.

(i) (Weak duality) For any J ∈ P and all x ∈ X , FJ(x) ≤ J∗(x).

(ii) (Strong duality) For all x ∈ X , J∗(x) = FJ∗(x).
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Proof. (i) For each state x ∈ X ,

J∗(x) = min
µ

E
[ ∞∑
t=0

αtg(xt, µ(xt))
∣∣∣∣∣ x0 = x

]
(a)= min

µ
E
[ ∞∑
t=0

αtg(xt, µ(xt))−Mµ
∞(J)

∣∣∣∣∣ x0 = x

]
(b)
≥ E

[
inf

a∈A∞

∞∑
t=0

αtg(xt, at)−Ma
∞(J)

∣∣∣∣∣ x0 = x

]
= FJ(x).

Here, (a) follows from the fact that Mµ
∞(J) is zero mean, and (b) follows from that fact that the

objective value can only be decreased given knowledge of the entire sample path of disturbances.
(ii) From (i), we have that FJ∗(x) ≤ J∗(x). We will establish the result by showing FJ∗(x) ≥

J∗(x). Using the definition of FJ∗(x), we have

FJ∗(x) = E
[

inf
a∈A∞

∞∑
t=0

αt
(
g(xt, at)− α∆J∗(xt+1, xt, at)

) ∣∣∣∣∣ x0 = x

]

= E
[

inf
a∈A∞

∞∑
t=0

αt
(
g(xt, at) + αE

[
J∗(xt+1)|xt, at

]
− αJ∗(xt+1)

) ∣∣∣∣∣ x0 = x

]

= E
[

inf
a∈A∞

∞∑
t=0

αt
(
g(xt, at) + αE

[
J∗(xt+1)|xt, at

]
− J∗(xt)

)
+ J∗(x0)

∣∣∣∣∣ x0 = x

]
≥ J∗(x).

The last inequality follows from the fact that J∗ satisfies the Bellman equation, thus J∗(x) ≤
g(x, a) + αE[J∗(xt+1)|xt = x, a] for all a ∈ A and x ∈ X . �

We can succinctly state the above result as:

(8) J∗(x) = sup
J∈P

FJ(x),

which we refer to as the dual problem. Although this dual problem is typically thought of as an op-
timization over an appropriate space of martingales, our exposition suggests that as an alternative,
we may think of the dual problem as optimizing over the space of cost-to-go functions. This view
will be crucial in unifying the ALP and martingale duality approaches. The optimization over the
space P will be referred to as the outer problem to distinguish it from the inner problem, which is
a deterministic minimization problem embedded inside the F operator.

The dual problem is challenging for various reasons. In particular, optimizing over P is non-
trivial when the state space is high-dimensional. It has nevertheless inspired heuristic methods for
computing lower bounds. Given a cost-to-go function approximation J , one can use Monte Carlo
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simulation to estimate FJ(x) and this serves as a lower bound on J∗(x). The approximation J

itself could be the product of an ADP method. Alternatively, it could be obtained by simplifying
the original problem with the goal of being able to compute a surrogate to the cost-to-go function.
These approaches have been successfully applied in a wide variety of settings. In the context of
American option pricing, for example, Andersen and Broadie (2004) use regression based approaches
to obtain a cost-to-go function approximation, which can then be used to construct martingale
penalties which yield remarkably tight bounds. Beyond American option pricing problem, such
approaches have been used in portfolio optimization (Brown and Smith, 2010) and the valuation
of natural gas storage (Lai et al., 2010a), among other applications.

5. The Pathwise Optimization Method

Observe that the dual problem entails optimization over a very high-dimensional space (namely,
P , R|X |). This is reminiscent of the challenge with the exact linear program. Analogous to our
derivation of the ALP then, we are led to restrict the optimization problem to a lower dimensional
subspace. In particular, given a set of basis functions, Φ, define P̂ , {Φr : r ∈ RK} ⊂ P.
We consider finding a good approximation to the cost-to-go function of the form FJ , with J ∈ P̂
restricted to the subspace spanned by the basis. To accomplish this, given a state-relevance vector
ν ∈ R|X | with positive components, we define the pathwise optimization (PO) problem by

(9) sup
r

ν>FΦr , sup
r

∑
x∈X

ν(x)FΦr(x).

Several remarks are in order. Observe that from Theorem 2, for any r, FΦr(x) ≤ J∗(x) for all
states x. Therefore, the PO program (9) is equivalent to

inf
r
‖J∗ − FΦr‖1,ν .

Thus, the PO program will seek to find Φr ∈ P̂, so that the resulting lower bound FΦr(x) will be
close to the true optimal cost-to-go J∗(x), measured on average across states x according to the
state-relevance weight ν.

Similar to the ALP, if J∗ is in the span of Φ, it is clear that the optimal solution to the
above problem will yield the optimal cost-to-go function J∗. In addition, as the following theorem
establishes, the PO problem is a convex optimization problem2 over a low-dimensional space:

Theorem 3. The function r 7→ ν>FΦr is concave in r ∈ RK .

Proof. Observe that, as a function of r, ν>FΦr is a nonnegative linear combination of a set of
pointwise infima of affine functions of r, and hence must be concave in r as each of these operations

2Here, we refer to an optimization problem as convex if it involves the minimization of a convex function over a
convex feasible set, or, equivalently, the maximization of a concave function over a convex feasible set.
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preserves concavity. �

The PO problem puts the martingale duality and ALP approaches on a common footing: both
approaches can now be seen to require a set of basis function Φ whose span ideally contains a
good approximation to the optimal cost-to-go function. Given such a set of basis functions, both
approaches require the solution of a convex optimization problem over a low-dimensional space of
weight vectors r ∈ RK : (4) for the ALP, and (9) for the pathwise approach. Given an optimal
solution r, both methods can produce a lower bound on the optimal cost-to-go J∗(x) at an arbitrary
state x: Φr(x) for the ALP, and FΦr(x) for the pathwise approach.The natural question one might
then ask is: how do these approaches relate to each other in terms of the lower bounds they produce?
We answer this question next:

Theorem 4. Let r be any feasible solution to the ALP, i.e., r satisfies Φr ≤ TΦr. Then, for all
x ∈ X ,

Φr(x) ≤ FΦr(x) ≤ J∗(x).

Proof. Using the weak duality result in Theorem 2,

J∗(x) ≥ FΦr(x) = E
[

inf
a∈A∞

∞∑
t=0

αt
(
g(xt, at)− α∆Φr(xt+1, xt, at)

) ∣∣∣∣∣ x0 = x

]

= E
[

inf
a∈A∞

∞∑
t=0

αt
(
g(xt, at) + αE

[
Φr(xt+1)|xt, at

]
− Φr(xt)

)
+ Φr(x0)

∣∣∣∣∣ x0 = x

]
≥ Φr(x),

where the final inequality follows since r is feasible for the ALP. �

Theorem 5 establishes a strong relationship between the lower bounds arising from the ALP
and PO methods. For any feasible candidate weight vector r, the corresponding ALP lower bound
Φr(x) is dominated by the PO lower bound FΦr(x), at every state x. Since the PO program (9)
further considers a large set of feasible r, it immediately follows that the optimal solution of the
PO program will provide an lower bound that is, in an appropriately weighted sense, tighter than
that of the ALP method. The fact that the PO method provably dominates the ALP method is
the content of the following theorem:

Theorem 5. Suppose that rPO is an optimal solution to the PO program (9), while rALP is an
optimal solution to the ALP (4). Then,

‖J∗ − FΦrPO‖1,ν ≤ ‖J∗ − ΦrALP‖1,ν .
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Proof. Note that, using Theorems 2 and 5,

‖J∗ − FΦrPO‖1,ν = ν>J∗ − ν>FΦrPO ≤ ν>J∗ − ν>FΦrALP

≤ ν>J∗ − ν>ΦrALP = ‖J∗ − ΦrALP‖1,ν .

�

6. Applications

The results of the prior section establish that the PO method is a convex optimization problem over
a low-dimensional space that delivers provably stronger bounds than the ALP approach. However,
challenges remain in implementing the PO method. The PO objective in (9) is the expectation of a
complicated random variable, namely, the objective value of the inner optimization problem. We can
use a sample average approximation to estimate the outer expectation. However, for each sample
path, the inner optimization problem will correspond to a potentially high dimensional deterministic
dynamic program. This program may be no easier to solve than the original stochastic dynamic
program. In particular, for example, solution of the deterministic problem via exact dynamic
programming would be subject to the same curse-of-dimensionality as the stochastic problem.
Hence, we expect that solving the PO problem in a tractable fashion is likely to call for additional
problem structure. In this section, we present two broad classes of problems whose structure admit
a tractable PO problem.

Our discussion thus far has focused on the infinite horizon, discounted case. We chose to do
so for two reasons: simplicity on the one hand, and the fact that in such a setting, results such as
Theorem 5 demonstrate that the approximations produced by the PO method inherit approximation
guarantees established for the ALP in the discounted, infinite horizon setting. In what follows we
will consider two concrete classes of problems that are more naturally studied in a finite horizon
setting. As it turns out, the PO problem has a natural analog in such a setting and the following
examples will serve to illustrate this analog in addition to specifying broad classes of problems
where the PO approach is tractable.

6.1. Optimal Stopping

Optimal stopping problems are a fundamental class of stochastic control problems. The problem
of valuing American options is among the more significant examples of such a control problem.
It is most natural to consider dealing with the finite horizon case here. As such, time becomes
a relevant state variable and the PO method as stated earlier needs to be adapted. Further, our
problem formulation and development of the ALP and PO method, so far, has been couched in a
discounted infinite horizon setting where one seeks to minimize cost. However, these methods are
equally applicable to the finite horizon case where one seeks to maximize reward. Motivated by the
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application of option pricing, we will consider this latter setting in the context of optimal stopping.
In particular, consider a discounted problem over the finite horizon T , {0, 1, . . . , T}. The

state evolves as a Markov process, so that

xt+1 = h(xt, wt),

where wt is an i.i.d. disturbance. The action at each time step is either to stop or to continue and
thus A , {STOP, CONTINUE}. On choosing to stop at time t in state xt, the discounted reward
is αtg(xt), where α is the discount factor. An exercise policy µ , {µt, t ∈ T }, is a sequence of
functions where each µt : X → {STOP, CONTINUE} specifies the stopping decision at time t, as a
function of state xt. We require that stopping occur at some time in T , and our goal is to obtain
an exercise policy that maximizes the expected discounted reward.

In principle, J∗ may be computed via the following dynamic programming backward recursion

(10) J∗t (x) ,

max
{
g(x), αE

[
J∗t+1(xt+1) | xt = x

] }
if t < T .

g(x) if t = T ,

for all x ∈ X and t ∈ T , The corresponding optimal stopping policy µ∗ that acts ‘greedily’ with
respect to J∗ is given by

(11) µ∗t (x) ,

CONTINUE if t < T and g(x) < αE[J∗t+1(xt+1) | xt = x],

STOP otherwise.

6.1.1. The Martingale Duality Approach

Let S be the space of real-valued functions defined on the state space X , i.e., functions of the form
V : X → R. Define P to be the set of functions J : X ×T → R of state and time, and, for notational
convenience, denote Jt , J(·, t). One can think of P as the space of value functions. We begin
by defining the martingale difference operator ∆. The operator ∆ maps a function V ∈ S to the
function ∆V : X × X → R according to

(∆V )(xt+1, xt) , V (xt+1)− E[V (xt+1)|xt].

Given an arbitrary function J ∈ P, and a time τ ∈ T , define the process

(12) M
(τ)
t (J) ,

t∧τ∑
s=1

αs(∆Js)(xs, xs−1), ∀ t ∈ T .

13



Then, M (τ) is a martingale adapted to the filtration F . Next, we define the martingale duality
operator F : P → S according to:

(13) (FJ)(x) , E
[

max
t∈T

αtg(xt)−M (t)
T (J)

∣∣∣∣ x0 = x

]
.

Observe that the martingale penalty (12) is a natural analog of the penalty (6) introduced earlier.
In the stopping problem, the sequence of actions simply corresponds to a choice of time t ∈ T
at which to stop. Beyond that time, the optimal value function will take the value zero. Hence,
when constructing a martingale penalty according to an optimal value function surrogate, it is not
necessary to consider times after the stopping time. With these observations, it is clear that the
penalty (6) simplifies to the penalty (12) for a stopping problem, and hence the operator (13) is a
natural generalization of the operator (7).

For any given J ∈ P and a state x0 ∈ X , an analog to Theorem 2 establishes that FJ(x0)
provides an upper bound on the optimal value J∗0 (x0). With the intention of optimizing the bound
FJ(x0) over a parameterized subspace P̂ ⊂ P, we introduce the collection of K basis functions

Φ , {φ1, φ2, . . . , φK} ⊂ P.

Each vector r ∈ RK determines a value function approximation of the form

(Φr)t(x) ,
K∑
`=1

φ`(x, t)r`, ∀ x ∈ X , t ∈ T .

Thus, the PO problem of finding the tightest upper bound of the form FΦr(x0) can be defined as

(14) inf
r
FΦr(x0).

The problem (14) is an unconstrained convex optimization problem over a low-dimensional
space. However, the challenge is that the objective involves expectation over an inner optimization
problem. Further, the inner optimization problem, in its use of the ∆ operator, implicitly relies on
the ability to take one-step conditional expectation of the basis functions. We approximate these
expectations by sample averages.

In particular, consider sampling a set of S outer sample paths denoted by x(i) ,
{
x

(i)
s , s ∈ T

}
for

i = 1, 2, . . . , S, each sampled independently, conditional on the initial state x0. Along each of these
sample paths, we approximate the ∆ operator by generating one-step inner samples. In particular,
for each time p ∈ {1, . . . , T}, we generate I independent inner samples

{
x

(i,j)
p , j = 1, . . . , I

}
,

conditional on xp−1 = x
(i)
p−1, resulting in the approximation

(15) ∆̂(Φr)p
(
x(i)
p , x

(i)
p−1
)
, (Φr)p(x(i)

p )− 1
I

I∑
j=1

(Φr)p
(
x(i,j)
p

)
.
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Having thus replaced the expectations by their empirical counterparts, we obtain the following
nested Monte Carlo approximation to the objective:

(16) F̂S,IΦr(x0) , 1
S

S∑
i=1

max
0≤s≤d

αsg(x(i)
s

)
−

s∑
p=1

αp∆̂(Φr)p
(
x(i)
p , x

(i)
p−1
) .

Consequently, the sampled variant of PO is given by

inf
r
F̂S,IΦr(x0),

which is equivalent to the following linear program

(17)

minimize
r,u

1
S

S∑
i=1

ui

subject to ui +
s∑

p=1
αp∆̂(Φr)p

(
x(i)
p

)
≥ αsg(x(i)

s ), ∀ 1 ≤ i ≤ S, 0 ≤ s ≤ d,

r ∈ RK , u ∈ RS .

Desai et al. (2010) establish the convergence of this sampled LP, as the number of samples (S, I)
tend to infinity.

The linear program (17) has K + S variables and S(d + 1) constraints. Since the ui variables
appear only ‘locally’, the Hessian corresponding to the logarithmic barrier function can be inverted
in O(K2S) floating point operations (see, for example, Boyd and Vandenberghe, 2004). Therefore,
one may argue that the complexity of solving this LP via an interior point method essentially scales
linearly with the number of outer sample paths S.

The PO method is a specific instance of a method that uses value function approximations to
compute the martingale penalty. Further, the method can be shown to enjoy strong approxima-
tion guarantees. The quality of the upper bound produced by the PO method depends on three
parameters: the error due to the best possible approximation afforded by the chosen basis function
architecture, the square root of the effective time horizon, and a certain measure of the ‘predictabil-
ity’ of the underlying Markov process. The latter parameter provides valuable insight on aspects of
the underlying Markov process that make a particular pricing problem easy or hard. This result,
described in Desai et al. (2010), also makes precise the intuition that the PO method produces
good price approximations if the chosen basis function architecture contains a good approximation
to the value function.

6.2. Linear Convex Control

In this section, we consider yet another class of MDPs, which we refer to as linear convex control
problems. These problems essentially call for the minimization of some convex cost function of
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the state trajectory subject to linear dynamics and, potentially, convex constraints on the control
sequence. A number of interesting problems ranging from inventory control to portfolio optimization
to network revenue management can be addressed using this framework.

Consider an MDP over the finite time horizon T , {0, 1, . . . , T}. For the purpose of this
section, we assume that the state space X , Rm, the action space A , Rn and the disturbance
space W , Rm. The cost of taking some action a in state x at time t is given by a function
gt : X ×A → R that is assumed jointly convex in its arguments. Further, the dynamics governing
the evolution of xt are assumed to be linear:

xt+1 = h(xt, at, wt) = Atxt +Btat + wt,

where At ∈ Rm×m and Bt ∈ Rm×n are deterministic matrices that govern the system dynamics, and
wt ∈ Rm is an i.i.d. disturbance. We allow for constraints on controls of the form at ∈ Kt, where
Kt ⊂ Rn is a convex set. While we do not discuss this here, both the cost function and the nature
of the constraints can be substantially relaxed: we may consider cost functions that are general
convex functionals of the state and control trajectories and, under some technical conditions, can
permit general convex constraints on the sequence of control actions employed; see Desai et al.
(2011) for further details.

Let the sequence of policies, actions, states, and disturbances be denoted by µT , (µ0, µ1 . . . , µT ),
aT , (a0, a1, . . . , aT ), xT , (x0, x1 . . . , xT ), and wT , (w0, . . . , wT−1), respectively. Define the set
of feasible nonanticipative policies by

AF , {µT : µt ∈ Kt, ∀ t ∈ T , and µT is adapted to filtration F} .

We are interested in the following undiscounted, finite horizon optimization problem

(18) inf
µT∈AF

E
[
T∑
t=0

gt(xt, µt)
]
.

Under mild technical conditions (for details, see Desai et al., 2011) the optimal cost-to-go function
J∗ satisfies the Bellman equation

(19) J∗t (x) =


inf
at∈Kt

gt(x, at) + E
[
J∗t+1(xt+1)

∣∣xt = x, at
]

if t < T ,

inf
aT∈KT

gT (x, aT ) if t = T .

6.2.1. The Martingale Duality Approach

Let S be the space of real-valued functions defined on state space Rm and P be the space of real-
valued functions on Rm × T , such that Jt , J(·, t) belongs to S. Define the martingale difference
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operator ∆ that maps a function V ∈ S to the function ∆V : Rm × Rm × Rn → R according to

(∆V )(xt+1, xt, at) , V (xt+1)− E[V (xt+1)|xt, at].

We are interested in computing lower bounds by considering a perfect information relaxation.
Define K , K0 ×K1 × . . .×KT to be the set of all feasible control sequences aT . Given a feasible
sequence of actions aT ∈ K and a function J ∈ P, define the martingale MaT

t (J) by

MaT
0 (J) , 0, MaT

t (J) ,
t∑

s=1
∆Js(xs, xs−1, as−1), ∀ 1 ≤ t ≤ T.

Then, we can define the martingale duality operator F : P → S according to:

(20) (FJ)(x) , E
[

inf
aT∈K

T∑
t=0

gt(xt, at)−MaT
T (J)

∣∣∣∣∣ x0 = x

]
.

In order for the deterministic inner optimization problem in (20) to be tractable, we need
to impose special structure on the function J . To this end, given a sequence of matrices Γ ,
(Γ1, . . . ,ΓT ), define the function JΓ ∈ P by

JΓ
0 (x) , 0, JΓ

t (x) , x>Γtx, ∀ 1 ≤ t ≤ T.

Denote by C ⊂ P the set of all functions of the form JΓ. The following theorem establishes that, for
this class of quadratic functions, the inner optimization problem in (20) is a convex optimization
problem, and therefore is tractable:

Theorem 6. For all J ∈ C, the inner optimization problem of (20) is a convex optimization problem.

Proof. Suppose that J = JΓ ∈ C. For each time t, apply the martingale difference operator ∆ to
JΓ
t to obtain

∆Jt(xt, xt−1, at−1) = 2w>t−1Γt(At−1xt−1 +Bt−1at−1) + w>t−1Γtwt−1 − E
[
w>t−1Γtwt−1

]
(21)

Observe that the quantity w>t−1Γtwt−1−E
[
w>t−1Γtwt−1

]
is zero mean and independent of the control

aT . We may consequently eliminate those terms from the inner optimization problem. In particular,
given a fixed sequence of disturbances wT , the inner optimization problem becomes:

(22)
minimize

aT ,xT
g0(x0, u0) +

T∑
t=1

{
gt(xt, at)− 2w>t−1Γt(At−1xt−1 +Bt−1at−1)

}
subject to xt+1 = Atxt +Btat + wt, ∀ 0 ≤ t ≤ T − 1,

at ∈ Kt, ∀ 0 ≤ t ≤ T.

This is clearly a convex optimization problem. �
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Theorem 6 suggested that for a quadratic3 cost-to-go function surrogate JΓ ∈ C, the lower
bound FJΓ(x) on the optimal cost-to-go J∗0 (x) can be efficiently computed. Finding the tightest
such lower bound suggests the optimization problem

(23) sup
Γ

FJΓ(x).

We now establish that this is also a convex optimization problem:

Theorem 7. FJΓ(x) is concave in Γ.

Proof. Using the definition of the F operator given by (20) and the expression for ∆J(xt, xt−1, at−1)
given by (21), we obtain

FJΓ(x) = E
[

inf
aT∈K

g0(x0, a0) +
T∑
t=1

{
gt(xt, at)− 2w>t−1Γt(At−1xt−1 +Bt−1at−1)

} ∣∣∣∣∣ x0 = x

]
.

Observe that FJΓ(x) is given by nonnegative linear combinations of infima of affine functions of
Γ. Since each of these operations preserves concavity, we obtain the desired result. �

The PO problem given by (23) can be viewed as a stochastic optimization problem. This
suggests two methods of solution:

• Iterative methods based on stochastic gradient descent can be used to solve (23). Starting
from an initial guess for Γ, the gradient of FJΓ(x) can be estimated along a single sample
path wT of random disturbances. The stochastic gradient estimate is then used to update
the choice of Γ, and the procedure is repeated until convergence. These steps together give
rise to a simple online method that can be used to handle large problems with a low memory
requirement.

• Alternatively, a sample average approximation can be used. Here, the objective function
FJΓ(x) is approximated with a sample average over sequences of random disturbances wT .
For a given realization of this sequence, the objective cost-to-go of the inner optimization prob-
lem, (22) can be expressed (using the appropriate conjugate functions) as a convex function
of Γ. In several special cases this representation allows us to rewrite the overall optimization
problem in a form suitable for direct optimization.

The details of both these approaches, along with application to a high-dimensional financial appli-
cation, namely, an optimal execution problem, can be found in Desai et al. (2011).

Observe that the classic convex linear quadratic control (LQC) problem is an example of a linear
convex problem. It is well-known that the optimal cost-to-go function for the convex LQC problem

3In fact, a broader class of cost-to-go functions including constant and linear terms could also be considered.
However, such constant and linear terms are eliminated in the evaluation of the martingale difference operator in
(21). Hence, they do not enter into the lower bound and can be ignored.
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takes a positive semi-definite quadratic form and can be computed recursively (and efficiently) by
solving the so-called Ricatti equation (see, e.g., Bertsekas, 1995). This tractability breaks down
under seemingly innocuous constraints such as requiring non-negative control actions. Loosely
speaking, the PO method bootstraps our ability to solve convex LQC problems to the task of
producing good approximations to linear convex problems. It does so by seeking martingale penalty
functions derived from quadratic approximations to the cost-to-go function. In particular, if convex
quadratic forms are likely to provide a reasonable approximation to the cost-to-go function of the
linear convex problem at hand, then one can expect the PO method to produce good lower bounds.

7. Conclusion

This chapter set out with the task of producing lower bounds on the optimal cost-to-go for high-
dimensional Markov decision problems. We considered two seemingly disparate approaches to
this task: the approximate linear programming (ALP) methodology and an approach based on
finding martingale ‘penalties’ in a certain dual problem. In concluding, we observe that these two
methodologies are intimately connected:

1. We have observed that given an approximation architecture for the ALP approach, one is
naturally led to consider a corresponding family of martingale penalties derived from the
same architecture. This consideration suggests an optimization problem that produces a
martingale penalty yielding the tightest lower bound possible within the corresponding family
of martingale penalties. We referred to this problem as the pathwise optimization (PO)
problem.

2. We established that solving the PO problem yields approximations to the cost-to-go that are
no worse than those produced by the ALP approach. This provided an elegant unification of
the two approaches.

3. Finally, we demonstrated the algorithmic value of the PO method in the context of two broad
classes of MDPs.

Moving forward, we believe that much remains to be done in developing the pathwise optimization
approach described in this chapter. In particular, developing the approach successfully for a given
class of problems requires that one first identify a suitable approximation architecture for that class
of problems. This architecture should admit tractable PO problems and simultaneously be rich
enough that it captures essential features of the true cost-to-go function. A number of problems
from areas such as financial engineering, revenue management and inventory management are ripe
for precisely this sort of study.

On an orthogonal note, while we have not studied this issue here, much remains to be done in
using the solution of the PO problem to generate good heuristic policies. Desai et al. (2010) discuss
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this in the context of optimal stopping, and demonstrate in numerical examples that PO-derived
policies can be superior to policies derived from more conventional ADP methods. In general, some
careful thought is needed here since optimal solutions to the PO problem are not unique. For
example, in linear convex setting, the optimal solutions are only identified up to affine translations.
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